Maximizing Revenue in Expectation

Aaron Roth

University of Pennsylvania

April 1 2021
We’ve spent a lot of time discussing welfare maximization.
Overview

- We’ve spent a lot of time discussing welfare maximization.
- But many auctions have a more pecuniary goal. What if we want to maximize revenue?
Overview

- We’ve spent a lot of time discussing welfare maximization.
- But many auctions have a more pecuniary goal. What if we want to maximize revenue?
- What does that mean? What is our benchmark?
Overview

► We’ve spent a lot of time discussing welfare maximization.
► But many auctions have a more pecuniary goal. What if we want to maximize revenue?
► What does that mean? What is our benchmark?
► This lecture: a case study for single item auctions.
Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare \textit{ex-post}.

- Revenue is \(p \) if \(v_i \geq p \), 0 otherwise.

- So ex-post, the revenue-optimal auction sets \(p = v_i \).

- But ex-ante, we don't have enough information.
Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare \textit{ex-post}.
- What about for revenue? Not so simple.
Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare *ex-post*.
- What about for revenue? Not so simple.
- Consider a single bidder, single item auction. Offering a fixed price p is always dominant strategy truthful.
Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare *ex-post*.
- What about for revenue? Not so simple.
- Consider a single bidder, single item auction. Offering a fixed price p is always dominant strategy truthful.
- Revenue is p if $v_i \geq p$, 0 otherwise.
Reasonable Benchmarks?

- The VCG mechanism was remarkable: we could always maximize welfare \textit{ex-post}.
- What about for revenue? Not so simple.
- Consider a single bidder, single item auction. Offering a fixed price \(p \) is always dominant strategy truthful.
- Revenue is \(p \) if \(v_i \geq p \), 0 otherwise.
- So \textit{ex-post}, the revenue-optimal auction sets \(p = v_i \)... But \textit{ex-ante}, we don't have enough information.
The Average Case

- Suppose we know that bidders have valuations $v_i \sim D$ for some distribution D.

 - For example, if D is uniform on $[0, 1]$, then $F(p) = p$ and:

 $\max_p \text{Rev}(p) = \frac{1}{2} \cdot (1 - \frac{1}{2}) = \frac{1}{4}$
The Average Case

- Suppose we know that bidders have valuations $v_i \sim D$ for some distribution D.
- We know D, but we don’t know v_i...
The Average Case

- Suppose we know that bidders have valuations $v_i \sim D$ for some distribution D.
- We know D, but we don’t know v_i...
- In a single item, single bidder auction, a fixed price p yields expected revenue:

$$Rev(p) = p \cdot (1 - F(p))$$

Where $F(p) = \Pr_{v \sim D}[v \leq p]$.
The Average Case

▶ Suppose we know that bidders have valuations $v_i \sim D$ for some distribution D.
▶ We know D, but we don’t know v_i...
▶ In a single item, single bidder auction, a fixed price p yields expected revenue:

$$\text{Rev}(p) = p \cdot (1 - F(p))$$

Where $F(p) = \Pr_{v \sim D}[v \leq p]$.
▶ E.g. if D is uniform on $[0, 1]$, then $F(p) = p$ and:

$$\max_p \text{Rev}(p) = \frac{1}{2} \cdot (1 - \frac{1}{2}) = \frac{1}{4}$$
Average Case: Many Bidders

- One item, many bidders.
Average Case: Many Bidders

- One item, many bidders.
- We want to design a truthful mechanism \((X, P)\) that maximizes:

\[
E_{v \sim D^n} \left[\sum_{i=1}^{n} P_i(v) \right]
\]
Average Case: Many Bidders

- One item, many bidders.
- We want to design a truthful mechanism \((X, P)\) that maximizes:

\[
E_{v \sim D^n} \left[\sum_{i=1}^{n} P_i(v) \right]
\]

- For truthfulness, we need \(X\) to be monotone non-decreasing...
Average Case: Many Bidders

- One item, many bidders.
- We want to design a truthful mechanism \((X, P)\) that maximizes:

\[
E_{v \sim D^n} \left[\sum_{i=1}^{n} P_i(v) \right]
\]

- For truthfulness, we need \(X\) to be monotone non-decreasing...
- And we know:

\[
P_i(v) = v_i \cdot X_i(v) - \int_{0}^{v_i} X_i(z, v_{-i}) \, dz
\]
Myserson Optimal Auctions

- Lets assume monotonicity for now, and use our expression for P to derive the optimal X.

