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Overview

I Up until now we have studied the behaviour of individuals in
already defined games.

I This will be the first lecture on “Mechanism Design”

I Designing the rules of the game to achieve our gaols.

I We’ll begin our study with the classical “House Allocation
Problem” by Shapley and Scarf.

I And study the Top Trading Cycles Algortihm (attributed to
David Gale).
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“House Allocation”

1. Each individual comes to market with a single good (a
“house”), but could be e.g. a kidney.

2. Each individual has a strict preference ordering over other
goods in the market.

3. The question: How can we both:

3.1 Coordinate an exchange to arrive at a good allocation, and
3.2 Do so in a way such that it is a dominant strategy for everyone

to report their true preferences.

4. Doing both is important. If we merely guarantee a “good”
allocation, we only know it is “good” w.r.t. reported
preferences. But it might be bad w.r.t. real preferences!

5. Houses are a toy example. Kidney exchange is a real one
(needs a solution without money).
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A Model

1. There are n agents i ∈ P who each come to market with a
good hi .

2. Each agent has a strict preference ordering �i over all of the
goods h1, . . . , hn. (i.e. for every pair j , k either hj �i hk or
hk �i hj , and this ordering is transitive – so each agent just
has a rank order list of goods. In particular, this ranking
includes an agents own good hi .

We wish to design an algorithm which will induce a game played
by the players. The algorithm will take as input the reported

preferences �i of each player, and output a permutation µ of the
goods. This induces a game: the strategy space for each player is

the set of preference orderings �i , the utility function is defined by
their true preferences.
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What is Good?

Definition
An allocation µ is Pareto sub-optimal if there exists an allocation ν
such that for every i :

ν(i) �i µ(i)

and for some j ;
ν(j) �j µ(j)

i.e. everybody is at least as happy with their allocation in ν, and at
least one person is strictly happier. In this case, we say that ν
Pareto-dominates µ.
If µ is not Pareto sub-optimal, then it is Pareto optimal.

It should not be possible to simultaneously improve for everyone.
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What about Incentives?

Definition
A is individually rational if for every player i , every preference
vector �i , and every set of reports of the other players �−i , if
µ = A(�i ,�−i ) then:

µ(i) �i hi

People should not be harmed by participating... A minimal goal;
we want more.

Definition
A mechanism A is dominant-strategy incentive compatible if it is a
dominant strategy for everyone to report their true preferences. i.e.
if for all �i ,�−i ,�′i , if

µ = A(�i ,�−i ) and ν = A(�′i ,�−i )

then µ(i) �i ν(i)
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Top Trading Cycles

Algorithm 1 The top trading cycles algorithm

TTC(�1, . . . ,�n)

Let S1 = P be the set of all agents. Set a counter t = 1.
while |Si | > 0 do
Construct a graph Gt = (Vt ,Et) where Vt = St and for each
i , j ∈ Vt , the directed edge (i , j) ∈ Et if and only if hj �i hk
for all other k ∈ Vt . i.e. this is the graph that results when
every agent “points to” their favorite remaining good.
Find any cycle Ct in Gt and clear all trades along it: i.e. for
every directed edge (i , j) ∈ Ct set µ(i) = j .
Set St+1 = St and remove all cleared agents: for each i :
(i , j) ∈ Ct , set St+1 ← St+1 − {i}. Increment t (t ← t + 1).

end while
Output µ.



Analysis

1. First: establish the algorithm halts at all.

2. Enough to show we find a cycle at every round, since this
removes at least one agent: Convergence after ≤ n rounds.

3. Indeed:

Lemma
In each graph Gt constructed by the algorithm, there is at least
one cycle Ct , and every agent is part of at most one cycle.

4. Proof: by construction, Gt is a directed graph in which every
vertex has out-degree exactly one. (So by starting at any
vertex and following edges forward, we must find a cycle).
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Interlude: Example

5 agents:

�1: 2 � 5 � 3 � 1 � 4

�2: 3 � 1 � 5 � 4 � 2

�3: 1 � 2 � 3 � 4 � 5

�4: 1 � 3 � 5 � 4 � 2

�5: 4 � 1 � 3 � 2 � 5

µ(1) = 2, µ(2) = 3, µ(3) = 1, µ(4) = 5, µ(5) = 4
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Analysis

Theorem
The Top Trading Cycles algorithm produces a Pareto optimal
allocation µ on every input �.



Proof

1. Suppose not. So there is some allocation ν that Pareto
dominates µ. What does ν look like?

2. Observe: every agent TTC cleared in cycle C1 must receive an
identical allocation in ν. Why?

3. Next: every agent TTC cleared in cycle C2 must receive an
identical allocation in ν: since these agents are receiving their
first choice good from the set P − C1 in µ, and ν(i) = µ(i)
for every i ∈ C1

4. Inductively, if ν(i) = µ(i) for every i ∈ C1 ∪ . . .∪Ck for k ≤ t,
then We must also have that ν(i) = µ(i) for every i ∈ Ct+1.

5. Continuing through t = n, we have that µ = ν, a
contradiction.
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Analysis

Theorem
The Top Trading Cycles Algorithm is Dominant Strategy Incentive
Compatible.



Proof (Sketch)

1. Imagine that each player i can “decide” where to point in the
construction of graph Gt at each round t, as a function of
where everyone else is pointing.

2. We’ll conclude that it is always in player i ’s best interest to
point to his favorite good among the ones remaining.

3. Why might player i not want to point to his most preferred
good?

4. Fear: If he points to a less preferred good, he gets it; if he
points to his most preferred good, he doesn’t, and his previous
opportunity disappears.

5. But that can’t happen...
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Proof (Sketch)

1. Fixing the edges of the other players, consider the set of
goods that agent i can get today if he points to them.

2. These are the goods that form paths leading to agent i (will
form cycles if agent i points to them). Call them “agent i’s
choice set”

3. Agent i ’s choice set can only increase!

4. As goods are removed, other agents might now point to agent
i (choice set increases)...

5. And nothing is removed, since all such goods are part of paths
leading to agent i , so are not part of cycles not involving
agent i .

6. Tada!
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Thanks!

See you next class — stay healthy, and wear a mask!


