Posted Pricings and Prophet Inequalities

Aaron Roth

University of Pennsylvania

March 31 2022
Overview

▶ We’ve seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.

▶ But auctions are difficult to run. They require e.g. all participants to be present and coordinating.

▶ Many things are instead sold via posted prices.

▶ This lecture: How to approximate the welfare and revenue of the optimal auction with posted prices.
Overview

- We’ve seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
Overview

- We’ve seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
- Many things are instead sold via posted prices.
Overview

- We’ve seen (if we know the valuation distributions) how to maximize social welfare and revenue with an auction.
- But auctions are difficult to run. They require e.g. all participants to be present and coordinating.
- Many things are instead sold via posted prices.
- This lecture: How to approximate the welfare and revenue of the optimal auction with posted prices.
Pricing for a single item (e.g. a car)

A Model:

- k recognizable types of buyers (based on demographics, purchase history, or anything else).

- Buyers of type i have valuation $v_i \sim D_i$, where D_i is regular.

- Buyers arrive one at a time until the item is sold.

- Buyers of type i face price p_i. If $v_i \geq p_i$ they buy the item, and we get revenue p_i. Otherwise they pass.

Are there choices of p_i that allow us to approximate the welfare or revenue of the optimal auction?
Pricing for a single item (e.g. a car)

A Model:

- k recognizable *types* of buyers (based on demographics, purchase history, or anything else).
- Buyers of type i have valuation $v_i \sim D_i$, where D_i regular.
Pricing for a single item (e.g. a car)

A Model:

- \(k \) recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type \(i \) have valuation \(v_i \sim D_i \), where \(D_i \) regular.
- Buyers arrive one at a time until the item is sold.
Pricing for a single item (e.g. a car)

A Model:
- k recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type i have valuation $v_i \sim D_i$, where D_i regular.
- Buyers arrive one at a time until the item is sold.
- Buyers of type i face price p_i. If $v_i \geq p_i$ they buy the item, and we get revenue p_i. Otherwise they pass.
Pricing for a single item (e.g. a car)

A Model:
- \(k \) recognizable types of buyers (based on demographics, purchase history, or anything else).
- Buyers of type \(i \) have valuation \(\nu_i \sim D_i \), where \(D_i \) regular.
- Buyers arrive one at a time until the item is sold.
- Buyers of type \(i \) face price \(p_i \). If \(\nu_i \geq p_i \) they buy the item, and we get revenue \(p_i \). Otherwise they pass.

Are there choices of \(p_i \) that allow us to approximate the welfare or revenue of the optimal auction?
Consider the following game:

- In each of n steps $i \in \{1, \ldots, n\}$, you are offered a prize $\pi_i \sim G_i$. (The distributions G_i are known in advance).

How well can you do?
Consider the following game:

- In each of n steps $i \in \{1, \ldots, n\}$, you are offered a prize $\pi_i \sim G_i$. (The distributions G_i are known in advance).
- At each step i, after seeing π_i, you can either choose to accept it *and end the game* or reject it and continue.
Consider the following game:

- In each of \(n \) steps \(i \in \{1, \ldots, n\} \), you are offered a prize \(\pi_i \sim G_i \). (The distributions \(G_i \) are known in advance).
- At each step \(i \), after seeing \(\pi_i \), you can either choose to accept it *and end the game* or reject it and continue.
- A *prophet* could foresee all of the prizes and make sure to always take the highest one. His expected profit would be:

\[
\text{Profit(Prophet)} = \mathbb{E}[\max_i \pi_i]
\]
Prophets and Profits (an Interlude)

Consider the following game:

- In each of n steps $i \in \{1, \ldots, n\}$, you are offered a prize $\pi_i \sim G_i$. (The distributions G_i are known in advance).
- At each step i, after seeing π_i, you can either choose to accept it and end the game or reject it and continue.
- A prophet could foresee all of the prizes and make sure to always take the highest one. His expected profit would be:

$$\text{Profit}(\text{Prophet}) = \mathbb{E}[\max_i \pi_i]$$

- How well can you do?
The Prophet Inequality

Definition
A *threshold* strategy fixes some threshold t and accepts the first prize such that $\pi_i \geq t$.
The Prophet Inequality

Definition
A *threshold* strategy fixes some threshold t and accepts the first prize such that $\pi_i \geq t$.

