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Overview

I We’ll have one final lecture using digital goods auctions as a
testbed for techniques in mechanism design.

I Recall two lectures ago: we designed a dominant strategy
truthful auction that for any vector of valuations v , obtained
revenue:

Rev(v) ≥ OPT(v)− O(
√
n)

where OPTv = maxp∈[0,1] p · |{i : vi ≥ p}.
I This class: we will relax our solution concept to asymptotic

dominant strategy truthfulness, and try to obtain a better
revenue guarantee.

I Our tool: Differential privacy, a technique developed for
protecting user privacy in data analysis.
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Approach

I Recall: Why can we not simply compute the price
p∗ = arg maxp∈[0,1] p · |{i : vi ≥ p} and charge that?

I This price will be highly manipulable by (at least) one of the
bidders – p∗ = vi∗ for some bidder i∗, who will have strong
incentive to change his bid.

I So to get dominant strategy truthfulness, we needed to
compute prices that were independent of bidder reports.

I But what if we could compute a price p that is almost
independent of the reported valuation vi for every buyer i?

I Will this yield in some sense an approximate truthfulness
guarantee? This will be the idea behind our approach.
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Privacy Definitions

Definition
Two bid vectors v , v ′ ∈ [0, 1]n are neighbors if they differ in just a
single agent’s bid: i.e. if there exists an index i such that vj = v ′j
for every index j 6= i .

We can now define differential privacy:

Definition
A mechanism M : [0, 1]n → O is ε-differentially private if for every
pair of neighboring bid vectors v , v ′ ∈ [0, 1]n, and for every
outcome x ∈ O:

Pr[M(v) = x ] ≤ exp(ε) Pr[M(v ′) = x ]

.

Here you should think of ε < 1 as a small constant, and think of
exp(ε) ≈ (1 + ε). For ε ≤ 1 we have:

1 + ε ≤ exp(ε) ≤ 1 + 2ε
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Approximate Truthfulness

We can also define what we mean by approximate dominant
strategy truthfulness:

Definition
A mechanism M : [0, 1]n → O is ε-approximately dominant
strategy truthful if for every bidder i , every utility function
ui : [0, 1]×O → [0, 1], every vector of valuations v ∈ [0, 1]n, and
every deviation v ′i ∈ [0, 1], if we write v ′ = (v−i , v

′
i ), then:

Eo∼M(v)[ui (vi , o)] ≥ Eo∼M(v ′)[ui (vi , o)]− ε

In other words, we require that no bidder can substantially (by
more than ε) increase his utility by mis-reporting his valuation.
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The Connection

Differential privacy will be useful for us because differentially
private mechanisms are automatically ε-approximately dominant
strategy truthful.

Theorem
If a mechanism M : [0, 1]n → O is ε-differentially private, then M
is also ε-approximately dominant strategy truthful.
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The Connection: Proof

Fix any buyer i , valuation vector v , and utility function
ui : [0, 1]×O → [0, 1].

Eo∼M(v)[ui (vi , o)] =
∑
o∈O

ui (vi , o) · Pr[M(v) = o]

≥
∑
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ui (vi , o) · exp(−ε) Pr[M(v ′) = o]
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The last inequality follows because for ε < 1, exp(−ε) ≥ 1− ε, and
ui (vi , o) ≤ 1.
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Exploiting the Connection

I So: to design an approximately truthful mechanism that
guarantees high revenue, it is sufficient to design a
differentially private mechanism with high revenue.

I Lets try a straightforward approach: directly picking a price
that approximately maximizes revenue for the reported bidder
valuations.

I As in the last two lectures, lets pick a finite subset of prices
P ⊂ [0, 1] to select from.
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Consider the following mechanism (an instantiation of what is
called “the exponential mechanism” in its more general form):

ExpMech(v , ε,P):

Define Rev(p, v) = p · |{i : vi ≥ p}|.
Output each p ∈ P according to the following probability
distribution:

Pr[p] =
1

φ(v)
exp

(
ε · Rev(p, v)

2

)
where

φ(v) =
∑
p∈P

exp

(
ε · Rev(p, v)

2

)
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Proof

Fix any pair of neighboring bid vectors v , v ′ and any output p. We
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And Revenue...

Theorem
For any P, v , ε, δ, with probability 1− δ, ExpMech(v , ε,P)
outputs a price p such that:

Rev(p, v) ≥ max
p∗∈P

Rev(p∗, v)− 2

ε
· ln
(
|P|
δ

)



Proof
Let p∗ = maxp∗∈P Rev(p∗, v). For any value x , we have:

Pr
p

[Rev(p, v) ≤ x ] ≤ Prp[Rev(p, v) ≤ x ]

Prp[Rev(p, v) = Rev(p∗, v)]

≤ |P| · exp(εx/2)

exp(εRev(p∗, v)/2)

= |P| · exp

(
ε · (x − Rev(p∗, v))

2

)
Now choose x = Rev(p∗, v)− 2

ε · ln
(
|P|
δ

)
. Plugging that in above,

we get:

Pr
p

[Rev(p, v) ≤ x ] ≤ |P| · exp

(
− ln

(
|P|
δ

))
= |P| · δ

|P|
= δ
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Putting it all Together

I We have: an approximately truthful way to select a revenue
maximizing price from a finite set of prices P, with revenue
guarantees with respect to the best price in P that degrade
with |P|.

I This is a familiar tradeoff.

I Now our dependence on |P| is only logarithmic...

I Lets again see what happens when we take the natural
discretization:

P = {α, 2α, 3α, . . . , 1}

I Just as before, |P| = 1/α, and that we have the guarantee
that for all v :

max
p∈P

Rev(p, v) ≥ max
p∈[0,1]

Rev(p, v)− αn
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Putting it all Together
I Combining our bounds we see that if we discretize the price

space by α, with probability 0.99, we obtain revenue:

Rev(p, v) ≥ OPT− α · n − O

(
1

ε
ln

(
1

α

))

I Choosing α = 1/n, we find that for any ε, we can obtain an
ε-approximately dominant strategy truthful mechanism which
obtains revenue:

Rev(p, v) ≥ OPT− O

(
log n

ε

)
I If we take e.g. ε = O(1/ log(n)), then we have an

asymptotically truthful mechanism (in the sense that it
becomes exactly truthful as n→∞) that improves by an
exponential factor on the revenue guarantee that we were able
to obtain with an exactly truthful mechanism for the same
problem.
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Thanks!

See you next class — stay healthy, and get vaccinated!