- If we are lucky and derive a monotone X, we will be done!

- Plan: Find X to maximize:

\[
E_{v \sim D_n} \left[\sum_{i=1}^{n} P_i(v) \right] = \sum_{i=1}^{n} E_{v \sim D_n}[P_i(v_i, v_{-i})]
\]

- Notation: $f(p)$ is the pdf of D.

\[
F(p) = \Pr_{v \sim D}[v \leq p] = \int_{0}^{p} f(v) \, dv
\]
Myserson Optimal Auctions

- Lets assume monotonicity for now, and use our expression for P to derive the optimal X.
- If we are lucky and derive a monotone X, we will be done!
Myserson Optimal Auctions

- Let's assume monotonicity for now, and use our expression for P to derive the optimal X.
- If we are lucky and derive a monotone X, we will be done!
- Plan: Find X to maximize:

$$E_{v \sim D^n} \left[\sum_{i=1}^{n} P_i(v) \right] = \sum_{i=1}^{n} E_{v_i \sim D^{n-1}} \left[E_{v \sim D} [P_i(v_i, v_{-i})] \right]$$

Notation: $f(p)$ is the pdf of D. $F(p) = \Pr_{v \sim D}[v \leq p] = \int_{0}^{p} f(v) \, dv$
Lets assume monotonicity for now, and use our expression for P to derive the optimal X.

If we are lucky and derive a monotone X, we will be done!

Plan: Find X to maximize:

$$
E_{v \sim D^n} \left[\sum_{i=1}^{n} P_i(v) \right] = \sum_{i=1}^{n} E_{v_i \sim D^{n-1}} \left[E_{v \sim D} \left[P_i(v_i, v_{-i}) \right] \right]
$$

Notation: $f(p)$ is the pdf of D.

$$
F(p) = \Pr_{v \sim D}[v \leq p] = \int_0^p f(v) \, dv
$$
Myserson Optimal Auctions

Consider the inner term:

\[E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) \, dz \right] \]
Consider the inner term:

\[
E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= E [v_i \cdot X_i(v_i, v_{-i})] - E \left[\int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]
Consider the inner term:

\[
E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= E [v_i \cdot X_i(v_i, v_{-i})] - E \left[\int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 f(v_i) \int_0^{v_i} X_i(z, v_{-i}) dz dv_i
\]
Myserson Optimal Auctions

Consider the inner term:

\[
E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) \, dz \right]
\]

\[
= E \left[v_i \cdot X_i(v_i, v_{-i}) \right] - E \left[\int_0^{v_i} X_i(z, v_{-i}) \, dz \right]
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) \, dv_i - \int_0^1 f(v_i) \int_0^{v_i} X_i(z, v_{-i}) \, dz \, dv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) \, dv_i - \int_0^1 X_i(z, v_{-i}) \int_z^1 f(v_i) \, dv_i \, dz
\]
Myserson Optimal Auctions

Consider the inner term:

\[
E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) \, dz \right]
\]

\[
= E [v_i \cdot X_i(v_i, v_{-i})] - E \left[\int_0^{v_i} X_i(z, v_{-i}) \, dz \right]
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) \, dv_i - \int_0^1 f(v_i) \int_0^{v_i} X_i(z, v_{-i}) \, dz \, dv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) \, dv_i - \int_0^1 X_i(v_i, v_{-i}) \int_z^1 f(v_i) \, dv_i \, dz
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) \, dv_i - \int_0^1 X_i(v_i, v_{-i}) \int_{v_i}^{1} f(z) \, dz \, dv_i
\]
Myserson Optimal Auctions

Consider the inner term:

\[
E_{v_i}[P_i(v)] = E_{v_i}[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i})dz]
\]

\[
= E[v_i \cdot X_i(v_i, v_{-i})] - E\left[\int_0^{v_i} X_i(z, v_{-i})dz\right]
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i)dv_i - \int_0^1 f(v_i)\int_0^{v_i} X_i(z, v_{-i})dzdv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i)dv_i - \int_0^1 X_i(v_i, v_{-i})\int_z^1 f(v_i)dv_idz
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i)dv_i - \int_0^1 X_i(v_i, v_{-i})\int_{v_i}^1 f(z)dzdv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i)dv_i - \int_0^1 X_i(v_i, v_{-i})(1 - F(v_i))dv_i
\]
Myserson Optimal Auctions

