Aaron Roth

University of Pennsylvania

January 25 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

- Today we'll give study a structured class of large games.
- We'll study a simple, natural dynamic, and show it converges to Nash equilibrium.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

- Today we'll give study a structured class of large games.
- We'll study a simple, natural dynamic, and show it converges to Nash equilibrium.
- Our first "computationally plausible" set of predictions in a large interaction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Large Games

Q: How many numbers do we need to write down to represent an n player k action game?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Large Games

Q: How many numbers do we need to write down to represent an n player k action game?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A: We need k^n numbers just to encode a single utility function.

Large Games

- **Q**: How many numbers do we need to write down to represent an n player k action game?
- **A**: We need k^n numbers just to encode a single utility function.

Unreasonable to expect anyone to understand such an object.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- **Q**: How many numbers do we need to write down to represent an n player k action game?
- **A**: We need k^n numbers just to encode a single utility function.

Unreasonable to expect anyone to understand such an object. So: we need to think about structured, concisely defined games.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example 1: Traffic Routing

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · のQ@

Convention: Players have *cost functions* they want to minimize rather than *utility functions* they want to maximize.

Convention: Players have *cost functions* they want to minimize rather than *utility functions* they want to maximize.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A congestion game is defined by:

1. A set of n players P

Convention: Players have *cost functions* they want to minimize rather than *utility functions* they want to maximize.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A congestion game is defined by:

- 1. A set of n players P
- 2. A set of m facilities F

Convention: Players have *cost functions* they want to minimize rather than *utility functions* they want to maximize.

Definition

A congestion game is defined by:

- 1. A set of n players P
- 2. A set of m facilities F
- For each player *i*, a set of actions A_i. Each action a_i ∈ A_i represents a subset of the facilities: a_i ⊆ F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convention: Players have *cost functions* they want to minimize rather than *utility functions* they want to maximize.

Definition

A congestion game is defined by:

- 1. A set of n players P
- 2. A set of m facilities F
- For each player *i*, a set of actions A_i. Each action a_i ∈ A_i represents a subset of the facilities: a_i ⊆ F.
- 4. For each facility $j \in F$, a cost function $\ell_j : \{0, \ldots, n\} \to \mathbb{R}_{\geq 0}$. $\ell_j(k)$ represents "the cost of facility j when k players are using it".

Convention: Players have *cost functions* they want to minimize rather than *utility functions* they want to maximize.

Definition

A congestion game is defined by:

- 1. A set of n players P
- 2. A set of m facilities F
- For each player *i*, a set of actions A_i. Each action a_i ∈ A_i represents a subset of the facilities: a_i ⊆ F.
- 4. For each facility $j \in F$, a cost function $\ell_j : \{0, \ldots, n\} \to \mathbb{R}_{\geq 0}$. $\ell_j(k)$ represents "the cost of facility j when k players are using it".

Player costs are then defined as follows. For action profile $a = (a_1, \ldots, a_n)$ define $n_j(a) = |\{i : j \in a_i\}|$ to be the number of players using facility j. Then the cost of agent i is:

Example 2: Network Creation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Ok, so we can concisely describe a large game...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Ok, so we can concisely describe a large game...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

So what? What can we do with it?

Ok, so we can concisely describe a large game...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- So what? What can we do with it?
- Do they have pure strategy Nash equilibria?

- Ok, so we can concisely describe a large game...
- So what? What can we do with it?
- Do they have pure strategy Nash equilibria?
- Can computationally bounded, uncoordinated players find one?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Ok, so we can concisely describe a large game...
- So what? What can we do with it?
- Do they have pure strategy Nash equilibria?
- Can computationally bounded, uncoordinated players find one?
- i.e. are pure strategy Nash equilibria computationally plausible predictions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Ok, so we can concisely describe a large game...
- So what? What can we do with it?
- Do they have pure strategy Nash equilibria?
- Can computationally bounded, uncoordinated players find one?
- i.e. are pure strategy Nash equilibria computationally plausible predictions?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Lets study a simple dynamic...

The basic idea:

The basic idea:

1. Players start playing *arbitrary* actions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The basic idea:

- 1. Players start playing *arbitrary* actions.
- 2. In arbitrary order, players take turns changing their action if doing so can improve their utility.

The basic idea:

- 1. Players start playing *arbitrary* actions.
- 2. In arbitrary order, players take turns changing their action if doing so can improve their utility.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. Forever...

Algorithm 1 Best Response DynamicsInitialize $a = (a_1, \ldots, a_n)$ to be an arbitrary action profile.while There exists i such that $a_i \notin \arg\min_{a \in A_i} c_i(a, a_{-i})$ doLet a'_i be such that $c_i(a'_i, a_{-i}) < c(a)$.Set $a_i = a'_i$.end whileHalt and return a.

