Aaron Roth

University of Pennsylvania

March 16 2021

➤ So far we have studied several mechanism design problems without money.

- ► So far we have studied several mechanism design problems without money.
- ► An "exchange" and a "matching" problem.

- ► So far we have studied several mechanism design problems without money.
- ► An "exchange" and a "matching" problem.
- ► This lecture: We'll bring money into the picture in a matching like problem.

- So far we have studied several mechanism design problems without money.
- ► An "exchange" and a "matching" problem.
- ► This lecture: We'll bring money into the picture in a matching like problem.
- ▶ And give a formalization of Adam Smith's "Invisible Hand"

- ► So far we have studied several mechanism design problems without money.
- ► An "exchange" and a "matching" problem.
- ► This lecture: We'll bring money into the picture in a matching like problem.
- ▶ And give a formalization of Adam Smith's "Invisible Hand"
- ► The thesis (in our simple model): simple, decentralized market dynamics lead to efficient outcomes.

Suppose we have:

Suppose we have:

1. *m goods G* for sale

Suppose we have:

- 1. *m goods G* for sale
- 2. *n buyers i* who each have *valuation functions* over bundles, $v_i: 2^G \to [0,1]$.

Suppose we have:

- 1. m goods G for sale
- 2. *n buyers i* who each have *valuation functions* over bundles, $v_i: 2^G \rightarrow [0,1]$.

Buyers have *quasi-linear* utility functions: If each good $j \in G$ has a price p_j , then a buyer i gets utility for buying a bundle $S \subseteq G$:

$$u_i(S) = v_i(S) - \sum_{j \in S} p_j$$

Suppose we have:

- 1. m goods G for sale
- 2. *n buyers i* who each have *valuation functions* over bundles, $v_i: 2^G \rightarrow [0,1]$.

Buyers have *quasi-linear* utility functions: If each good $j \in G$ has a price p_j , then a buyer i gets utility for buying a bundle $S \subseteq G$:

$$u_i(S) = v_i(S) - \sum_{j \in S} p_j$$

Questions: How we should *price* and *allocate* goods so that everyone is happy with their allocation. Is this even possible? If it is, can we do so and *also* achieve a high welfare allocation?

Some Definitions

First, feasibility:

Definition

An allocation $S_1, \ldots, S_n \subseteq G$ is *feasible* if for all $i \neq j$, $S_i \cap S_j = \emptyset$ We write OPT to denote the socially optimal feasible allocation:

$$OPT = \max_{S_1, \dots, S_n \text{ feasible}} \sum_i v_i(S)$$

Some Definitions

First, feasibility:

Definition

An allocation $S_1, \ldots, S_n \subseteq G$ is *feasible* if for all $i \neq j$, $S_i \cap S_j = \emptyset$ We write OPT to denote the socially optimal feasible allocation:

$$OPT = \max_{S_1, \dots, S_n \text{ feasible}} \sum_i v_i(S)$$

What is the right notion of equilibrium in a market?

Some Definitions

Definition

A set of prices p together with an allocation S_1, \ldots, S_n form an $(\epsilon$ -approximate) Walrasian equilibrium if:

- 1. S_1, \ldots, S_n is feasible, and
- 2. For all i, buyer i is receiving his (ϵ) most preferred bundle given the prices:

$$v_i(S_i) - \sum_{j \in S_i} p_j \ge \max_{S^* \subseteq G} \left(v_i(S^*) - \sum_{j \in S^*} p_j \right) - \epsilon$$

and,

3. All unallocated items have zero price: for all $j \notin S_1 \cup \ldots \cup S_n$, $p_j = 0$.

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren't selling *can't* sell (they already have price 0).

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren't selling *can't* sell (they already have price 0).

Some Questions:

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren't selling *can't* sell (they already have price 0).

Some Questions:

1. Do Walrasian equilibria always exist?

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to lower any of the prices – the only things that aren't selling *can't* sell (they already have price 0).

Some Questions:

- 1. Do Walrasian equilibria always exist?
- 2. If so, are they compatible with social welfare maximization?

