Overview

- So far we have studied several mechanism design problems without money.
Overview

So far we have studied several mechanism design problems without money.

An “exchange” and a “matching” problem.
Overview

- So far we have studied several mechanism design problems without money.
- An “exchange” and a “matching” problem.
- This lecture: We’ll bring money into the picture in a matching like problem.
Overview

- So far we have studied several mechanism design problems without money.
- An “exchange” and a “matching” problem.
- This lecture: We’ll bring money into the picture in a matching like problem.
- And give a formalization of Adam Smith’s “Invisible Hand”
So far we have studied several mechanism design problems without money.

An “exchange” and a “matching” problem.

This lecture: We’ll bring money into the picture in a matching like problem.

And give a formalization of Adam Smith’s “Invisible Hand”

The thesis (in our simple model): simple, decentralized market dynamics lead to efficient outcomes.
A Model

Suppose we have:

1. m goods G for sale
2. n buyers i who each have valuation functions over bundles, $v_i: 2^G \rightarrow [0, 1]$.

Buyers have quasi-linear utility functions: If each good $j \in G$ has a price p_j, then a buyer i gets utility for buying a bundle $S \subseteq G$:

$$u_i(S) = v_i(S) - \sum_{j \in S} p_j$$

Questions:

How should we price and allocate goods so that everyone is happy with their allocation? Is this even possible? If it is, can we do so and also achieve a high welfare allocation?
A Model

Suppose we have:

1. *m goods G* for sale
A Model

Suppose we have:

1. *m goods* G for sale
2. *n buyers* i who each have *valuation functions* over bundles, $v_i : 2^G \rightarrow [0, 1]$.
A Model

Suppose we have:

1. m goods G for sale
2. n buyers i who each have valuation functions over bundles,

 $v_i : 2^G \rightarrow [0, 1]$.

Buyers have quasi-linear utility functions: If each good $j \in G$ has a price p_j, then a buyer i gets utility for buying a bundle $S \subseteq G$:

$$u_i(S) = v_i(S) - \sum_{j \in S} p_j$$
A Model

Suppose we have:

1. \(m\) goods \(G\) for sale
2. \(n\) buyers \(i\) who each have valuation functions over bundles, \(v_i : 2^G \to [0, 1]\).

Buyers have quasi-linear utility functions: If each good \(j \in G\) has a price \(p_j\), then a buyer \(i\) gets utility for buying a bundle \(S \subseteq G\):

\[
u_i(S) = v_i(S) - \sum_{j \in S} p_j
\]

Questions: How we should price and allocate goods so that everyone is happy with their allocation. Is this even possible? If it is, can we do so and also achieve a high welfare allocation?
Some Definitions

First, feasibility:

Definition
An allocation $S_1, \ldots, S_n \subseteq G$ is *feasible* if for all $i \neq j$, $S_i \cap S_j = \emptyset$

We write OPT to denote the socially optimal feasible allocation:

$$\text{OPT} = \max_{S_1, \ldots, S_n \text{ feasible}} \sum_i v_i(S)$$
First, feasibility:

Definition
An allocation $S_1, \ldots, S_n \subseteq G$ is feasible if for all $i \neq j$, $S_i \cap S_j = \emptyset$

We write OPT to denote the socially optimal feasible allocation:

$$\text{OPT} = \max_{S_1, \ldots, S_n \text{ feasible}} \sum_i v_i(S)$$

What is the right notion of equilibrium in a market?
Some Definitions

Definition
A set of prices p together with an allocation S_1, \ldots, S_n form an (ϵ-approximate) *Walrasian equilibrium* if:

1. S_1, \ldots, S_n is feasible, and
2. For all i, buyer i is receiving his (ϵ) most preferred bundle given the prices:

$$v_i(S_i) - \sum_{j \in S_i} p_j \geq \max_{S^* \subseteq G} \left(v_i(S^*) - \sum_{j \in S^*} p_j \right) - \epsilon$$

and,

3. All unallocated items have zero price: for all $j \not\in S_1 \cup \ldots \cup S_n$, $p_j = 0$.
Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren’t selling can’t sell (they already have price 0).
Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren’t selling can’t sell (they already have price 0).

