Approximation in Mechanism Design

Aaron Roth

University of Pennsylvania

March 25 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2. This lecture: We grapple with computational complexity.

Overview

- 1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.
- 2. This lecture: We grapple with computational complexity.
- 3. Recall the VCG mechanism must solve:

$$X(v) = rg\max_{a\in A}\sum_i v_i(a)$$

Overview

- 1. Last lecture: how far can we go beyond the VCG mechanism when we want to optimize non-welfare objectives.
- 2. This lecture: We grapple with computational complexity.
- 3. Recall the VCG mechanism must solve:

$$X(v) = rg\max_{a\in A}\sum_i v_i(a)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. What do we do when this problem is hard to solve - e.g. NP-complete?

1. For many NP-complete problems we have good approximation algorithms — but this is not enough.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 1. For many NP-complete problems we have good approximation algorithms but this is not enough.
- 2. Recall: truthfulness and individual rationality of VCG depended on the choice rule being *exactly* welfare maximizing.

- 1. For many NP-complete problems we have good approximation algorithms but this is not enough.
- 2. Recall: truthfulness and individual rationality of VCG depended on the choice rule being *exactly* welfare maximizing.
- 3. If we only find an alternative that achieves 99% of the optimal welfare, these guarantees break.

- 1. For many NP-complete problems we have good approximation algorithms but this is not enough.
- 2. Recall: truthfulness and individual rationality of VCG depended on the choice rule being *exactly* welfare maximizing.
- 3. If we only find an alternative that achieves 99% of the optimal welfare, these guarantees break.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

4. As a case study, we will consider *Knapsack auctions*.

Definition

In a *knapsack auction*:

▶ Each bidder $i \in \{1, ..., n\}$ has a public size $w_i \in \mathbb{R}_{\geq 0}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

In a knapsack auction:

▶ Each bidder $i \in \{1, ..., n\}$ has a public size $w_i \in \mathbb{R}_{\geq 0}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• The mechanism has a public *budget* $B \in \mathbb{R}_{\geq 0}$.

Definition

In a *knapsack auction*:

- Each bidder $i \in \{1, \ldots, n\}$ has a public size $w_i \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public *budget* $B \in \mathbb{R}_{\geq 0}$.
- The *feasible alternatives* are all subsets of bidders of size $\leq B$:

$$A = \{S \subseteq \{1, \ldots, n\} : \sum_{i \in S} w_i \le B\}$$

Definition

In a *knapsack auction*:

- Each bidder $i \in \{1, \ldots, n\}$ has a public size $w_i \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public *budget* $B \in \mathbb{R}_{\geq 0}$.
- The *feasible alternatives* are all subsets of bidders of size $\leq B$:

$$A = \{S \subseteq \{1,\ldots,n\} : \sum_{i \in S} w_i \le B\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For each $a \in A$ we write $a_i = 1$ if $i \in a$.

Definition

In a *knapsack auction*:

- ▶ Each bidder $i \in \{1, ..., n\}$ has a public size $w_i \in \mathbb{R}_{\geq 0}$.
- The mechanism has a public budget $B \in \mathbb{R}_{\geq 0}$.
- ▶ The *feasible alternatives* are all subsets of bidders of size ≤ *B*:

$$A = \{S \subseteq \{1,\ldots,n\} : \sum_{i \in S} w_i \le B\}$$

- For each $a \in A$ we write $a_i = 1$ if $i \in a$.
- ► These are single parameter domains. Each bidder *i* has a real value v_i ∈ ℝ_{≥0}, and their value for alternative *a* is v_i · a_i

Called a knapsack auction because solving:

$$rg\max_{S\in A}\sum_{i\in S}v_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is the NP-hard knapsack problem.

Called a knapsack auction because solving:

$$\arg\max_{S\in A}\sum_{i\in S}v_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is the NP-hard knapsack problem.

So: likely no polynomial time algorithm for this task.

Called a knapsack auction because solving:

$$\arg\max_{S\in A}\sum_{i\in S}v_i$$

is the NP-hard knapsack problem.

- So: likely no polynomial time algorithm for this task.
- A natural problem, modelling e.g. selling seats on an airplane to people who have different sized parties.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So what should we do?

We could find a choice rule which approximates the social welfare objective and a pricing rule which makes it dominant strategy truthful.