The 2nd Question 1st

Theorem

If S_1, \ldots, S_n form an ϵ -Walrasian equilibrium allocation, then they achieve nearly optimal welfare. In particular:

$$\sum_{i} v_i(S_i) \ge \mathrm{OPT} - \epsilon n$$

1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.

- 1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.
- 2. We know from the 2nd Walrasian equilibrium condition that for every player *i*, we have:

$$v_i(S_i) - \sum_{j \in S_i} p_j \ge v_i(S_i') - \sum_{j \in S_i'} p_j - \epsilon$$

- 1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.
- 2. We know from the 2nd Walrasian equilibrium condition that for every player *i*, we have:

$$v_i(S_i) - \sum_{j \in S_i} p_j \ge v_i(S_i') - \sum_{j \in S_i'} p_j - \epsilon$$

3. Summing over buyers:

$$\sum_{i} \left(v_i(S_i) - \sum_{j \in S_i} p_j \right) \ge \sum_{i} \left(v_i(S_i') - \sum_{j \in S_i'} p_j \right) - \epsilon n$$

- 1. Let p be the corresponding Walrasian equilibrium prices, and let S'_1, \ldots, S'_n be any other feasible allocation.
- 2. We know from the 2nd Walrasian equilibrium condition that for every player *i*, we have:

$$v_i(S_i) - \sum_{j \in S_i} p_j \ge v_i(S_i') - \sum_{j \in S_i'} p_j - \epsilon$$

3. Summing over buyers:

$$\sum_{i} \left(v_i(S_i) - \sum_{j \in S_i} p_j \right) \ge \sum_{i} \left(v_i(S_i') - \sum_{j \in S_i'} p_j \right) - \epsilon n$$

4. Reordering:

$$\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup ... \cup S_n} p_j \ge \sum_{i} v_i(S_i') - \sum_{j \in S_1' \cup ... \cup S_n'} p_j - \epsilon n$$

$$\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup ... \cup S_n} p_j \ge \sum_{i} v_i(S_i') - \sum_{j \in S_1' \cup ... \cup S_n'} p_j - \epsilon n$$

$$\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup ... \cup S_n} p_j \ge \sum_{i} v_i(S_i') - \sum_{j \in S_1' \cup ... \cup S_n'} p_j - \epsilon n$$

1. for any $j \notin S_1 \cup \ldots \cup S_n$, we must have $p_j = 0$. So, on the LHS we have: $\sum_{j \in S_1 \cup \ldots \cup S_n} p_j = \sum_j p_j$

$$\sum_{i} v_{i}(S_{i}) - \sum_{j \in S_{1} \cup ... \cup S_{n}} p_{j} \geq \sum_{i} v_{i}(S'_{i}) - \sum_{j \in S'_{1} \cup ... \cup S'_{n}} p_{j} - \epsilon n$$

- 1. for any $j \notin S_1 \cup ... \cup S_n$, we must have $p_j = 0$. So, on the LHS we have: $\sum_{j \in S_1 \cup ... \cup S_n} p_j = \sum_j p_j$
- 2. Rewriting:

$$\sum_{i} v_i(S_i) \geq \sum_{i} v_i(S_i') + (\sum_{j} p_j - \sum_{j \in S_1' \cup ... \cup S_n'} p_j) - \epsilon n \geq \sum_{i} v_i(S_i') - \epsilon n$$

$$\sum_{i} v_i(S_i) - \sum_{j \in S_1 \cup ... \cup S_n} p_j \ge \sum_{i} v_i(S_i') - \sum_{j \in S_1' \cup ... \cup S_n'} p_j - \epsilon n$$

- 1. for any $j \notin S_1 \cup ... \cup S_n$, we must have $p_j = 0$. So, on the LHS we have: $\sum_{j \in S_1 \cup ... \cup S_n} p_j = \sum_j p_j$
- 2. Rewriting:

$$\sum_{i} v_i(S_i) \geq \sum_{i} v_i(S_i') + (\sum_{j} p_j - \sum_{j \in S_1' \cup ... \cup S_n'} p_j) - \epsilon n \geq \sum_{i} v_i(S_i') - \epsilon n$$

3. Finally, taking S'_1, \ldots, S'_n to be the optimal allocation gives the theorem. (Tada!)

Walrasian Equilibrium are Great! Do They Exist?

