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Overview

I We’ve seen simple dynamics that converge to Nash equilibria
in a variety of games.

I If we are sufficiently clever, might we find that this is so in all
games?

I Unlikely... Finding Nash equilibria are as hard as finding
general fixed points in the worst case.

I But maybe there is some richer family of equilibria we can
shoot for...

I Analogous to our earlier relaxation from Pure to Mixed
equilibria.
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Traffic Lights

Consider the following two player traffic light game that will be
familiar to those of you who can drive:

STOP GO
STOP (0,0) (0,1)

GO (1,0) (-100,-100)

Two pure strategy Nash Equilibria: (GO,STOP), and (STOP,GO).

But one player never gets any utility...
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Traffic Lights

STOP GO
STOP (0,0) (0,1)

GO (1,0) (-100,-100)

There is also a mixed strategy Nash equilibrium:

1. Suppose player 1 plays (p, 1− p).

2. If the equilibrium is to be fully mixed, player 2 must be
indifferent between his two actions – i.e.:

0 = p − 100(1− p)⇔ 101p = 100⇔ p = 100/101

3. So both players play STOP with probability p = 100/101, and
play GO with probability (1− p) = 1/101.

4. This is even worse! Now both players get payoff 0 in
expectation (rather than just one of them), and risk a horrific
negative utility.
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Traffic Lights

The four possible action profiles have roughly the following
probabilities under this equilibrium:

STOP GO
STOP 98% <1%

GO <1% ≈ 0.01%

A better outcome would be the following, which is fair, has social
welfare 1, and doesn’t risk death:

STOP GO
STOP 0% 50%

GO 50% 0%

Is there a Nash equilibrium that achieves this?

Worse: there is no set of mixed strategies that creates this
distribution over action profiles.
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Traffic Lights

STOP GO
STOP 0% 50%

GO 50% 0%

1. The reason is not that this play is not rational... (it is!)

2. The problem is that mixed strategies (as defined) requires
that players randomize independently — without coordination.

3. In the traffic light game, players correlate! They use a traffic
light.

4. Obeying traffic lights is not just a matter of obedience...
Following the suggestion of the traffic light is a best response!

5. We can generalize this...
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Correlated Equilibrium

Definition
A correlated equilibrium is a distribution D over action profiles A
such that for every player i , and every action a∗i :

Ea∼D[ui (a)] ≥ Ea∼D[ui (a
∗
i , a−i )|ai ]

In words:

a distribution over action profiles a such that after a profile a is
drawn, playing ai is a best response for player i conditioned on

seeing ai , given that everyone else will play according to a.

For example: Conditioned on seeing STOP, you know your
opponent will GO, so STOP is a best response. Conditioned on
seeing GO, you know your opponent will STOP, so GO is a best
response.
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Hierarchies

1. Observe: Nash Equilibria are also Correlated Equilibria — they
just correspond to uncorrelated distributions. (ai contains no
information about a−i ).

2. But Correlated Equilibria are a strictly larger/richer set.

3. We can define still larger sets!

Definition
A coarse correlated equilibrium is a distribution D over action
profiles A such that for every player i , and every action a∗i :

Ea∼D[ui (a)] ≥ Ea∼D[ui (a
∗
i , a−i )]

4. The difference: the suggestion just has to be a best response
on average, not conditioned on having seen it.

5. Whether it is sensible depends on whether you have to
commit to following the correlating device up front, or have
the option of deviating after seeing the suggestion.
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Hierarchies

CCE can occasionally suggest obviously bad actions. CE cannot.
Consider:

A B C
A (1,1) (-1,-1) (0,0)
B (-1,-1) (1,1) (0,0)
C (0,0) (0,0) (-1.1,-1.1)

A B C
A 1/3
B 1/3
C 1/3

The payoff for each player for playing according to this distribution
is:

(1/3) · 1 + (1/3) · 1− (1/3) · 1.1 = 0.3
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B (-1,-1) (1,1) (0,0)
C (0,0) (0,0) (-1.1,-1.1)

A B C
A 1/3
B 1/3
C 1/3

the payoff a player would get by playing the fixed action A or B
while his opponent randomized would be:

(1/3) · 1− (1/3) · 1 + (1/3) · 0 = 0

and the payoff for playing C would be strictly less than zero.

Hence this is a CCE even though conditioned on being told to play
C , it is not a best response. This means that the given distribution

is a coarse correlated equilibrium, but not a CE.
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Hierarchies

Solution Concept Recap

DSE ⊂ PSNE ⊂ MSNE ⊂ CE ⊂ CCE

1. Starting at MSNE, we have guaranteed existence.

2. Want to show: Starting at CE, we have computational
tractability.
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Characterization in Terms of Regret

Definition
For a strategy modification rule Fi : Ai → Ai and an action profile
a ∈ A:

Regreti (a,Fi ) = ui (Fi (ai ), a−i )− ui (a)

i.e. it is how much player i regrets not applying Fi to change his
action.
We say that Fi is a constant strategy modification rule if
Fi (ai ) = Fi (a

′
i ) for all ai , a

′
i ∈ Ai .

We can give an alternative characterization of CCE:

Definition
A distribution D is a coarse correlated equilibrium if for every
player i and for every constant strategy modification rule Fi :

Ea∼D[Regreti (a,Fi )] ≤ 0



Characterization in Terms of Regret

Definition
For a strategy modification rule Fi : Ai → Ai and an action profile
a ∈ A:

Regreti (a,Fi ) = ui (Fi (ai ), a−i )− ui (a)

i.e. it is how much player i regrets not applying Fi to change his
action.
We say that Fi is a constant strategy modification rule if
Fi (ai ) = Fi (a

′
i ) for all ai , a

′
i ∈ Ai .

We can give an alternative characterization of CCE:

Definition
A distribution D is a coarse correlated equilibrium if for every
player i and for every constant strategy modification rule Fi :

Ea∼D[Regreti (a,Fi )] ≤ 0



Characterization in Terms of Regret

1. An immediate consequence of this definition is that if
a1, . . . , aT are a sequence of actions with ∆(T ) regret, then
ā = 1

T

∑T
t=1 a

t forms a ∆(T )-approximate coarse correlated
equilibrium.

2. In particular, if everyone plays an (arbitrary) game with the
PW algorithm, after T steps they will have generated a
sequence of plays that corresponds to a
∆(T ) = 2

√
log k/T -approximate CCE

3. Can we approach computing CE in the same way? First step:
characterize CE in terms of regret.
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Characterization in Terms of Regret

Definition
A distribution D is a correlated equilibrium if for all players i and
for all strategy modification rules Fi :

Ea∼D[Regreti (a,Fi )] ≤ 0

To see this:

1. Note that a strategy modification rule Fi lets player i consider
different deviations for each suggested action ai .

2. So if there are no beneficial deviations of this sort, player i
must be playing a best response even conditioned on seeing
his suggestion.

3. Are there learning algorithms that efficiently converge to
correlated equilibrium?

4. Look for learning algorithms with stronger regret guarantees...
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Stronger Regret Guarantees

1. We want an algorithm for learning in the experts setting that
can promise...

2. Given any k experts and an arbitrary sequence of losses
`1, . . . , `T , the algorithm chooses a sequence of experts
a1, . . . , at such that:

1

T

T∑
t=1

`at ≤
1

T

T∑
t=1

`F (at) + ∆(T )

for all strategy modification rules F and for ∆(T ) = o(1).

3. “No Swap Regret”

4. We’ll see how to do this! (Next lecture).
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Thanks!

See you next class — stay healthy, and wear a mask!