Some Questions:
Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren’t selling can’t sell (they already have price 0).

Some Questions:

1. Do Walrasian equilibria always exist?
Walrasian Equilibrium

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren’t selling can’t sell (they already have price 0).

Some Questions:

1. Do Walrasian equilibria always exist?
2. If so, are they compatible with social welfare maximization?
The 2nd Question 1st

Theorem

If S_1, \ldots, S_n form an ϵ-Walrasian equilibrium allocation, then they achieve nearly optimal welfare. In particular:

$$\sum_i v_i(S_i) \geq OPT - \epsilon n$$
Proof

1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.
Proof

1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.

2. We know from the 2nd Walrasian equilibrium condition that for every player i, we have:

\[v_i(S_i) - \sum_{j \in S_i} p_j \geq v_i(S'_i) - \sum_{j \in S'_i} p_j - \epsilon \]
Proof

1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.

2. We know from the 2nd Walrasian equilibrium condition that for every player i, we have:

$$v_i(S_i) - \sum_{j \in S_i} p_j \geq v_i(S'_i) - \sum_{j \in S'_i} p_j - \epsilon$$

3. Summing over buyers:

$$\sum_i \left(v_i(S_i) - \sum_{j \in S_i} p_j \right) \geq \sum_i \left(v_i(S'_i) - \sum_{j \in S'_i} p_j \right) - \epsilon n$$
Proof

1. Let \(p \) be the corresponding Walrasian equilibrium prices, and let \(S'_1, \ldots, S'_n \) be any other feasible allocation.

2. We know from the 2nd Walrasian equilibrium condition that for every player \(i \), we have:

\[
v_i(S_i) - \sum_{j \in S_i} p_j \geq v_i(S'_i) - \sum_{j \in S'_i} p_j - \epsilon
\]

3. Summing over buyers:

\[
\sum_i \left(v_i(S_i) - \sum_{j \in S_i} p_j \right) \geq \sum_i \left(v_i(S'_i) - \sum_{j \in S'_i} p_j \right) - \epsilon n
\]

4. Reordering:

\[
\sum_i v_i(S_i) - \sum_{j \in S_1 \cup \ldots \cup S_n} p_j \geq \sum_i v_i(S'_i) - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j - \epsilon n
\]
Proof

\[
\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup \ldots \cup S_n} p_j \geq \sum_{i} v_i(S'_i) - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j - \epsilon n
\]
Proof

\[\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup \ldots \cup S_n} p_j \geq \sum_{i} v_i(S'_i) - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j - \epsilon n \]

1. for any \(j \not\in S_1 \cup \ldots \cup S_n \), we must have \(p_j = 0 \). So, on the LHS we have: \(\sum_{j \in S_1 \cup \ldots \cup S_n} p_j = \sum_j p_j \)
Proof

\[\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup \ldots \cup S_n} p_j \geq \sum_{i} v_i(S'_i) - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j - \epsilon n \]

1. for any \(j \notin S_1 \cup \ldots \cup S_n \), we must have \(p_j = 0 \). So, on the LHS we have: \(\sum_{j \in S_1 \cup \ldots \cup S_n} p_j = \sum_j p_j \)

2. Rewriting:

\[\sum_{i} v_i(S_i) \geq \sum_{i} v_i(S'_i) + (\sum_{j} p_j - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j) - \epsilon n \geq \sum_{i} v_i(S'_i) - \epsilon n \]
Proof

\[
\sum_i v_i(S_i) - \sum_{j \in S_1 \cup \ldots \cup S_n} p_j \geq \sum_i v_i(S'_i) - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j - \epsilon n
\]

1. for any \(j \not\in S_1 \cup \ldots \cup S_n \), we must have \(p_j = 0 \). So, on the LHS we have: \(\sum_{j \in S_1 \cup \ldots \cup S_n} p_j = \sum_j p_j \)