So what should we do?

We could find a choice rule which approximates the social welfare objective and a pricing rule which makes it dominant strategy truthful.

We know that the only way to do this we have to find a monotone non-decreasing approximation algorithm.

Approximation

Definition

For a set of values and weights $v, w \in \mathbb{R}^n_{\geq 0}$, let:

$$OPT(v, w) = \max_{S \subseteq [n]: \sum_{i \in S} w_i \le B} \sum_{i \in S} v_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Approximation

Definition

For a set of values and weights $v, w \in \mathbb{R}^n_{>0}$, let:

$$OPT(v, w) = \max_{S \subseteq [n]: \sum_{i \in S} w_i \le B} \sum_{i \in S} v_i$$

A is an α -approximation algorithm for the Knapsack problem if for every $v, w \in \mathbb{R}^n_{>0}$, A(v, w) = S such that:

- 1. S is a feasible solution: $\sum_{i \in S} w_i \leq B$
- 2. S approximates OPT to within a factor of α : $\sum_{i \in S} v_i \ge \frac{OPT(v,w)}{\alpha}$

Approximation

Definition

For a set of values and weights $v, w \in \mathbb{R}^n_{\geq 0}$, let:

$$OPT(v, w) = \max_{S \subseteq [n]: \sum_{i \in S} w_i \le B} \sum_{i \in S} v_i$$

A is an α -approximation algorithm for the Knapsack problem if for every $v, w \in \mathbb{R}^n_{>0}$, A(v, w) = S such that:

- 1. S is a feasible solution: $\sum_{i \in S} w_i \leq B$
- 2. S approximates OPT to within a factor of α : $\sum_{i \in S} v_i \ge \frac{OPT(v,w)}{\alpha}$

Monotone Non Decreasing: for every $v, w \in \mathbb{R}^n_{\geq 0}$, and for every i and $v'_i > v_i$, if S = A(v, w) and $S' = A((v'_i, v_{-i}), w)$, then:

$$i \in S \Rightarrow i \in S'.$$

Our Goal

Goal: Come up with a monotone algorithm A that is also an α-approximation algorithm for the Knapsack problem.

Our Goal

- Goal: Come up with a monotone algorithm A that is also an α-approximation algorithm for the Knapsack problem.
- Observation: We can write the knapsack problem in the following integer linear optimization form:

maximize
$$\sum_{i=1}^{n} x_i \cdot v_i$$

such that:

$$\sum_{i=1}^n x_i \cdot w_i \leq B$$

 $x_i \in \{0,1\} \quad \forall i$

A Complication

Solving the integer program is NP hard. So...

A Complication

- Solving the integer program is NP hard. So...
- We are unlikely to be able to reason about structure of the optimal solution.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A Complication

- Solving the integer program is NP hard. So...
- We are unlikely to be able to reason about structure of the optimal solution.
- Instead, consider the following "relaxed" problem in which the x_i can be fractional:

$$\begin{array}{l} \text{maximize} \sum_{i=1}^{n} x_{i} \cdot v_{i} \\ \text{such that:} \\ \sum_{i=1}^{n} x_{i} \cdot w_{i} \leq B \\ x_{i} \in [0, 1] \quad \forall i \end{array}$$

The Fractional Problem

Write OPT_F(v, w) for the optimal value of this "fractional" problem.

The Fractional Problem

- Write OPT_F(v, w) for the optimal value of this "fractional" problem.
- Not the problem we want but maybe we can understand its structure:

Lemma For all $v, w \in \mathbb{R}^n_{\geq 0}$:

 $\operatorname{OPT}_{F}(v, w) \geq \operatorname{OPT}(v, w)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Fractional Problem

- Write OPT_F(v, w) for the optimal value of this "fractional" problem.
- Not the problem we want but maybe we can understand its structure:

Lemma For all $v, w \in \mathbb{R}^n_{\geq 0}$:

$$\operatorname{OPT}_{F}(v, w) \geq \operatorname{OPT}(v, w)$$

Proof.

Any optimal solution to the integer version of the problem is a *feasible* solution to the fractional version, so $OPT_F(v, w) \ge OPT(v, w)$

If we can obtain an α-approximation to OPT_F(v, w) then we also get (at least!) an α-approximation to OPT(v, w).

