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Overview

▶ Today we’ll give study a structured class of large games.

▶ We’ll study a simple, natural dynamic, and show it converges
to Nash equilibrium.

▶ Our first “computationally plausible” set of predictions in a
large interaction.
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Large Games

Q: How many numbers do we need to write down to represent an
n player k action game?

A: We need kn numbers just to encode a single utility function.

Unreasonable to expect anyone to understand such an object.
So: we need to think about structured, concisely defined games.
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Example 1: Traffic Routing



Congestion Games
Convention: Players have cost functions they want to minimize
rather than utility functions they want to maximize.

Definition
A congestion game is defined by:

1. A set of n players P

2. A set of m facilities F

3. For each player i , a set of actions Ai . Each action ai ∈ Ai

represents a subset of the facilities: ai ⊆ F .

4. For each facility j ∈ F , a cost function ℓj : {0, . . . , n} → R≥0.
ℓj(k) represents “the cost of facility j when k players are using
it”.

Player costs are then defined as follows. For action profile
a = (a1, . . . , an) define nj(a) = |{i : j ∈ ai}| to be the number of
players using facility j . Then the cost of agent i is:

ci (a) =
∑
j∈ai

ℓj(nj(a))

i.e. the total cost of the facilities she is using.
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Example 2: Network Creation



Congestion games

▶ Ok, so we can concisely describe a large game...

▶ So what? What can we do with it?

▶ Do they have pure strategy Nash equilibria?

▶ Can computationally bounded, uncoordinated players find
one?

▶ i.e. are pure strategy Nash equilibria computationally plausible
predictions?

▶ Lets study a simple dynamic...
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Best (Better) Response Dynamics

The basic idea:

1. Players start playing arbitrary actions.

2. In arbitrary order, players take turns changing their action if
doing so can improve their utility.

3. Forever...
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Best (Better) Response Dynamics

Algorithm 1 Best Response Dynamics

Initialize a = (a1, . . . , an) to be an arbitrary action profile.
while There exists i such that ai ̸∈ argmina∈Ai

ci (a, a−i ) do
Let a′i be such that ci (a

′
i , a−i ) < c(a).

Set ai = a′i .
end while
Halt and return a.

Claim
If best response dynamics halts, it returns a pure strategy Nash
equilibrium.

Proof.
Immediate from halting condition – by definition, every player must
be playing a best response.
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Best (Better) Response Dynamics

Does best response dynamics always halt?

No: Consider matching pennies/Rock Paper Scissors.

Theorem
Best response dynamics always halt in congestion games.

Corollary

All congestion games have at least one pure strategy Nash
equilibrium.
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Analysis of BRD in Congestion Games

1. Consider the potential function ϕ : A → R:

ϕ(a) =
m∑
j=1

nj (a)∑
k=1

ℓj(k)

(Note: not social welfare)

2. How does ϕ change in one round of BRD? Say i switches
from ai to bi ∈ Ai .

3. Well... We know it must have decreased player i ’s cost:

∆ci ≡ ci (bi , a−i )− ci (ai , a−i )

=
∑

j∈bi\ai

ℓj(nj(a) + 1)−
∑

j∈ai\bi

ℓj(nj(s))

< 0
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Analysis of BRD in Congestion Games

ϕ(a) =
m∑
j=1

nj (a)∑
k=1

ℓj(k)

1. The change in potential is:

∆ϕ ≡ ϕ(bi , a−i )− ϕ(ai , a−i )

=
∑

j∈bi\ai

ℓj(nj(a) + 1)−
∑

j∈ai\bi

ℓj(nj(s))

= ∆ci

2. Therefore, the change in potential is strictly negative

3. So... since ϕ can take on only finitely many values, this
cannot go on forever.

4. And hence BRD halts in congestion games...

5. Which proves the existence of pure strategy Nash equilibria!
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Efficiency

But... How long does it take?

Our proof gives only an exponential convergence bound... And it
might really take that long!

Lets consider approximation...
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Approximation

Definition
An action profile a ∈ A is an ϵ-approximate pure strategy Nash
equilibrium if for every player i , and for every action a′i ∈ Ai :

ci (ai , a−i ) ≤ ci (a
′
i , a−i ) + ϵ

i.e. nobody can gain more than ϵ by deviating.

.



Approximate Best Response Dynamics

Algorithm 4 FindApproxNash(ϵ)

Initialize a = (a1, . . . , an) to be an arbitrary action profile.
while There exists i , a′i such that ci (a

′
i , a−i ) ≤ ci (ai , a−i )− ϵ do

Set ai = argmina∈Ai
ci (a, a−i )

end while
Halt and return a.

Claim
If FindApproxNash(ϵ) halts, it returns an ϵ-approximate pure
strategy Nash equilibrium

Proof.
Immediately, by definition.
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Analysis

Theorem
In any congestion game, FindApproxNash(ϵ) halts after at most:

n ·m · cmax

ϵ

steps, where cmax = maxj ,k ℓj(k) is the maximum facility cost.

Proof.
We revisit the potential function ϕ. Recall that ∆ci = ∆ϕ on any
round when player i moves.
Observe also that at every round, ϕ ≥ 0, and

ϕ(a) =
m∑
j=1

nj (a)∑
k=1

ℓj(k) ≤ n ·m · cmax

By definition of the algorithm, we have ∆ci = ∆ϕ ≤ −ϵ at every
round, and so the theorem follows.
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Thanks!

See you next class — stay healthy!