An immediate connection to welfare: t corresponds to price p, accepting reward π_i corresponds to obtaining welfare v_i.
The Prophet Inequality

Definition
A *threshold* strategy fixes some threshold t and accepts the first prize such that $\pi_i \geq t$.

An immediate connection to welfare: t corresponds to price p, accepting reward π_i corresponds to obtaining welfare v_i.

Theorem
*For every set of distributions G_1, \ldots, G_n, there is a threshold strategy that guarantees reward at least $\frac{1}{2} \mathbb{E}[\max_i \pi_i]$.**
The Prophet Inequality

- Notation: $z^+ = \max(z, 0)$, $V^* = \max_i \pi_i$.

- We'll use threshold $t = \frac{1}{2} \mathbb{E}[V^*]$.

- We'll use language of the economic application:
 - "item is unsold" ⇔ "We don't accept any prizes"
 - "item is sold" ⇔ "We accept a prize"

- We'll prove the prophet inequality by decomposing expected reward between:
 1. Expected revenue, and
 2. Expected buyer utility.
The Prophet Inequality

- Notation: \(z^+ = \max(z, 0) \), \(V^* = \max_i \pi_i \).
- We’ll use threshold \(t = \frac{1}{2} \mathbb{E}[V^*] \).
The Prophet Inequality

- Notation: \(z^+ = \max(z, 0), \ V^* = \max_i \pi_i \).
- We’ll use threshold \(t = \frac{1}{2} \mathbb{E}[V^*] \).
- We’ll use language of the economic application:
 - “item is unsold” \(\iff \) “We don’t accept any prizes”
 - “item is sold” \(\iff \) “We accept a prize”
The Prophet Inequality

- **Notation:** \(z^+ = \max(z, 0) \), \(V^* = \max_i \pi_i \).
- We’ll use threshold \(t = \frac{1}{2} \mathbb{E}[V^*] \).
- We’ll use language of the economic application:
 - “item is unsold” ⇔ “We don’t accept any prizes”
 - “item is sold” ⇔ “We accept a prize”
- We’ll prove the prophet inequality by decomposing expected reward between:
 1. Expected revenue, and
 2. Expected buyer utility.
The Prophet Inequality

To show: Expected welfare (reward) is large.
To show: Expected welfare (reward) is large.

Suppose we sell to buyer i at price p (select reward i):

- We obtain revenue p
- Buyer obtains utility $v_i - p$.
The Prophet Inequality

- To show: Expected welfare (reward) is large.
- Suppose we sell to buyer i at price p (select reward i):
 - We obtain revenue p
 - Buyer obtains utility $v_i - p$.
- Welfare = Revenue + Buyer Utility.
The Prophet Inequality

- To show: Expected welfare (reward) is large.
- Suppose we sell to buyer i at price p (select reward i):
 - We obtain revenue p
 - Buyer obtains utility $v_i - p$.
- Welfare = Revenue + Buyer Utility.
- Strategy: Prove lower bounds on expected revenue and buyer utility separately.
The Prophet Inequality

- Expected Revenue:

\[
E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2}E[V^*] \cdot \Pr[\text{Item is sold}]
\]
The Prophet Inequality

- Expected Revenue:

\[E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] \]

- Buyer Utility:

\[E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)] \cdot \Pr[\text{Item is unsold before } i] \geq \sum_{i=1}^{n} E[(v_i - p)] \cdot \Pr[\text{Item is unsold}] \geq E[\max_i (v_i - p)] \cdot \Pr[\text{Item is unsold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is unsold}] \]
The Prophet Inequality

- **Expected Revenue:**
 \[
 E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2}E[V^*] \cdot \Pr[\text{Item is sold}]
 \]

- **Buyer Utility:**
 - If we get to buyer \(i \) before selling the item, she has opportunity to buy. So her utility is \((v_i - p)^+\).
The Prophet Inequality

- Expected Revenue:

\[
E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}]
\]

- Buyer Utility:

 - If we get to buyer \(i \) before selling the item, she has opportunity to buy. So her utility is \((v_i - p)^+\).