1. We'll start with a simple case: unit demand buyers (want to buy only 1 item):

$$v_i(S) = \max_{j \in S} v_i(\{j\})$$

We can think about such a valuation function as being determined by just *m* numbers, one for each good:

$$v_{i,j} \equiv v_i(\{j\}) \leq 1$$

Walrasian Equilibrium are Great! Do They Exist?

1. We'll start with a simple case: unit demand buyers (want to buy only 1 item):

$$v_i(S) = \max_{j \in S} v_i(\{j\})$$

We can think about such a valuation function as being determined by just m numbers, one for each good:

$$v_{i,j} \equiv v_i(\{j\}) \leq 1$$

Note: Welfare maximization = maximum weight bipartite matching.

Walrasian Equilibrium are Great! Do They Exist?

1. We'll start with a simple case: unit demand buyers (want to buy only 1 item):

$$v_i(S) = \max_{j \in S} v_i(\{j\})$$

We can think about such a valuation function as being determined by just *m* numbers, one for each good:

$$v_{i,j} \equiv v_i(\{j\}) \leq 1$$

Note: Welfare maximization = maximum weight bipartite matching.

Theorem

For any set of unit demand buyers, a Walrasian equilibrium always exists.

1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.

- 1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
- 2. It will also be a natural dynamic can think of it as a model for market adjustments.

- 1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
- 2. It will also be a natural dynamic can think of it as a model for market adjustments.
- 3. Initially all buyers are unmatched and all prices are 0. They take turns "bidding" on their most preferred item given prices.

- 1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
- 2. It will also be a natural dynamic can think of it as a model for market adjustments.
- Initially all buyers are unmatched and all prices are 0. They take turns "bidding" on their most preferred item given prices.
- 4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.

- 1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
- 2. It will also be a natural dynamic can think of it as a model for market adjustments.
- 3. Initially all buyers are unmatched and all prices are 0. They take turns "bidding" on their most preferred item given prices.
- 4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
- 5. We're done when there is no more market movement.

- 1. We'll give a constructive proof: An algorithm for finding a Walrasian equilibrium.
- 2. It will also be a natural dynamic can think of it as a model for market adjustments.
- Initially all buyers are unmatched and all prices are 0. They take turns "bidding" on their most preferred item given prices.
- 4. They will be tentatively matched to goods they are the current winning bidder on, and winning bids cause price increments.
- 5. We're done when there is no more market movement.
- 6. Deferred acceptance like...

Algorithm 1 The Ascending Price Auction with increment ϵ .

```
For all j \in G, set p_j = 0, \mu(j) = \emptyset.

while There exist any unmatched bidders do

for Each unmatched bidder i do

i "bids" on j^* = \arg\max_j(v_{i,j} - p_j) if v_{i,j^*} - p_{j^*} > 0. Otherwise, bidder i drops out. (and is "matched" to nothing):

\mu(j^*) is now unmatched. Set \mu(j^*) \leftarrow i

p_{j^*} \leftarrow p_{j^*} + \epsilon

end for

end while

Output (p, \mu).
```

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

Proof:

1. Claim: At any point during the algorithm, we must have:

$$\sum_{j} p_{j} \leq n$$

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

- 1. Claim: At any point during the algorithm, we must have: $\sum_j p_j \leq n$
- 2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all *unmatched* goods must have price $p_j = 0$.

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

- 1. Claim: At any point during the algorithm, we must have: $\sum_j p_j \leq n$
- 2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all *unmatched* goods must have price $p_j = 0$.
- 3. For any fixed good j, $p_j \le 1$. (no bidder bids on any good j such that $v_{i,j} p_j < 0$, and $v_{i,j} \le 1$ for all i,j.)