Consider the inner term:

\[
E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= E [v_i \cdot X_i(v_i, v_{-i})] - E \left[\int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 f(v_i) \int_0^{v_i} X_i(z, v_{-i}) dz dv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 X_i(v_i, v_{-i}) \int_z^1 f(v_i) dv_i dz
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 X_i(v_i, v_{-i}) \int_{v_i}^1 f(z) dz dv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 X_i(v_i, v_{-i})(1 - F(v_i)) dv_i
\]

\[
= \int_0^1 \left(v_i - \frac{(1 - F(v_i))}{f(v_i)} \right) X(v_i, v_{-i}) f(v_i) dv_i
\]
Myserson Optimal Auctions

Consider the inner term:

\[
E_{v_i} [P_i(v)] = E_{v_i} \left[v_i \cdot X_i(v_i, v_{-i}) - \int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= E [v_i \cdot X_i(v_i, v_{-i})] - E \left[\int_0^{v_i} X_i(z, v_{-i}) dz \right]
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 f(v_i) \int_0^{v_i} X_i(z, v_{-i}) dz dv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 X_i(v_i, v_{-i}) \int_z^1 f(v_i) dv_idz
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 X_i(v_i, v_{-i}) \int_{v_i}^1 f(z) dz dv_i
\]

\[
= \int_0^1 v_i \cdot X_i(v_i, v_{-i}) \cdot f(v_i) dv_i - \int_0^1 X_i(v_i, v_{-i})(1 - F(v_i)) dv_i
\]

\[
= \int_0^1 \left(v_i - \frac{1 - F(v_i)}{f(v_i)} \right) X(v_i, v_{-i}) f(v_i) dv_i
\]

\[
= E_{v_i} \left[\left(v_i - \frac{1 - F(v_i)}{f(v_i)} \right) X(v_i, v_{-i}) \right]
\]
Myserson Optimal Auctions

So: We want to maximize

$$E_{v \sim D^n} \left[\sum_{i=1}^{n} \phi(v_i) \cdot X(v) \right]$$

$$\phi(v_i) = \left(v_i - \frac{1 - F(v_i))}{f(v_i)} \right)$$

"Virtual Value"
So: We want to maximize

\[E_{v \sim D^n} \left[\sum_{i=1}^{n} \phi(v_i) \cdot X(v) \right] \]

\[\phi(v_i) = \left(v_i - \frac{1 - F(v_i)}{f(v_i)} \right) \]

“Virtual Value”

- Our objective looks just like welfare with values replaced by virtual values.
Myserson Optimal Auctions

So: We want to maximize

\[
E_{v \sim D^n} \left[\sum_{i=1}^{n} \phi(v_i) \cdot X(v) \right]
\]

\[
\phi(v_i) = \left(v_i - \frac{(1 - F(v_i))}{f(v_i)} \right)
\]

“Virtual Value”

- Our objective looks just like welfare with values replaced by virtual values.

- (Pointwise) optimal allocation rule: Give the item to the bidder \(i \) with highest \(\phi(v_i) \) if it’s positive. Otherwise give the item to nobody.
Myserson Optimal Auctions

So: We want to maximize

\[
E_{v \sim D^n} \left[\sum_{i=1}^{n} \phi(v_i) \cdot X(v) \right]
\]

\[
\phi(v_i) = \left(v_i - \frac{(1 - F(v_i))}{f(v_i)} \right)
\]

"Virtual Value"

- Our objective looks just like welfare with values replaced by virtual values.
- (Pointwise) optimal allocation rule: Give the item to the bidder \(i\) with highest \(\phi(v_i)\) if it's positive. Otherwise give the item to nobody.
- This is a monotone allocation rule if \(D\) is regular: \(\phi(v_i)\) is monotone.
 - e.g. if \(D\) is uniform, \(\phi(v_i) = v_i - (1 - v_i) = 2v_i - 1\)
 - Note that \(\phi^{-1}(0)\) recovers the optimal \(p = 1/2\) for a single bidder.
What do revenue maximizing auctions look like? (when v_i drawn iid from regular D)

- We give the item to bidder $i^* = \arg \max_i \phi(v_i)$ when $\phi(v_{i^*}) \geq 0$.

- Because ϕ is monotone, $i^* = \arg \max_i v_i$: the item goes to the highest bidder when $\phi(v_{i^*}) \geq 0$.