Algorithm 2 Best Response Dynamics Initialize $a = (a_1, ..., a_n)$ to be an arbitrary action profile. while There exists *i* such that $a_i \notin \arg\min_{a \in A_i} c_i(a, a_{-i})$ do Let a'_i be such that $c_i(a'_i, a_{-i}) < c(a)$. Set $a_i = a'_i$. end while Halt and return *a*.

Claim

If best response dynamics halts, it returns a pure strategy Nash equilibrium.

Algorithm 3 Best Response Dynamics Initialize $a = (a_1, ..., a_n)$ to be an arbitrary action profile. while There exists *i* such that $a_i \notin \arg\min_{a \in A_i} c_i(a, a_{-i})$ do Let a'_i be such that $c_i(a'_i, a_{-i}) < c(a)$. Set $a_i = a'_i$. end while Halt and return *a*.

Claim

If best response dynamics halts, it returns a pure strategy Nash equilibrium.

Proof.

Immediate from halting condition – by definition, every player must be playing a best response. $\hfill \square$

Does best response dynamics always halt?

Does best response dynamics always halt? No: Consider matching pennies/Rock Paper Scissors.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Does best response dynamics always halt? No: Consider matching pennies/Rock Paper Scissors.

Theorem

Best response dynamics always halt in congestion games.

Does best response dynamics always halt? No: Consider matching pennies/Rock Paper Scissors.

Theorem

Best response dynamics always halt in congestion games.

Corollary

All congestion games have at least one pure strategy Nash equilibrium.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. Consider the *potential function* $\phi : A \to \mathbb{R}$:

$$\phi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} \ell_j(k)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

(Note: *not* social welfare)

1. Consider the *potential function* $\phi : A \to \mathbb{R}$:

$$\phi(a) = \sum_{j=1}^{m} \sum_{k=1}^{n_j(a)} \ell_j(k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Note: *not* social welfare)

2. How does ϕ change in one round of BRD? Say *i* switches from a_i to $b_i \in A_i$.

1. Consider the *potential function* $\phi : A \to \mathbb{R}$:

$$\phi(a) = \sum_{j=1}^{m} \sum_{k=1}^{n_j(a)} \ell_j(k)$$

(Note: *not* social welfare)

- How does φ change in one round of BRD? Say i switches from a_i to b_i ∈ A_i.
- 3. Well... We know it must have decreased player i's cost:

$$egin{array}{rcl} \Delta c_i &\equiv& c_i(b_i, a_{-i}) - c_i(a_i, a_{-i}) \ &=& \displaystyle{\sum_{j\in b_i\setminus a_i}\ell_j(n_j(a)+1) - \sum_{j\in a_i\setminus b_i}\ell_j(n_j(s))} \ &<& 0 \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$$\phi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} \ell_j(k)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\phi(a) = \sum_{j=1}^{m} \sum_{k=1}^{n_j(a)} \ell_j(k)$$

1. The change in potential is:

$$\begin{array}{lll} \Delta \phi &\equiv& \phi(b_i, a_{-i}) - \phi(a_i, a_{-i}) \\ &=& \sum_{j \in b_i \setminus a_i} \ell_j(n_j(a) + 1) - \sum_{j \in a_i \setminus b_i} \ell_j(n_j(s)) \\ &=& \Delta c_i \end{array}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\phi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} \ell_j(k)$$

1. The change in potential is:

$$egin{array}{rcl} \Delta \phi &\equiv& \phi(b_i, a_{-i}) - \phi(a_i, a_{-i}) \ &=& \displaystyle{\sum_{j \in b_i \setminus a_i} \ell_j(n_j(a) + 1) - \sum_{j \in a_i \setminus b_i} \ell_j(n_j(s))} \ &=& \Delta c_i \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

2. Therefore, the change in potential is strictly negative

$$\phi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} \ell_j(k)$$

1. The change in potential is:

$$egin{array}{rcl} \Delta \phi &\equiv& \phi(b_i, a_{-i}) - \phi(a_i, a_{-i}) \ &=& \displaystyle{\sum_{j \in b_i \setminus a_i} \ell_j(n_j(a) + 1) - \sum_{j \in a_i \setminus b_i} \ell_j(n_j(s))} \ &=& \Delta c_i \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 2. Therefore, the change in potential is strictly *negative*
- 3. So... since ϕ can take on only finitely many values, this cannot go on forever.

$$\phi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} \ell_j(k)$$

1. The change in potential is:

$$egin{array}{rcl} \Delta \phi &\equiv& \phi(b_i, a_{-i}) - \phi(a_i, a_{-i}) \ &=& \displaystyle{\sum_{j \in b_i \setminus a_i} \ell_j(n_j(a) + 1) - \sum_{j \in a_i \setminus b_i} \ell_j(n_j(s))} \ &=& \Delta c_i \end{array}$$

- 2. Therefore, the change in potential is strictly negative
- 3. So... since ϕ can take on only finitely many values, this cannot go on forever.
- 4. And hence BRD halts in congestion games...

$$\phi(a) = \sum_{j=1}^m \sum_{k=1}^{n_j(a)} \ell_j(k)$$

1. The change in potential is:

$$egin{array}{rcl} \Delta \phi &\equiv& \phi(b_i, a_{-i}) - \phi(a_i, a_{-i}) \ &=& \displaystyle{\sum_{j \in b_i \setminus a_i} \ell_j(n_j(a) + 1) - \sum_{j \in a_i \setminus b_i} \ell_j(n_j(s))} \ &=& \Delta c_i \end{array}$$

- 2. Therefore, the change in potential is strictly *negative*
- 3. So... since ϕ can take on only finitely many values, this cannot go on forever.
- 4. And hence BRD halts in congestion games...
- 5. Which proves the *existence* of pure strategy Nash equilibria!