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

- 1. Claim: At any point during the algorithm, we must have: $\sum_j p_j \leq n$
- 2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all *unmatched* goods must have price $p_j = 0$.
- 3. For any fixed good j, $p_j \le 1$. (no bidder bids on any good j such that $v_{i,j} p_j < 0$, and $v_{i,j} \le 1$ for all i,j.)
- 4. Finally, since there are at most n agents, at most n goods are ever matched, and so at most n goods can have positive price.

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

- 1. Claim: At any point during the algorithm, we must have: $\sum_j p_j \leq n$
- 2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all *unmatched* goods must have price $p_j = 0$.
- 3. For any fixed good j, $p_j \le 1$. (no bidder bids on any good j such that $v_{i,j} p_j < 0$, and $v_{i,j} \le 1$ for all i, j.)
- 4. Finally, since there are at most *n* agents, at most *n* goods are ever matched, and so at most *n* goods can have positive price.
- 5. Finally, note that $\sum_i p_j$ increases by ϵ with each bid...

Lemma

The ascending price auction halts after at most $\frac{n}{\epsilon}$ bids.

- 1. Claim: At any point during the algorithm, we must have: $\sum_j p_j \leq n$
- 2. Once a good becomes matched, it stays matched for the rest of the algorithm. Hence, all *unmatched* goods must have price $p_j = 0$.
- 3. For any fixed good j, $p_j \le 1$. (no bidder bids on any good j such that $v_{i,j} p_j < 0$, and $v_{i,j} \le 1$ for all i, j.)
- 4. Finally, since there are at most *n* agents, at most *n* goods are ever matched, and so at most *n* goods can have positive price.
- 5. Finally, note that $\sum_{i} p_{j}$ increases by ϵ with each bid...
- 6. (Lemma Tada!)

Lemma

The output (p, μ) of the ascending price auction is an ϵ -approximate Walrasian equilibrium.

We'll verify the 3 conditions:

1. By construction it outputs a feasible allocation.

- 1. By construction it outputs a feasible allocation.
- 2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.

- 1. By construction it outputs a feasible allocation.
- 2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_i = 0$.
- 3. Finally: $v_{i,\mu(i)} p_{\mu(i)} \ge \max_j (v_{i,j} p_j) \epsilon$. This is because...

- 1. By construction it outputs a feasible allocation.
- 2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
- 3. Finally: $v_{i,\mu(i)} p_{\mu(i)} \ge \max_j (v_{i,j} p_j) \epsilon$. This is because...
- 4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$\mu(i) \in \arg\max_{j} (v_{i,j} - p_j)$$

We'll verify the 3 conditions:

- 1. By construction it outputs a feasible allocation.
- 2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
- 3. Finally: $v_{i,\mu(i)} p_{\mu(i)} \ge \max_j (v_{i,j} p_j) \epsilon$. This is because...
- 4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$\mu(i) \in \arg\max_{j} (v_{i,j} - p_j)$$

5. Since that time p_j increased by ϵ , no other price has decreased.

- 1. By construction it outputs a feasible allocation.
- 2. If good j is unallocated, it must never have received a bid in the auction, and hence $p_j = 0$.
- 3. Finally: $v_{i,\mu(i)} p_{\mu(i)} \ge \max_j (v_{i,j} p_j) \epsilon$. This is because...
- 4. at the time bidder i was matched to good $\mu(i)$, we must have had:

$$\mu(i) \in \arg\max_{j} (v_{i,j} - p_j)$$

- 5. Since that time p_j increased by ϵ , no other price has decreased.
- 6. Tada!

1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.

- 1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.
- 2. But how far can we push beyond unit demand?

- 1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.
- 2. But how far can we push beyond unit demand?
- 3. What was needed to make the analysis of the dynamics work for more general valuations?