- Winner pays $v_{i^*} - \int v_{i^*} p^*_1 = p^*_{\phi}$, where:

 - $p^* = \max(max_i \neq i^* v_i, \phi - 1(0))$.

- i.e. it’s just a Vickrey auction with a reserve price of $\phi - 1(0)$!

Remarkable — Simple eBay style auction is the best possible.
What do revenue maximizing auctions look like? (when v_i drawn iid from regular D)

- We give the item to bidder $i^* = \arg \max_i \phi(v_i)$ when $\phi(v_{i^*}) \geq 0$.

- Because ϕ is monotone, $i^* = \arg \max_i v_i$: the item goes to the highest bidder when $\phi(v_{i^*}) \geq 0$.

Winner pays $v_{i^*} - \int v_{i^*} p^* 1 = p^*$, where:

- $p^* = \max(\max_{i \neq i^*} v_i, \phi' - 1(0))$.

- i.e. it’s just a Vickrey auction with a reserve price of $\phi' - 1(0)$!

Remarkable — Simple eBay style auction is the best possible.
What do revenue maximizing auctions look like? (when \(v_i \) drawn iid from regular \(D \))

- We give the item to bidder \(i^* = \arg \max_i \phi(v_i) \) when \(\phi(v_{i^*}) \geq 0 \).

- Because \(\phi \) is monotone, \(i^* = \arg \max_i v_i \): the item goes to the highest bidder when \(\phi(v_{i^*}) \geq 0 \).

- Winner pays \(v_{i^*} - \int_{p^*}^{v_{i^*}} 1 = p^* \), where:

\[
p^* = \max_i (\max_{i \neq i^*} v_i, \phi^{-1}(0))
\]
What do revenue maximizing auctions look like? (when \(v_i \) drawn iid from regular \(D \))

- We give the item to bidder \(i^* = \arg\max_i \phi(v_i) \) when \(\phi(v_{i^*}) \geq 0 \).
- Because \(\phi \) is monotone, \(i^* = \arg\max_i v_i \): the item goes to the highest bidder when \(\phi(v_{i^*}) \geq 0 \).
- Winner pays \(v_{i^*} - \int_{p^*}^{v_{i^*}} 1 = p^* \), where:
 \[
p^* = \max(\max_{i \neq i^*} v_i, \phi^{-1}(0))
\]
- i.e. its just a Vickrey auction with a reserve price of \(\phi^{-1}(0) \)!
What do revenue maximizing auctions look like? (when \(v_i \) drawn iid from regular \(D \))

- We give the item to bidder \(i^* = \arg \max_i \phi(v_i) \) when \(\phi(v_i^*) \geq 0 \).
- Because \(\phi \) is monotone, \(i^* = \arg \max_i v_i \): the item goes to the highest bidder when \(\phi(v_i^*) \geq 0 \).
- Winner pays \(v_i^* - \int_{p^*}^{v_i^*} 1 = p^* \), where:
 \[
p^* = \max(\max_{i \neq i^*} v_i, \phi^{-1}(0))
 \]
 i.e. its just a Vickrey auction with a reserve price of \(\phi^{-1}(0) \)!
- Remarkable — Simple eBay style auction is the best possible.
Extensions/Limitations

- Can be made to work even when D is not regular.
Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to “iron” $\phi(v)$ to make it monotone.
Extensions/Limitations

▶ Can be made to work even when D is not regular.
▶ Have to “iron” $\phi(v)$ to make it monotone.
▶ Analysis required v_i’s be drawn independently, but not identically. Each bidder can have their own distribution D_i.
 ▶ Each bidder has their own virtual valuation function $\phi_i(v_i)$.
 ▶ Auction no longer so natural. e.g. high bidder no longer necessarily wins.
▶ Doesn’t extend beyond single parameter domains...
▶ Requires knowledge of D...
Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to “iron” $\phi(v)$ to make it monotone.
- Analysis required v_i’s be drawn independently, but not identically. Each bidder can have their own distribution D_i.
 - Each bidder has their own virtual valuation function $\phi_i(v_i)$.
 - Auction no longer so natural. e.g. high bidder no longer necessarily wins.
- Doesn’t extend beyond single parameter domains...
Extensions/Limitations

- Can be made to work even when D is not regular.
- Have to “iron” $\phi(v)$ to make it monotone.
- Analysis required v_i’s be drawn independently, but not identically. Each bidder can have their own distribution D_i.
 - Each bidder has their own virtual valuation function $\phi_i(v_i)$.
 - Auction no longer so natural. e.g. high bidder no longer necessarily wins.
- Doesn’t extend beyond single parameter domains...
- Requires knowledge of D...
One more thing

- If we care about revenue, should we give up on welfare?
One more thing

- If we care about revenue, should we give up on welfare?
- The Vickrey auction yields no revenue selling to a single bidder, whereas when D is uniform over $[0, 1]$ we can get expected revenue $1/4$.

