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Overview

I We’ve spent a lot of time discussing welfare maximization.

I But many auctions have a more pecuniary goal. What if we
want to maximize revenue?

I What does that mean? What is our benchmark?

I This lecture: a case study for single item auctions.
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Reasonable Benchmarks?

I The VCG mechanism was remarkable: we could always
maximize welfare ex-post.

I What about for revenue? Not so simple.

I Consider a single bidder, single item auction. Offering a fixed
price p is always dominant strategy truthful.

I Revenue is p if vi ≥ p, 0 otherwise.

I So ex-post, the revenue-optimal auction sets p = vi ... But
ex-ante, we don’t have enough information.
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The Average Case

I Suppose we know that bidders have valuations vi ∼ D for
some distribution D.

I We know D, but we don’t know vi ...

I In a single item, single bidder auction, a fixed price p yields
expected revenue:

Rev(p) = p · (1 − F (p))

Where F (p) = Prv∼D [v ≤ p].

I E.g. if D is uniform on [0, 1], then F (p) = p and:

max
p

Rev(p) =
1

2
· (1 − 1

2
) =

1

4
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Average Case: Many Bidders

I One item, many bidders.

I We want to design a truthful mechanism (X ,P) that
maximizes:

Ev∼Dn

[
n∑

i=1

Pi (v)

]
I For truthfulness, we need X to be monotone non-decreasing...

I And we know:

Pi (v) = vi · Xi (v) −
∫ vi

0
Xi (z , v−i )dz
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Myserson Optimal Auctions

I Lets assume monotonicity for now, and use our expression for
P to derive the optimal X .

I If we are lucky and derive a monotone X , we will be done!

I Plan: Find X to maximize:

Ev∼Dn

[
n∑

i=1

Pi (v)

]
=

n∑
i=1

Ev−i∼Dn−1 [Evi∼D [Pi (vi , v−i )]]

I Notation: f (p) is the pdf of D.

F (p) = Pr
v∼D

[v ≤ p] =

∫ p

0
f (v)dv
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Myserson Optimal Auctions

So: We want to maximize

Ev∼Dn

[
n∑

i=1

φ(vi ) · X (v)

]
φ(vi ) =

(
vi −

(1 − F (vi ))

f (vi )

)
︸ ︷︷ ︸

“Virtual Value”

I Our objective looks just like welfare with values replaced by
virtual values.

I (Pointwise) optimal allocation rule: Give the item to the
bidder i with highest φ(vi ) if it’s positive. Otherwise give the
item to nobody.

I This is a monotone allocation rule if D is regular: φ(vi ) is
monotone.
I e.g. if D is uniform, φ(vi ) = vi − (1 − vi ) = 2vi − 1
I Note that φ−1(0) recovers the optimal p = 1/2 for a single

bidder.
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Myserson Optimal Auctions

What do revenue maximizing auctions look like? (when vi drawn
iid from regular D)

I We give the item to bidder i∗ = arg maxi φ(vi ) when
φ(vi∗) ≥ 0.

I Because φ is monotone, i∗ = arg maxi vi : the item goes to the
highest bidder when φ(vi∗) ≥ 0.

I Winner pays vi∗ −
∫ vi∗
p∗ 1 = p∗, where:

p∗ = max(max
i 6=i∗

vi , φ
−1(0))

I i.e. its just a Vickrey auction with a reserve price of φ−1(0)!

I Remarkable — Simple eBay style auction is the best possible.
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p∗ 1 = p∗, where:

p∗ = max(max
i 6=i∗

vi , φ
−1(0))

I i.e. its just a Vickrey auction with a reserve price of φ−1(0)!

I Remarkable — Simple eBay style auction is the best possible.



Extensions/Limitations

I Can be made to work even when D is not regular.

I Have to “iron” φ(v) to make it monotone.
I Analysis required vi ’s be drawn independently, but not

identically. Each bidder can have their own distribution Di .
I Each bidder has their own virtual valuation function φi (vi ).
I Auction no longer so natural. e.g. high bidder no longer

necessarily wins.

I Doesn’t extend beyond single parameter domains...

I Requires knowledge of D...
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One more thing

I If we care about revenue, should we give up on welfare?

I The Vickrey auction yields no revenue selling to a single
bidder, whereas when D is uniform over [0, 1] we can get
expected revenue 1/4.

I What about a Vickrey auction with 2 bidders?

I
Rev(VA) = Ev1,v2∼D [min(v1, v2)] = 1/3

I So we might be better off maximizing welfare with more
bidders...
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The Bulow/Klemperer Theorem

Theorem
Consider bidders drawn i.i.d. from a regular distribution D. For
any n ≥ 1, the Vickrey auction with n + 1 bidders has higher
expected revenue than the revenue optimal auction with n bidders.

So recruiting just one extra bidder is worth more than optimizing
revenue for the current population.
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The Bulow/Klemperer Theorem

Consider the hypothetical auction A for n + 1 bidders:

1. Run the revenue optimal auction for the first n bidders.

2. If the auction fails to allocate the item, give it to bidder n + 1
for free.

Observations:

1. The revenue of A is exactly equal to the optimal revenue
obtainable from n bidders.

2. A always allocates the item.
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But...

I Claim: The Vickrey mechanism is obtains the maximum
revenue amongst all mechanisms that always allocate the item.

I Recall that Ev [
∑

i Pi (v)] = E[
∑

i φi (vi ) · Xi (v)].

I We can maximize the RHS (subject to always allocating the
item) by always allocating to arg maxi φ(vi ).

I Since D is regular, φ is monotone: this is arg maxi vi — the
Vickrey allocation!

I So: The Vickrey-auction with n + 1 bidders has only higher
revenue than the optimal n bidder auction.
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Thanks!

See you next class — stay healthy, and wear a mask!