 - So expected buyer utility is:

\[
E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i]
\]
The Prophet Inequality

- Expected Revenue:

\[\mathbb{E}[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} \mathbb{E}[V^*] \cdot \Pr[\text{Item is sold}] \]

- Buyer Utility:

 - If we get to buyer \(i \) before selling the item, she has opportunity to buy. So her utility is \((v_i - p)^+ \).
 - So expected buyer utility is:

\[
\mathbb{E}[\text{Utility}] = \sum_{i=1}^{n} \mathbb{E}[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i] \\
\geq \sum_{i=1}^{n} \mathbb{E}[(v_i - p)^+] \cdot \Pr[\text{item is unsold}] \]

\]
The Prophet Inequality

- **Expected Revenue:**

\[E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] \]

- **Buyer Utility:**

 - *If* we get to buyer *i* before selling the item, she has opportunity to buy. So her utility is \((v_i - p)^+ \).
 - So expected buyer utility is:

\[
E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i] \\
\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}] \\
\geq E[\max_i (v_i - p)^+] \cdot \Pr[\text{item is unsold}]
\]
The Prophet Inequality

- Expected Revenue:

\[E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] \]

- Buyer Utility:

 - *If* we get to buyer \(i \) before selling the item, she has opportunity to buy. So her utility is \((v_i - p)^+\).
 - So expected buyer utility is:

\[
E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i] \\
\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}] \\
\geq E[\max_i (v_i - p)^+] \cdot \Pr[\text{item is unsold}] \\
\geq (E[\max_i v_i] - p) \cdot \Pr[\text{item is unsold}]
\]
The Prophet Inequality

- Expected Revenue:

\[E[\text{Revenue}] = p \cdot \Pr[\text{Item is sold}] = \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] \]

- Buyer Utility:
 - If we get to buyer \(i \) before selling the item, she has opportunity to buy. So her utility is \((v_i - p)^+\).
 - So expected buyer utility is:

\[
E[\text{Utility}] = \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold before } i] \\
\geq \sum_{i=1}^{n} E[(v_i - p)^+] \cdot \Pr[\text{item is unsold}] \\
\geq E[\max_i (v_i - p)^+] \cdot \Pr[\text{item is unsold}] \\
\geq (E[\max_i v_i] - p) \cdot \Pr[\text{item is unsold}] \\
= \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is unsold}]
\]
The Prophet Inequality

So we can bound expected welfare/reward...

\[
E[\text{Welfare}] = E[\text{Revenue}] + E[\text{Utility}]
\]
The Prophet Inequality

So we can bound expected welfare/reward...

\[E[\text{Welfare}] = E[\text{Revenue}] + E[\text{Utility}] \]
\[\geq \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] + \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is unsold}] \]
The Prophet Inequality

So we can bound expected welfare/reward...

\[E[\text{Welfare}] = E[\text{Revenue}] + E[\text{Utility}] \]
\[\geq \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] + \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is unsold}] \]
\[= \frac{1}{2} E[V^*] \cdot (\Pr[\text{Item is sold}] + \Pr[\text{Item is unsold}]) \]
So we can bound expected welfare/reward...

\[
E[\text{Welfare}] = E[\text{Revenue}] + E[\text{Utility}]
\geq \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is sold}] + \frac{1}{2} E[V^*] \cdot \Pr[\text{Item is unsold}]
= \frac{1}{2} E[V^*] \cdot (\Pr[\text{Item is sold}] + \Pr[\text{Item is unsold}])
= \frac{1}{2} E[V^*]
\]
Immediate implications for welfare maximization!

- Using a *single* fixed price $p = \frac{1}{2}E[V^*]$, can obtain half the expected welfare of the VCG mechanism.
Welfare

Immediate implications for welfare maximization!

- Using a single fixed price $p = \frac{1}{2} \mathbb{E}[V^*]$, can obtain half the expected welfare of the VCG mechanism.
- Without needing to gather all bidders ahead of time, and despite the uncertainty about realizations!
Welfare

Immediate implications for welfare maximization!