- 1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.
- 2. But how far can we push beyond unit demand?
- 3. What was needed to make the analysis of the dynamics work for more general valuations?
- 4. We can define the dynamics: each *unsatisfied* bidder bids on their most preferred *bundle* (Unsatisified = not matched to her ϵ -most preferred bundle). For each unsatisfied bidder i:

- 1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.
- 2. But how far can we push beyond unit demand?
- 3. What was needed to make the analysis of the dynamics work for more general valuations?
- 4. We can define the dynamics: each *unsatisfied* bidder bids on their most preferred *bundle* (Unsatisified = not matched to her ϵ -most preferred bundle). For each unsatisfied bidder i:
 - 4.1 i bids on every item she is not the high bidder on in a set $S^* \in \arg\max_{S \subseteq G} (v_i(S) \sum_{j \in S} p_j)$

- 1. We will see on the homework that Walrasian equilibrium need not exist for *all* valuation functions.
- 2. But how far can we push beyond unit demand?
- 3. What was needed to make the analysis of the dynamics work for more general valuations?
- 4. We can define the dynamics: each *unsatisfied* bidder bids on their most preferred *bundle* (Unsatisified = not matched to her ϵ -most preferred bundle). For each unsatisfied bidder i:
 - 4.1 *i* bids on every item she is not the high bidder on in a set $S^* \in \arg\max_{S \subseteq G} (v_i(S) \sum_{i \in S} p_i)$
 - 4.2 For all $j \in S^*$, $\mu(j) \leftarrow i$, $p_j \leftarrow p_j + \epsilon/m$.

1. After a bidder bids, she is matched to her ϵ -most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).

- 1. After a bidder bids, she is matched to her ϵ -most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
- 2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).

- 1. After a bidder bids, she is matched to her ϵ -most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
- 2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).
- 3. So we do not want that when a bidder i bids, she abandons any of the goods she is currently matched to.

- 1. After a bidder bids, she is matched to her ϵ -most preferred bundle, and she remains so if she is not out-bid on any of her items (since other prices only rise).
- 2. We also needed that once a good became matched, it stayed matched (so that unmatched goods have price 0).
- 3. So we do not want that when a bidder i bids, she abandons any of the goods she is currently matched to.
- 4. We can formalize this.

1. For price vectors p, p', write $p \leq p'$ to mean that $p_j \leq p'_j$ for all j. Let $w_i(p) = \arg\max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$ be player i's demand set at prices p.

Definition

Valuation function v_i satisfies the *gross substitutes* property if for every $p \leq p'$ and for every $S \in w_i(p)$, if $S' = \{j \in S : p_j = p'_j\}$, then there exits $S^* \in w_i(p')$ such that $S' \subseteq S^*$.

In other words, "Raising the prices on goods $j \neq i$ doesn't decrease a bidder's demand for good j".

1. For price vectors p, p', write $p \leq p'$ to mean that $p_j \leq p'_j$ for all j. Let $w_i(p) = \arg\max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$ be player i's demand set at prices p.

Definition

Valuation function v_i satisfies the *gross substitutes* property if for every $p \leq p'$ and for every $S \in w_i(p)$, if $S' = \{j \in S : p_j = p'_j\}$, then there exits $S^* \in w_i(p')$ such that $S' \subseteq S^*$.

In other words, "Raising the prices on goods $j \neq i$ doesn't decrease a bidder's demand for good j".

2. This is what we need: Any good for which bidder *i* has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder *i*'s demand set.

1. For price vectors p, p', write $p \leq p'$ to mean that $p_j \leq p'_j$ for all j. Let $w_i(p) = \arg\max_{S \subseteq G} (v_i(S) - \sum_{j \in S} p_j)$ be player i's demand set at prices p.

Definition

Valuation function v_i satisfies the *gross substitutes* property if for every $p \leq p'$ and for every $S \in w_i(p)$, if $S' = \{j \in S : p_j = p'_j\}$, then there exits $S^* \in w_i(p')$ such that $S' \subseteq S^*$.

In other words, "Raising the prices on goods $j \neq i$ doesn't decrease a bidder's demand for good j".

- 2. This is what we need: Any good for which bidder *i* has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder *i*'s demand set.
- 3. Hence, we have:

Theorem

In any market in which all buyers satisfy the gross substitutes condition, Walrasian equilibria exist.

Thanks!

See you next class — stay healthy, and wear a mask!