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Overview

▶ We know best response dynamics (BRD) converges in
congestion games.

▶ Is that it? How much further can we push it?

▶ Today: study a couple more games in which BRD converges,
and try to abstract what is needed.

▶ Characterize exactly when BRD is guaranteed to converge.
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Load Balancing Games on Identical Machines

Definition
A load balancing game on identical machines models n players
i ∈ P scheduling jobs of size wi > 0 on m identical machines F .
The game has:

1. Action space Ai = F for each player

2. For each machine j ∈ F , a load ℓj(a) =
∑

i :ai=j wi

The cost of player i is the load of the machine he plays on:
ci (a) = ℓai (a).

Almost a congestion game — but facility costs depend on which
players are using them.



Load Balancing Games on Identical Machines

Definition
A load balancing game on identical machines models n players
i ∈ P scheduling jobs of size wi > 0 on m identical machines F .
The game has:

1. Action space Ai = F for each player

2. For each machine j ∈ F , a load ℓj(a) =
∑

i :ai=j wi

The cost of player i is the load of the machine he plays on:
ci (a) = ℓai (a).

Almost a congestion game — but facility costs depend on which
players are using them.



Load Balancing Games on Identical Machines



Load Balancing Games on Identical Machines

Theorem
Best response dynamics converge in load balancing games on
identical machines.

Corollary

Load balancing games on identical machines have pure strategy
Nash equilibria



Load Balancing Games on Identical Machines

Theorem
Best response dynamics converge in load balancing games on
identical machines.

Corollary

Load balancing games on identical machines have pure strategy
Nash equilibria



Proof
Define ϕ(a) = 1

2

∑m
j=1 ℓj(a)

2. Suppose player i switches from
machine j to machine j ′. Then we have:

∆ci (a) ≡ ci (j
′, a−i )− ci (j , a−i )

= ℓj ′(a) + wi − ℓj(a)

< 0

Similarly, we have:

∆ϕ(a) ≡ ϕ(j ′, a−i )− ϕ(j , a−i )

=
1

2

(
(ℓj ′(a) + wi )

2 + (ℓj(a)− wi )
2 − ℓj ′(a)

2 − ℓj(a)
2
)

=
1

2

(
2wiℓj ′(a) + w2

i − 2wiℓj(a) + w2
i

)
= wi

(
ℓj ′(a) + wi − ℓj(a)

)
= wi ·∆ci (a)

< 0

Note: ∆ci ̸= ∆ϕ.
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Red State/Blue State Game

And now — a game that doesn’t look like a congestion game.

Definition
The Red State/Blue State game is played on a graph G = (V ,E ).

1. The players are vertices P = V .

2. Each edge e = (i , j) ∈ E has weight we

3. Actions Ai = {−1, 1} (read {red, blue})
4. ui (a) =

∑
e=(i ,j)∈E we · ai · aj =

∑
j :ai=aj

wi ,j −
∑

j :ai ̸=aj
wi ,j

“Everyone picks an affiliation, and obtains utility equal to the
weight of friends who pick the same affiliation, and disutility equal

to the weight of friends who don’t.”



Red State/Blue State Game

And now — a game that doesn’t look like a congestion game.

Definition
The Red State/Blue State game is played on a graph G = (V ,E ).

1. The players are vertices P = V .

2. Each edge e = (i , j) ∈ E has weight we

3. Actions Ai = {−1, 1} (read {red, blue})
4. ui (a) =

∑
e=(i ,j)∈E we · ai · aj =

∑
j :ai=aj

wi ,j −
∑

j :ai ̸=aj
wi ,j

“Everyone picks an affiliation, and obtains utility equal to the
weight of friends who pick the same affiliation, and disutility equal

to the weight of friends who don’t.”



Red State/Blue State Game

And now — a game that doesn’t look like a congestion game.

Definition
The Red State/Blue State game is played on a graph G = (V ,E ).

1. The players are vertices P = V .

2. Each edge e = (i , j) ∈ E has weight we

3. Actions Ai = {−1, 1} (read {red, blue})
4. ui (a) =

∑
e=(i ,j)∈E we · ai · aj =

∑
j :ai=aj

wi ,j −
∑

j :ai ̸=aj
wi ,j

“Everyone picks an affiliation, and obtains utility equal to the
weight of friends who pick the same affiliation, and disutility equal

to the weight of friends who don’t.”



Red State/Blue State Game



Red State/Blue State Game

Theorem
The Red-State/Blue-State game always has a pure strategy Nash
equilibrium.
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Abstracting Away...

What do we need to make the proof work?