2. Rewriting:

\[
\sum_i v_i(S_i) \geq \sum_i v_i(S'_i) + (\sum_j p_j - \sum_{j \in S'_1 \cup \ldots \cup S'_n} p_j) - \epsilon n \geq \sum_i v_i(S'_i) - \epsilon n
\]

3. Finally, taking \(S'_1, \ldots, S'_n \) to be the optimal allocation gives the theorem. (Tada!)
1. We’ll start with a simple case: unit demand buyers (want to buy only 1 item):

 \[v_i(S) = \max_{j \in S} v_i(\{j\}) \]

 We can think about such a valuation function as being determined by just \(m \) numbers, one for each good:

 \[v_{i,j} \equiv v_i(\{j\}) \leq 1 \]
Walrasian Equilibrium are Great! Do They Exist?

1. We’ll start with a simple case: unit demand buyers (want to buy only 1 item):

 \[v_i(S) = \max_{j \in S} v_i(\{j\}) \]

 We can think about such a valuation function as being determined by just \(m \) numbers, one for each good:
 \[v_{i,j} \equiv v_i(\{j\}) \leq 1 \]

2. Note: Welfare maximization = maximum weight bipartite matching.
Walrasian Equilibrium are Great! Do They Exist?

1. We’ll start with a simple case: unit demand buyers (want to buy only 1 item):

\[v_i(S) = \max_{j \in S} v_i(\{j\}) \]

We can think about such a valuation function as being determined by just \(m \) numbers, one for each good:

\[v_{i,j} \equiv v_i(\{j\}) \leq 1 \]

2. Note: Welfare maximization = maximum weight bipartite matching.

Theorem

For any set of unit demand buyers, a Walrasian equilibrium always exists.
Proof

1. We’ll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
Proof

1. We’ll give a constructive proof: An algorithm for finding a Walrasian equilibrium.

2. It will also be a natural dynamic — can think of it as a model for market adjustments.
Proof

1. We’ll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic — can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0. They take turns “bidding” on their most preferred item given prices.
Proof

1. We’ll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic — can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0. They take turns “bidding” on their most preferred item given prices.
4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
Proof

1. We’ll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic — can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0. They take turns “bidding” on their most preferred item given prices.
4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
5. We’re done when there is no more market movement.
Proof

1. We’ll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
2. It will also be a natural dynamic — can think of it as a model for market adjustments.
3. Initially all buyers are unmatched and all prices are 0. They take turns “bidding” on their most preferred item given prices.
4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
5. We’re done when there is no more market movement.
6. Deferred acceptance like...
Proof

Algorithm 1 The Ascending Price Auction with increment ϵ.

For all $j \in G$, set $p_j = 0$, $\mu(j) = \emptyset$.

while There exist any unmatched bidders do

for Each unmatched bidder i do

i “bids” on $j^* = \arg \max_j (v_{i,j} - p_j)$ if $v_{i,j^*} - p_{j^*} > 0$. Otherwise, bidder i drops out. (and is “matched” to nothing): $\mu(j^*)$ is now unmatched. Set $\mu(j^*) \leftarrow i$

$p_{j^*} \leftarrow p_{j^*} + \epsilon$

end for

end while

Output (p, μ).

Proof

Lemma

The ascending price auction halts after at most \(\frac{n}{\epsilon} \) bids.

Proof:
Proof

Lemma

The ascending price auction halts after at most \(\frac{n}{\epsilon} \) bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
 \[\sum_j p_j \leq n \]
Proof

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
 \[\sum_j p_j \leq n \]

2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all *unmatched* goods must have price $p_j = 0$.

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
 \[\sum_j p_j \leq n \]

2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_j = 0$.

3. For any fixed good j, $p_j \leq 1$. (no bidder bids on any good j such that $v_{i,j} - p_j < 0$, and $v_{i,j} \leq 1$ for all i, j.)
Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have: $\sum_j p_j \leq n$

2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_j = 0$.

3. For any fixed good j, $p_j \leq 1$. (no bidder bids on any good j such that $v_{i,j} - p_j < 0$, and $v_{i,j} \leq 1$ for all i, j.)