$\text{Rev}(\text{VA}) = \mathbb{E} \min(v_1, v_2) = 1/3$

So we might be better off maximizing welfare with more bidders...
One more thing

- If we care about revenue, should we give up on welfare?
- The Vickrey auction yields no revenue selling to a single bidder, whereas when D is uniform over $[0, 1]$ we can get expected revenue $1/4$.
- What about a Vickrey auction with 2 bidders?

$$\text{Rev}(VA) = E_{v_1, v_2 \sim D}[\min(v_1, v_2)] = 1/3$$
One more thing

- If we care about revenue, should we give up on welfare?
- The Vickrey auction yields \textit{no} revenue selling to a single bidder, whereas when \(D \) is uniform over \([0, 1]\) we can get expected revenue \(1/4\).
- What about a Vickrey auction with 2 bidders?

\[
\text{Rev}(VA) = \mathbb{E}_{v_1, v_2 \sim D}[\min(v_1, v_2)] = 1/3
\]

- So we might be better off maximizing welfare with more bidders...
The Bulow/Klemperer Theorem

Theorem

Consider bidders drawn i.i.d. from a regular distribution D. For any $n \geq 1$, the Vickrey auction with $n + 1$ bidders has higher expected revenue than the revenue optimal auction with n bidders.
Theorem
Consider bidders drawn i.i.d. from a regular distribution D. For any $n \geq 1$, the Vickrey auction with $n + 1$ bidders has higher expected revenue than the revenue optimal auction with n bidders. So recruiting just one extra bidder is worth more than optimizing revenue for the current population.
The Bulow/Klemperer Theorem

Consider the hypothetical auction A for $n + 1$ bidders:

1. Run the revenue optimal auction for the first n bidders.
Consider the hypothetical auction A for $n + 1$ bidders:

1. Run the revenue optimal auction for the first n bidders.
2. If the auction fails to allocate the item, give it to bidder $n + 1$ for free.
The Bulow/Klemperer Theorem

Consider the hypothetical auction A for $n + 1$ bidders:

1. Run the revenue optimal auction for the first n bidders.
2. If the auction fails to allocate the item, give it to bidder $n + 1$ for free.

Observations:

1. The revenue of A is exactly equal to the optimal revenue obtainable from n bidders.
2. A always allocates the item.
But...

▶ **Claim:** The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
But...

- **Claim**: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.

- Recall that $E_v[\sum_i P_i(v)] = E[\sum_i \phi_i(v_i) \cdot X_i(v)]$.
But...

- **Claim**: The Vickrey mechanism is obtained the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $E_v[\sum_i P_i(v)] = E[\sum_i \phi_i(v_i) \cdot X_i(v)]$.
- We can maximize the RHS (subject to always allocating the item) by always allocating to $\text{arg max}_i \phi(v_i)$.
But...

- **Claim**: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $E_v[\sum_i P_i(v)] = E[\sum_i \phi_i(v_i) \cdot X_i(v)]$.
- We can maximize the RHS (subject to always allocating the item) by always allocating to $\text{arg max}_i \phi(v_i)$.
- Since D is regular, ϕ is monotone: this is $\text{arg max}_i v_i$ — the Vickrey allocation!
But...

- **Claim**: The Vickrey mechanism is obtains the maximum revenue amongst all mechanisms that always allocate the item.
- Recall that $E_v[\sum_i P_i(v)] = E[\sum_i \phi_i(v) \cdot X_i(v)]$.
- We can maximize the RHS (subject to always allocating the item) by always allocating to $\arg \max_i \phi(v_i)$.
- Since D is regular, ϕ is monotone: this is $\arg \max_i v_i$ — the Vickrey allocation!
- So: The Vickrey-auction with $n+1$ bidders has only higher revenue than the optimal n bidder auction.
Thanks!

See you next class — stay healthy, and wear a mask!