Definition
A function ϕ : A → R≥0 is an exact potential function for a game
G if for all a ∈ A, all i , and all ai , bi ∈ Ai :

ϕ(bi , a−i )− ϕ(ai , a−i ) = ci (bi , a−i )− ci (ai , a−i )

Definition
ϕ : A → R≥0 is an ordinal potential function for a game G if for all
a ∈ A, all i , and all ai , bi ∈ Ai :

(ci (bi , a−i )− ci (ai , a−i ) < 0) ⇒ (ϕ(bi , a−i )− ϕ(ai , a−i ) < 0)

i.e. the change in utility is always equal in sign to the change in
potential.
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A Characterization
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and only if the game has an ordinal potential function.

So our proof technique is without loss of generality!
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Proof

1. We’ve already seen the forward direction (ordinal potential
function ⇒ BRD converges) several times now, so lets prove
the reverse direction.

2. Consider a graph G = (V ,E ):

2.1 Let each a ∈ A be a vertex in the graph: i.e. V = A.
2.2 For each pair of vertices a, b ∈ V , add a directed edge (a, b) if

it is possible to get to get from b to a via a best response
move – i.e. if there is some index i such that b = (bi , a−i ),
and ci (bi , a−i ) < ci (a).

3. BRD can be viewed as traversing this graph: Start at an
arbitrary vertex a, and then traverse arbitrary outgoing edges.

4. Nash Equilibria are the sinks in this graph.

5. BRD converges = there are no cycles in this graph.



Proof

1. We’ve already seen the forward direction (ordinal potential
function ⇒ BRD converges) several times now, so lets prove
the reverse direction.

2. Consider a graph G = (V ,E ):

2.1 Let each a ∈ A be a vertex in the graph: i.e. V = A.
2.2 For each pair of vertices a, b ∈ V , add a directed edge (a, b) if

it is possible to get to get from b to a via a best response
move – i.e. if there is some index i such that b = (bi , a−i ),
and ci (bi , a−i ) < ci (a).

3. BRD can be viewed as traversing this graph: Start at an
arbitrary vertex a, and then traverse arbitrary outgoing edges.

4. Nash Equilibria are the sinks in this graph.

5. BRD converges = there are no cycles in this graph.



Proof

1. We’ve already seen the forward direction (ordinal potential
function ⇒ BRD converges) several times now, so lets prove
the reverse direction.

2. Consider a graph G = (V ,E ):

2.1 Let each a ∈ A be a vertex in the graph: i.e. V = A.
2.2 For each pair of vertices a, b ∈ V , add a directed edge (a, b) if

it is possible to get to get from b to a via a best response
move – i.e. if there is some index i such that b = (bi , a−i ),
and ci (bi , a−i ) < ci (a).

3. BRD can be viewed as traversing this graph: Start at an
arbitrary vertex a, and then traverse arbitrary outgoing edges.

4. Nash Equilibria are the sinks in this graph.

5. BRD converges = there are no cycles in this graph.



Proof

1. We’ve already seen the forward direction (ordinal potential
function ⇒ BRD converges) several times now, so lets prove
the reverse direction.

2. Consider a graph G = (V ,E ):

2.1 Let each a ∈ A be a vertex in the graph: i.e. V = A.
2.2 For each pair of vertices a, b ∈ V , add a directed edge (a, b) if

it is possible to get to get from b to a via a best response
move – i.e. if there is some index i such that b = (bi , a−i ),
and ci (bi , a−i ) < ci (a).

3. BRD can be viewed as traversing this graph: Start at an
arbitrary vertex a, and then traverse arbitrary outgoing edges.

4. Nash Equilibria are the sinks in this graph.

5. BRD converges = there are no cycles in this graph.



Proof

1. We’ve already seen the forward direction (ordinal potential
function ⇒ BRD converges) several times now, so lets prove
the reverse direction.

2. Consider a graph G = (V ,E ):

2.1 Let each a ∈ A be a vertex in the graph: i.e. V = A.
2.2 For each pair of vertices a, b ∈ V , add a directed edge (a, b) if

it is possible to get to get from b to a via a best response
move – i.e. if there is some index i such that b = (bi , a−i ),
and ci (bi , a−i ) < ci (a).

3. BRD can be viewed as traversing this graph: Start at an
arbitrary vertex a, and then traverse arbitrary outgoing edges.

4. Nash Equilibria are the sinks in this graph.

5. BRD converges = there are no cycles in this graph.



Proof



Proof

1. So suppose BRD converges (i.e. G is acyclic). We construct a
potential function ϕ.

2. The graph is acyclic, so: from every state a there is some sink
s that is reachable. (why?)

3. For each vertex a, define ϕ(a) to be the length of the longest
finite path from a to any sink s.

4. We need: for any edge a → b, ϕ(b) < ϕ(a).

5. Its true! ϕ(a) ≥ ϕ(b) + 1. (why?)
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Thanks!

See you next class — stay healthy!