4. Finally, since there are at most n agents, at most n goods are ever matched, and so at most n goods can have positive price.
Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
 \[\sum_j p_j \leq n \]
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price $p_j = 0$.
3. For any fixed good j, $p_j \leq 1$. (no bidder bids on any good j such that $v_{i,j} - p_j < 0$, and $v_{i,j} \leq 1$ for all i, j.)
4. Finally, since there are at most n agents, at most n goods are ever matched, and so at most n goods can have positive price.
5. Finally, note that $\sum_j p_j$ increases by ϵ with each bid...
Proof

Lemma

The ascending price auction halts after at most \(\frac{n}{\epsilon} \) bids.

Proof:

1. Claim: At any point during the algorithm, we must have:
 \(\sum_j p_j \leq n \)
2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all unmatched goods must have price \(p_j = 0 \).
3. For any fixed good \(j \), \(p_j \leq 1 \). (no bidder bids on any good \(j \) such that \(v_{i,j} - p_j < 0 \), and \(v_{i,j} \leq 1 \) for all \(i,j \).
4. Finally, since there are at most \(n \) agents, at most \(n \) goods are ever matched, and so at most \(n \) goods can have positive price.
5. Finally, note that \(\sum_j p_j \) increases by \(\epsilon \) with each bid...
6. (Lemma Tada!)
Proof

Lemma
The output \((p, \mu)\) of the ascending price auction is an \(\epsilon\)-approximate Walrasian equilibrium.
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good \(j \) is unallocated, it must never have received a bid in the auction, and hence \(p_j = 0 \).
3. Finally: \[v_i - \mu(i) - \mu(i) \geq \max_j (v_i, j - p_j) - \epsilon. \] This is because...
4. at the time bidder \(i \) was matched to good \(\mu(i) \), we must have had: \[\mu(i) \in \arg \max_j (v_i, j - p_j) \]
5. Since that time \(p_j \) increased by \(\epsilon \), no other price has decreased.
6. Tada!
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
3. Finally: $v_{i,\mu(i)} - p_{\mu(i)} \geq \max_j (v_{i,j} - p_j) - \epsilon$. This is because...
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.

2. If good \(j \) is unallocated, it must never have received a bid in the auction, and hence \(p_j = 0 \).

3. Finally: \(v_{i,\mu(i)} - p_{\mu(i)} \geq \max_j (v_{i,j} - p_j) - \epsilon \). This is because...

4. at the time bidder \(i \) was matched to good \(\mu(i) \), we must have had:

\[
\mu(i) \in \arg\max_j (v_{i,j} - p_j)
\]
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
3. Finally: $v_{i,\mu(i)} - p_{\mu(i)} \geq \max_j(v_{i,j} - p_j) - \epsilon$. This is because...
4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$\mu(i) \in \arg \max_j(v_{i,j} - p_j)$$

5. Since that time p_j increased by ϵ, no other price has decreased.
Proof

We’ll verify the 3 conditions:

1. By construction it outputs a feasible allocation.
2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
3. Finally: $v_{i,\mu(i)} - p_{\mu(i)} \geq \max_j (v_{i,j} - p_j) - \epsilon$. This is because...
4. at the time bidder i was matched to good $\mu(i)$, we must have had:
 $$\mu(i) \in \arg \max_j (v_{i,j} - p_j)$$
5. Since that time p_j increased by ϵ, no other price has decreased.
6. Tada!
1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.
2. But how far can we push beyond unit demand?
Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?
Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?
4. We can define the dynamics: each unsatisfied bidder bids on their most preferred bundle (Unsatisified = not matched to her ϵ-most preferred bundle). For each unsatisfied bidder i:

\[
\begin{align*}
\text{For each unsatisfied bidder } i: \\
&\text{bids on every item she is not the high bidder on in a set } S^* \in \arg \max_{S \subseteq G} (v_i(S) - \Sigma_{j \in S} p_j) \\
&\forall j \in S^*, \mu(j) \leftarrow i, p_j \leftarrow p_j + \epsilon/m.
\end{align*}
\]
Beyond Unit Demand Valuations