- Using a *single* fixed price \(p = \frac{1}{2} \mathbb{E}[V^*] \), can obtain half the expected welfare of the VCG mechanism.
- Without needing to gather all bidders ahead of time, and despite the uncertainty about realizations!
- What about for revenue?
Revenue

Recall that for monotone allocation rules X paired with truthful pricings P:

$$E[\text{Revenue}] = E\left[\sum_{i=1}^{n} \phi_i(v_i)X(v)\right]$$

Optimal revenue is $\text{OPT} = E[\max_i(\phi_i(v_i))]$.

Define $\pi_i = (\phi_i(v_i))$. So $E[V^*] = \text{OPT}$.

We can achieve virtual value at least $\frac{1}{2}\text{OPT}$ with threshold $t = \frac{\text{OPT}}{2}$.

This corresponds to setting threshold/price $p_i = \phi_i - \frac{\text{OPT}}{2}$.

(Note a fixed price corresponds to a monotone allocation rule with payment = price)

We need to use different prices for different types of bidders, but approximate optimal revenue.
Recall that for monotone allocation rules X paired with truthful pricings P:

\[
E[\text{Revenue}] = E\left[\sum_{i=1}^{n} \phi_i(v_i)X(v)\right]
\]

Optimal revenue is $OPT = E[\max_i(\phi_i(v_i))^+]$.
Revenue

Recall that for monotone allocation rules X paired with truthful pricings P:

\[E[\text{Revenue}] = E\left[\sum_{i=1}^{n} \phi_i(v_i)X(v) \right] \]

- Optimal revenue is $\text{OPT} = E[\max_i(\phi_i(v_i))^+]$.
- Define $\pi_i = (\phi_i(v_i))^+$. So $E[V^*] = \text{OPT}$.

(Note a fixed price corresponds to a monotone allocation rule with payment = price)
Revenue

Recall that for monotone allocation rules X paired with truthful pricings P:

- $\mathbb{E}[\text{Revenue}] = \mathbb{E}\left[\sum_{i=1}^{n} \phi_i(v_i)X(v) \right]$

- Optimal revenue is $\text{OPT} = \mathbb{E}[\max_i(\phi_i(v_i))^+]$.

- Define $\pi_i = (\phi_i(v_i))^+$. So $\mathbb{E}[V^*] = \text{OPT}$.

- We can achieve virtual value at least $\frac{1}{2}\text{OPT}$ with threshold $t = \text{OPT}/2$.

(Note a fixed price corresponds to a monotone allocation rule with payment = price. We need to use different prices for different types of bidders, but approximate optimal revenue.)
Revenue

Recall that for monotone allocation rules X paired with truthful pricings P:

- \[E[\text{Revenue}] = E[\sum_{i=1}^{n} \phi_i(v_i)X(v)] \]

- Optimal revenue is \(\text{OPT} = E[\max_i(\phi_i(v_i))^+] \).
- Define \(\pi_i = (\phi_i(v_i))^+ \). So \(E[V^*] = \text{OPT} \).
- We can achieve \textit{virtual value} at least \(\frac{1}{2} \text{OPT} \) with threshold \(t = \text{OPT}/2 \).
- This corresponds to setting threshold/price \(p_i = \phi_i^{-1}(\frac{\text{OPT}}{2}) \).
 - (Note a fixed price corresponds to a monotone allocation rule with payment = price)
Revenue

Recall that for monotone allocation rules X paired with truthful pricings P:

\[
E[\text{Revenue}] = E[\sum_{i=1}^{n} \phi_i(v_i)X(v)]
\]

- Optimal revenue is $\text{OPT} = E[\max_i (\phi_i(v_i))^+]$.
- Define $\pi_i = (\phi_i(v_i))^+$. So $E[V^*] = \text{OPT}$.
- We can achieve virtual value at least $\frac{1}{2} \text{OPT}$ with threshold $t = \text{OPT}/2$.
- This corresponds to setting threshold/price $p_i = \phi_i^{-1} \left(\frac{\text{OPT}}{2} \right)$.
 - (Note a fixed price corresponds to a monotone allocation rule with payment $=$ price)
- We need to use different prices for different types of bidders, but approximate optimal revenue.
Thanks!

See you next class — stay healthy!