Efficiency

But... How long does it take?

Efficiency

But... How long does it take? Our proof gives only an exponential convergence bound... And it might really take that long!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Efficiency

But... How long does it take? Our proof gives only an exponential convergence bound... And it might really take that long! Lets consider approximation...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Approximation

Definition

An action profile $a \in A$ is an ϵ -approximate pure strategy Nash equilibrium if for every player *i*, and for every action $a'_i \in A_i$:

$$c_i(a_i, a_{-i}) \leq c_i(a'_i, a_{-i}) + \epsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

i.e. nobody can gain more than ϵ by deviating.

Approximate Best Response Dynamics

Algorithm 4 FindApproxNash(ϵ)

Initialize $a = (a_1, ..., a_n)$ to be an arbitrary action profile. while There exists i, a'_i such that $c_i(a'_i, a_{-i}) \le c_i(a_i, a_{-i}) - \epsilon$ do Set $a_i = \arg \min_{a \in A_i} c_i(a, a_{-i})$ end while Halt and return a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Approximate Best Response Dynamics

Algorithm 5 FindApproxNash(ϵ)

Initialize $a = (a_1, ..., a_n)$ to be an arbitrary action profile. while There exists i, a'_i such that $c_i(a'_i, a_{-i}) \le c_i(a_i, a_{-i}) - \epsilon$ do Set $a_i = \arg \min_{a \in A_i} c_i(a, a_{-i})$ end while Halt and return a.

Claim

If FindApproxNash(ϵ) halts, it returns an ϵ -approximate pure strategy Nash equilibrium

Approximate Best Response Dynamics

Algorithm 6 FindApproxNash(ϵ)

Initialize $a = (a_1, ..., a_n)$ to be an arbitrary action profile. while There exists i, a'_i such that $c_i(a'_i, a_{-i}) \le c_i(a_i, a_{-i}) - \epsilon$ do Set $a_i = \arg \min_{a \in A_i} c_i(a, a_{-i})$ end while Halt and return a.

Claim

If FindApproxNash(ϵ) halts, it returns an ϵ -approximate pure strategy Nash equilibrium

Proof. Immediately, by definition.

Theorem

In any congestion game, FindApproxNash(ϵ) halts after at most:

 $\frac{n \cdot m \cdot c_{max}}{\epsilon}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

steps, where $c_{max} = \max_{j,k} \ell_j(k)$ is the maximum facility cost.

Theorem

In any congestion game, FindApproxNash(ϵ) halts after at most:

 $\frac{n \cdot m \cdot c_{max}}{\epsilon}$

steps, where $c_{max} = \max_{j,k} \ell_j(k)$ is the maximum facility cost.

Proof.

We revisit the potential function ϕ . Recall that $\Delta c_i = \Delta \phi$ on any round when player *i* moves.

Theorem

In any congestion game, FindApproxNash(ϵ) halts after at most:

 $\frac{n \cdot m \cdot c_{max}}{\epsilon}$

steps, where $c_{max} = \max_{j,k} \ell_j(k)$ is the maximum facility cost.

Proof.

We revisit the potential function ϕ . Recall that $\Delta c_i = \Delta \phi$ on any round when player *i* moves.

Observe also that at every round, $\phi \geq$ 0, and

$$\phi(a) = \sum_{j=1}^{m} \sum_{k=1}^{n_j(a)} \ell_j(k) \le n \cdot m \cdot c_{max}$$

Theorem

In any congestion game, FindApproxNash(ϵ) halts after at most:

 $\frac{n \cdot m \cdot c_{max}}{\epsilon}$

steps, where $c_{max} = \max_{j,k} \ell_j(k)$ is the maximum facility cost.

Proof.

We revisit the potential function ϕ . Recall that $\Delta c_i = \Delta \phi$ on any round when player *i* moves.

Observe also that at every round, $\phi \geq$ 0, and

$$\phi(a) = \sum_{j=1}^{m} \sum_{k=1}^{n_j(a)} \ell_j(k) \le n \cdot m \cdot c_{max}$$

By definition of the algorithm, we have $\Delta c_i = \Delta \phi \leq -\epsilon$ at every round, and so the theorem follows.

Thanks!

See you next class — stay healthy!