1. We will see on the homework that Walrasian equilibrium need not exist for \textit{all} valuation functions.
2. But how far can we push beyond unit demand?
3. What was needed to make the analysis of the dynamics work for more general valuations?
4. We can define the dynamics: each \textit{unsatisfied} bidder bids on their most preferred \textit{bundle} (Unsatisified = not matched to her ϵ-most preferred bundle). For each unsatisfied bidder i:
 \begin{enumerate}
 \item i bids on every item she is not the high bidder on in a set $S^* \in \arg\max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$
 \end{enumerate}
1. We will see on the homework that Walrasian equilibrium need not exist for all valuation functions.

2. But how far can we push beyond unit demand?

3. What was needed to make the analysis of the dynamics work for more general valuations?

4. We can define the dynamics: each unsatisfied bidder bids on their most preferred bundle (Unsatisfied = not matched to her ϵ-most preferred bundle). For each unsatisfied bidder i:

4.1 i bids on every item she is not the high bidder on in a set $S^* \in \arg\max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$

4.2 For all $j \in S^*$, $\mu(j) \leftarrow i$, $p_j \leftarrow p_j + \epsilon/m$.
Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).

2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).
Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).

2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).

3. So we do not want that when a bidder i bids, she abandons any of the goods she is currently matched to.
Beyond Unit Demand Valuations

1. After a bidder bids, she is matched to her ϵ-most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).

2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).

3. So we do not want that when a bidder i bids, she abandons any of the goods she is currently matched to.

4. We can formalize this.
Beyond Unit Demand Valuations

1. For price vectors p, p', write $p \preceq p'$ to mean that $p_j \leq p'_j$ for all j. Let $w_i(p) = \arg \max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$ be player i’s demand set at prices p.

Definition
Valuation function v_i satisfies the gross substitutes property if for every $p \preceq p'$ and for every $S \in w_i(p)$, if $S' = \{j \in S : p_j = p'_j\}$, then there exits $S^* \in w_i(p')$ such that $S' \subseteq S^*$. In other words, “Raising the prices on goods $j \neq i$ doesn’t decrease a bidder’s demand for good j”.

2. This is what we need: Any good for which bidder i has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder i’s demand set.

3. Hence, we have:
Theorem
In any market in which all buyers satisfy the gross substitutes condition, Walrasian equilibria exist.
Beyond Unit Demand Valuations

1. For price vectors p, p', write $p \preceq p'$ to mean that $p_j \leq p'_j$ for all j. Let $w_i(p) = \arg \max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$ be player i’s demand set at prices p.

Definition
Valuation function v_i satisfies the gross substitutes property if for every $p \preceq p'$ and for every $S \in w_i(p)$, if $S' = \{j \in S : p_j = p'_j\}$, then there exits $S^* \in w_i(p')$ such that $S' \subseteq S^*$.

In other words, “Raising the prices on goods $j \neq i$ doesn’t decrease a bidder’s demand for good j”.

2. This is what we need: Any good for which bidder i has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder i’s demand set.
Beyond Unit Demand Valuations

1. For price vectors \(p, p' \), write \(p \preceq p' \) to mean that \(p_j \leq p'_j \) for all \(j \). Let \(w_i(p) = \arg \max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j) \) be player \(i \)'s demand set at prices \(p \).

Definition
Valuation function \(v_i \) satisfies the **gross substitutes** property if for every \(p \preceq p' \) and for every \(S \in w_i(p) \), if \(S' = \{ j \in S : p_j = p'_j \} \), then there exits \(S^* \in w_i(p') \) such that \(S' \subseteq S^* \).

In other words, “Raising the prices on goods \(j \neq i \) doesn’t decrease a bidder’s demand for good \(j \”).

2. This is what we need: Any good for which bidder \(i \) has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder \(i \)'s demand set.

3. Hence, we have:

Theorem

In any market in which all buyers satisfy the gross substitutes condition, Walrasian equilibria exist.
Thanks!

See you next class — stay healthy, and wear a mask!