- If we can obtain an α-approximation to OPT_F(v, w) then we also get (at least!) an α-approximation to OPT(v, w).
- ► The fractional relaxation is simpler/easier to understand:

Lemma

Let x be a fractional solution obtaining value $OPT_F(v, w)$ in the fractional knapsack problem. Let $i, j \in [n]$ be any pair of agents such that:

$$\frac{v_i}{w_i} > \frac{v_j}{w_j}$$

Then $x_j > 0 \rightarrow x_i = 1$

Suppose otherwise: there is such an i, j pair with x_j > 0 but x_i < 1.</p>

Suppose otherwise: there is such an i, j pair with x_j > 0 but x_i < 1.</p>

• Define $\delta > 0$ by $\delta = \min((1 - x_i) \frac{w_i}{w_j}, x_j)$.

Suppose otherwise: there is such an i, j pair with x_j > 0 but x_i < 1.</p>

- Define $\delta > 0$ by $\delta = \min((1 x_i) \frac{w_i}{w_i}, x_j)$.
- Plan: Define a new solution x' and argue that it:

Suppose otherwise: there is such an i, j pair with x_j > 0 but x_i < 1.</p>

- Define $\delta > 0$ by $\delta = \min((1 x_i) \frac{w_i}{w_i}, x_j)$.
- Plan: Define a new solution x' and argue that it:
 1. Is feasible, and

- Suppose otherwise: there is such an i, j pair with x_j > 0 but x_i < 1.</p>
- Define $\delta > 0$ by $\delta = \min((1 x_i) \frac{w_i}{w_i}, x_j)$.
- Plan: Define a new solution x' and argue that it:
 - 1. Is feasible, and
 - 2. Has higher objective value, contradicting the optimality of x.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let
$$x'_{\ell} = x_{\ell}$$
 for all $\ell \notin \{i, j\}$, and let $x'_j = x_j - \delta$ and

$$x_i' = x_i + \delta \frac{w_j}{w_i}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

• Let
$$x'_{\ell} = x_{\ell}$$
 for all $\ell \notin \{i, j\}$, and let
 $x'_{j} = x_{j} - \delta$
and
 $x'_{i} = x_{i} + \delta \frac{w_{j}}{w_{i}}.$

$$\left(\delta \frac{w_j}{w_j}\right) \cdot w_j - \delta w_j = \delta w_j - \delta w_j = 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• Let
$$x'_{\ell} = x_{\ell}$$
 for all $\ell \notin \{i, j\}$, and let
 $x'_{j} = x_{j} - \delta$
and
 $x'_{i} = x_{i} + \delta \frac{w_{j}}{w_{i}}.$

$$(\delta \frac{w_j}{w_i}) \cdot w_i - \delta w_j = \delta w_j - \delta w_j = 0$$

• By definition of
$$\delta$$
: $x'_j \ge x_j - x_j = 0$ and $x'_i \le x_i + ((1 - x_i)\frac{w_i}{w_j})\frac{w_j}{w_i} = 1.$

(ロ)、(型)、(E)、(E)、 E) の(()

• Let
$$x'_{\ell} = x_{\ell}$$
 for all $\ell \notin \{i, j\}$, and let
 $x'_{j} = x_{j} - \delta$
and
 $x'_{i} = x_{i} + \delta \frac{w_{j}}{\omega}$.

$$\left(\delta \frac{w_j}{w_j}\right) \cdot w_i - \delta w_j = \delta w_j - \delta w_j = 0$$

► By definition of
$$\delta$$
: $x'_j \ge x_j - x_j = 0$ and $x'_i \le x_i + ((1 - x_i)\frac{w_i}{w_j})\frac{w_j}{w_i} = 1.$

• Hence (because x was feasible) x' is feasible.

The change in value of the bundle is:

$$(\delta \frac{w_j}{w_i}) \cdot v_i - \delta \cdot v_j > 0$$

(ロ)、(型)、(E)、(E)、 E) の(()

The change in value of the bundle is:

$$(\delta rac{w_j}{w_i}) \cdot v_i - \delta \cdot v_j > 0$$

This follows because by assumption:

$$\frac{v_i}{w_i} > \frac{v_j}{w_j} \Rightarrow (\frac{w_j}{w_i}) \cdot v_i > v_j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The change in value of the bundle is:

$$(\delta rac{w_j}{w_i}) \cdot v_i - \delta \cdot v_j > 0$$

This follows because by assumption:

$$rac{v_i}{w_i} > rac{v_j}{w_j} \Rightarrow (rac{w_j}{w_i}) \cdot v_i > v_j$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This contradicts the optimality of x.

