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Overview

» We'll have one final lecture using digital goods auctions as a
testbed for techniques in mechanism design.

P> Recall two lectures ago: we designed a dominant strategy
truthful auction that for any vector of valuations v, obtained
revenue:

Rev(v) > OPT(v) — O(v/n)
where OPT, = max,cpoyp- {7 : vi > p}.
» This class: we will relax our solution concept to asymptotic

dominant strategy truthfulness, and try to obtain a better
revenue guarantee.

» Our tool: Differential privacy, a technique developed for
protecting user privacy in data analysis.



Approach

» Recall: Why can we not simply compute the price
p* = argmaxyeio11 P {7 : v; > p} and charge that?



Approach

» Recall: Why can we not simply compute the price
p* = argmaxyeio11 P {7 : v; > p} and charge that?

» This price will be highly manipulable by (at least) one of the
bidders — p* = v;+ for some bidder i*, who will have strong
incentive to change his bid.



Approach

» Recall: Why can we not simply compute the price
p* = argmaxyeio11 P {7 : v; > p} and charge that?

» This price will be highly manipulable by (at least) one of the
bidders — p* = v;+ for some bidder i*, who will have strong
incentive to change his bid.

> So to get dominant strategy truthfulness, we needed to
compute prices that were independent of bidder reports.



Approach

» Recall: Why can we not simply compute the price
p* = argmaxyeio11 P {7 : v; > p} and charge that?

» This price will be highly manipulable by (at least) one of the
bidders — p* = v;+ for some bidder i*, who will have strong
incentive to change his bid.

> So to get dominant strategy truthfulness, we needed to
compute prices that were independent of bidder reports.

» But what if we could compute a price p that is almost
independent of the reported valuation v; for every buyer i?



Approach

» Recall: Why can we not simply compute the price
p* = argmaxyeio11 P {7 : v; > p} and charge that?

» This price will be highly manipulable by (at least) one of the
bidders — p* = v;+ for some bidder i*, who will have strong
incentive to change his bid.

> So to get dominant strategy truthfulness, we needed to
compute prices that were independent of bidder reports.

» But what if we could compute a price p that is almost
independent of the reported valuation v; for every buyer i?

» Will this yield in some sense an approximate truthfulness
guarantee? This will be the idea behind our approach.
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Definition
Two bid vectors v, v’ € [0,1]" are neighbors if they differ in just a
single agent’s bid: i.e. if there exists an index i such that v; = vJ’
for every index j # i.
We can now define differential privacy:
Definition
A mechanism M : [0,1]" — O is e-differentially private if for every

pair of neighboring bid vectors v, Vv’ € [0, 1]", and for every
outcome x € O:

PrIM(v) = x] < exp(e) PriM(v') = x]

Here you should think of € < 1 as a small constant, and think of
exp(€) ~ (1 +¢). For e <1 we have:

1+e<exp(e) <1+ 2
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Approximate Truthfulness

We can also define what we mean by approximate dominant
strategy truthfulness:

Definition

A mechanism M : [0,1]" — O is e-approximately dominant
strategy truthful if for every bidder i, every utility function

ui : [0,1] x O — [0, 1], every vector of valuations v € [0, 1]", and
every deviation v/ € [0,1], if we write v/ = (v_j, /), then:

EONM(V)[Ui(Vi7 O)] 2 EONM(V’)[ui(Vi7 O)] — €

In other words, we require that no bidder can substantially (by
more than €) increase his utility by mis-reporting his valuation.
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Theorem
If a mechanism M : [0,1]" — O is e-differentially private, then M
is also e-approximately dominant strategy truthful.
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The Connection: Proof

Fix any buyer /, valuation vector v, and utility function
ui : [0,1] x O — [0, 1].

Eoomlui(vi,0)] = Y ui(vi,0) - Pr{M(v) = o]
oeO

Z ui(vi, 0) - exp(—e€) Pr[M(v') = o]
ocO

= exp(—€)Eomv)lui(vi, 0)]

> Eoumunlui(vi,0)] — €

v

The last inequality follows because for € < 1, exp(—¢) > 1 —¢, and
ui(vi,0) < 1.
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Exploiting the Connection

» So: to design an approximately truthful mechanism that
guarantees high revenue, it is sufficient to design a
differentially private mechanism with high revenue.

> Lets try a straightforward approach: directly picking a price

that approximately maximizes revenue for the reported bidder
valuations.

» As in the last two lectures, lets pick a finite subset of prices
P C [0, 1] to select from.
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Consider the following mechanism (an instantiation of what is
called “the exponential mechanism” in its more general form):
ExpMech(v, ¢, P):

Define Rev(p,v) =p- [{i: vi > p}|.
Output each p € P according to the following probability
distribution:

il L oo (R0

e ( Rev (p, ))

peP

where
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Theorem
For any €, P: ExpMech(-, €, P) is e-differentially private.
(and thus e-approximately dominant strategy truthful)
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Proof

Fix any pair of neighboring bid vectors v, v’ and any output p. We

have:
PF[EM(V,G, 'D) = P] = (;5(1V) exp <€Re;(p,\/)>
1 (e (Rev(p, V) + 1)
< e 2 )

= e (5 ee (<R

< exp (%) qS(lv’) exp (%) exp <€ . Re\/2(p, i )>
= exp(e) Pr[EM(V ¢, P) = p]



And Revenue...

Theorem
For any P, v, €, 6, with probability 1 — §, ExpMech(v, ¢, P)
outputs a price p such that:

2 P
Rev(p,v) > Frpg)}g Rev(p*,v) — = In (Q)
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Proof

Let p* = maxp+cp Rev(p*, v). For any value x, we have:

Fl’)r[Rev(p, v) < x|

Now choose x = Rev(p*,v) —
we get:

Pr[Rev(p, v) < x|
p

Pro[Rev(p,v) < x]
Prp[Rev(p, v) = Rev(p*, v)]
1P| exp(ex/2)
exp(eRev(p*, v)/2)

1P| exp < (x— R;v(p*, v)))

o IN

-In (' ‘) Plugging that in above,

R

o
— 1Pl o
P
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> We have: an approximately truthful way to select a revenue
maximizing price from a finite set of prices P, with revenue
guarantees with respect to the best price in P that degrade
with |P].

» This is a familiar tradeoff.

v

Now our dependence on |P| is only logarithmic...

P> Lets again see what happens when we take the natural
discretization:
P ={a,2a,3c,...,1}

» Just as before,
that for all v:

P| =1/c, and that we have the guarantee

max Rev(p, v) > max Rev(p,v) — an
max (p )_pem (p,v)
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Putting it all Together

» Combining our bounds we see that if we discretize the price
space by «, with probability 0.99, we obtain revenue:

Rev(p,v) 2 OPT —a-n—0 <1In <1>>

€ (6

» Choosing a = 1/n, we find that for any ¢, we can obtain an
e-approximately dominant strategy truthful mechanism which
obtains revenue:

€

Rev(p,v) > OPT — O <Iog n)

> If we take e.g. ¢ = O(1/log(n)), then we have an
asymptotically truthful mechanism (in the sense that it
becomes exactly truthful as n — o) that improves by an
exponential factor on the revenue guarantee that we were able
to obtain with an exactly truthful mechanism for the same
problem.



Thanks!

See you next class — stay healthy, and get vaccinated!