We can now give a simple combinatorial algorithm for the fractional version of the knapsack problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We can now give a simple combinatorial algorithm for the fractional version of the knapsack problem. Given our lemma, we know this algorithm must be optimal. **FractionalKnapsack**(v, w):

Sort bidders in decreasing order by $\frac{v_i}{w_i}$ and set size $\leftarrow 0$ and $i \leftarrow 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

while size+ $w_i \leq B$ do

Set $x_i \leftarrow 1$, size \leftarrow size $+ w_i$, $i \leftarrow i + 1$. end while Set $x_i \leftarrow \frac{B-\text{size}}{w_i}$ and Set $x_j = 0$ for all j > i. Return x_i .

Can we use this algorithm to get a solution to the integer knapsack problem?

- Can we use this algorithm to get a solution to the integer knapsack problem?
- Note: Until the last step, the algorithm constructs an integer solution.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Can we use this algorithm to get a solution to the integer knapsack problem?
- Note: Until the last step, the algorithm constructs an integer solution.

What if we just remove the last step? How does this do?

- Can we use this algorithm to get a solution to the integer knapsack problem?
- Note: Until the last step, the algorithm constructs an integer solution.
- What if we just remove the last step? How does this do?
- Terribly! Consider the following example.

Example

We have two agents with $w_1 = v_1 = 10$ and $w_2 = 1$ and $v_2 = 1.1$. B = 10. Note that OPT(v, w) = 10 However, $v_2/w_2 > v_1/w_1$, so the algorithm first picks agent 2, and then has no remaining space for agent 1. So the algorithm's solution has value only 1.1. We could extend this example to make the algorithm's solution arbitrarily worse!

The problem: Leaving off the fractional portion of the solution may leave almost the entire knapsack empty.

- The problem: Leaving off the fractional portion of the solution may leave almost the entire knapsack empty.
- ▶ Lets try again. Note that WLOG, we can assume that for all *i*, *w_i* ≤ *B*.
 Greedy2(*v*, *w*):

Sort bidders in decreasing order by $\frac{v_i}{w_i}$ and set size $\leftarrow 0$ and $i \leftarrow 1$. Set $S \leftarrow \emptyset$. while size+ $w_i < B$ do Set $S \leftarrow S \cup \{i\}$, size \leftarrow size $+ w_i$, $i \leftarrow i + 1$. end while if $\sum_{i \in S} v_i \ge v_i$ then Output S. else Output $\{i^*\}$ where $i^* = \arg \max_i v_i$. end if

Theorem

Greedy2 achieves a 2-approximation algorithm for the Knapsack problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ By construction, for every agent *j*:

$$j \notin S \cup \{i\} \Rightarrow x_j^* = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where x^* is the optimal fractional solution to the fractional knapsack instance (v, w).

By construction, for every agent j:

$$j \notin S \cup \{i\} \Rightarrow x_j^* = 0$$

where x^* is the optimal fractional solution to the fractional knapsack instance (v, w).

Hence:

$$\sum_{j \in S} v_j + v_i \ge \mathrm{OPT}_F(v, w) \ge \mathrm{OPT}(v, w).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

By construction, for every agent j:

$$j \notin S \cup \{i\} \Rightarrow x_j^* = 0$$

where x^* is the optimal fractional solution to the fractional knapsack instance (v, w).

Hence:

$$\sum_{j\in S} v_j + v_i \geq \operatorname{OPT}_F(v, w) \geq \operatorname{OPT}(v, w).$$

Therefore:

$$\max(\sum_{j\in S} v_j, v_i) \geq \frac{OPT(v, w)}{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

By construction, for every agent j:

$$j \notin S \cup \{i\} \Rightarrow x_j^* = 0$$

where x^* is the optimal fractional solution to the fractional knapsack instance (v, w).

Hence:

$$\sum_{j\in S} v_j + v_i \geq \operatorname{OPT}_F(v, w) \geq \operatorname{OPT}(v, w).$$

Therefore:

$$\max(\sum_{j\in S} v_j, v_i) \geq \frac{OPT(v, w)}{2}$$

• And $v_{i^*} \ge v_i$ by definition. So:

$$\max(\sum_{i\in S} v_i, v_{i^*}) \geq \frac{OPT(v, w)}{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem Greedy2 is monotone non-decreasing for every agent i.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Greedy2 is monotone non-decreasing for every agent i.

Hence, there is a dominant strategy truthful 2-approximation algorithm for the Knapsack Auction problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fix any $w, v \in \mathbb{R}^n_{\geq 0}$, any agent *i*, and let $v'_i > v_i$. Write $v' = (v'_i, v_{-i})$. Let T = Greedy2(v, w) and T' = Greedy2(v', w).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fix any $w, v \in \mathbb{R}^n_{\geq 0}$, any agent *i*, and let $v'_i > v_i$. Write $v' = (v'_i, v_{-i})$. Let T = Greedy2(v, w) and T' = Greedy2(v', w).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ To show: $i \in T \Rightarrow i \in T'$.

- Fix any $w, v \in \mathbb{R}^n_{\geq 0}$, any agent *i*, and let $v'_i > v_i$. Write $v' = (v'_i, v_{-i})$. Let T = Greedy2(v, w) and T' = Greedy2(v', w).
- To show: $i \in T \Rightarrow i \in T'$.
- Write S ≐ S(v, w) and S' ≐ S(v', w) for the intermediate sets S generated by Greedy2 on each instance.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Fix any $w, v \in \mathbb{R}_{\geq 0}^n$, any agent *i*, and let $v'_i > v_i$. Write $v' = (v'_i, v_{-i})$. Let T = Greedy2(v, w) and T' = Greedy2(v', w).
- To show: $i \in T \Rightarrow i \in T'$.
- Write S ≐ S(v, w) and S' ≐ S(v', w) for the intermediate sets S generated by Greedy2 on each instance.
- First we argue:

$$i \in S \Rightarrow i \in S'$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: S and S' represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{v_i}{w_i}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Note: S and S' represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{V_i}{W_i}$.

When agent *i* increases his value from v_i to v'_i he can only move earlier in this sorted ordering.

Note: S and S' represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{V_i}{W_i}$.

- When agent *i* increases his value from v_i to v'_i he can only move earlier in this sorted ordering.
- So: if he was in the prefix S he is still in the prefix S'.

- Note: S and S' represent the prefix of the bidders of total size $\leq B$ when sorted in decreasing order of $\frac{v_i}{w_i}$.
- When agent *i* increases his value from v_i to v'_i he can only move earlier in this sorted ordering.
- ▶ So: if he was in the prefix S he is still in the prefix S'.
- Hence: If T = S and T' = S', then on this instance, the algorithm is monotone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ Note also that if $i \in S$, then $\sum_{j \in S'} v'_j \ge \sum_{j \in S} v_j$. Hence, if $i \in S$, then if T = S, T' = S.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

▶ Note also that if $i \in S$, then $\sum_{j \in S'} v'_j \ge \sum_{j \in S} v_j$. Hence, if $i \in S$, then if T = S, T' = S.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• The other case: $i = i^*$ and $v_i > \sum_{j \in S} v_j$.

- ▶ Note also that if $i \in S$, then $\sum_{j \in S'} v'_j \ge \sum_{j \in S} v_j$. Hence, if $i \in S$, then if T = S, T' = S.
- The other case: $i = i^*$ and $v_i > \sum_{j \in S} v_j$.
- ► Here we also have i ∈ T'. i remains the highest bidder, and so is either output as T' = {i*} or is output as T' = S' with i ∈ S'.

- ▶ Note also that if $i \in S$, then $\sum_{j \in S'} v'_j \ge \sum_{j \in S} v_j$. Hence, if $i \in S$, then if T = S, T' = S.
- The other case: $i = i^*$ and $v_i > \sum_{j \in S} v_j$.
- ► Here we also have i ∈ T'. i remains the highest bidder, and so is either output as T' = {i*} or is output as T' = S' with i ∈ S'.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So: we have shown that there exists a polynomial time 2-approximation for the Knapsack problem that makes truthful bidding a dominant strategy for all players.

Thanks!

See you next class — stay healthy, and wear a mask!

