Convergence of No-Regret Play to Nash Equilibrium

Aaron Roth

University of Pennsylvania

February 16 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ We've seen that two-player zero sum games are special.

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation don't need to reason about your opponent to compute a minmax strategy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation don't need to reason about your opponent to compute a minmax strategy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 But you need to understand the game extremely well and make careful calculations.

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation don't need to reason about your opponent to compute a minmax strategy.
- But you need to understand the game extremely well and make careful calculations.
- Is there a natural dynamic that leads to Nash equilibrium if everyone uses it?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We've seen that two-player zero sum games are special.
- They have a value, order of play doesn't matter, equilibria can be computed "easily"
- i.e. it does not require counterspeculation don't need to reason about your opponent to compute a minmax strategy.
- But you need to understand the game extremely well and make careful calculations.
- Is there a natural dynamic that leads to Nash equilibrium if everyone uses it?
- How many of these properties depend on the "two player" caveat?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Do these special properties carry over to general n player zero sum games?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Do these special properties carry over to general n player zero sum games? We can certainly define such games:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

An *n* player game is zero-sum if for every action profile $a \in A$, $\sum_{i=1}^{n} u_i(a) = 0$.

Do these special properties carry over to general n player zero sum games? We can certainly define such games:

Definition

An *n* player game is zero-sum if for every action profile $a \in A$, $\sum_{i=1}^{n} u_i(a) = 0$.

The answer is no.

"Meta Theorem": n player zero-sum games don't have any special properties that n-1 player general sum games don't have.

In particular, we should not expect such games to have a value, nor that their equilibria should be easy to compute.

Do these special properties carry over to general n player zero sum games? We can certainly define such games:

Definition

An *n* player game is zero-sum if for every action profile $a \in A$, $\sum_{i=1}^{n} u_i(a) = 0$.

The answer is no.

"Meta Theorem": n player zero-sum games don't have any special properties that n-1 player general sum games don't have.

In particular, we should not expect such games to have a value, nor that their equilibria should be easy to compute.

"Proof": Any n-1 player game can be made into an n player zero sum game, by adding a new player n (with a trivial action set), and $u_n(a) = -\sum_{i=1}^{n-1} u_i(a)$. Since player n is payoff irrelevant to the n-1 other players, the equilibrium structure remains identical to the original game.

But we can generalize with more structure...

Definition

A separable graphical game is defined by a graph G = (V, E). The set of players corresponds to the set of vertices: P = V. Each player's utility function is decomposable as a sum of neighbor-specific utility functions, one for each of his neighbors in G:

$$u_i(a) = \sum_{(i,j)\in E} u_i^{(i,j)}(a_i,a_j)$$

i.e. it is as if each player is playing a 2-player game with each of his neighbors – except he must pick a single action a_i to play simultaneously against each of his neighbors.

- ロ ト - 4 回 ト - 4 □

Separable Graphical Games

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. They continue to have a value

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1. They continue to have a value
- 2. Equilibria are easy to compute with efficient dynamics.

- 1. They continue to have a value
- 2. Equilibria are easy to compute with efficient dynamics.
- 3. We don't require each of the constituent 2-player games are zero sum just that the aggregate is.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$ if for all players *i* and actions a_i^* we have:

$$\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t}) \geq \frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{*}_{i}, a^{t}_{-i}) - \Delta(T)$$

We say that such an action sequence is *no-regret* if $\Delta(T) = o_T(1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$ if for all players *i* and actions a_i^* we have:

$$\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t}) \geq \frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{*}_{i}, a^{t}_{-i}) - \Delta(T)$$

We say that such an action sequence is *no-regret* if $\Delta(T) = o_T(1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. How to generate a sequence of no-regret play?

Definition

A sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$ if for all players *i* and actions a_i^* we have:

$$\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t}) \geq \frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{*}_{i}, a^{t}_{-i}) - \Delta(T)$$

We say that such an action sequence is *no-regret* if $\Delta(T) = o_T(1)$.

- 1. How to generate a sequence of no-regret play?
- 2. Have every player play polynomial weights. Then $\Delta(T) = O(2\sqrt{\frac{\log k}{T}})$

Definition

A sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$ if for all players *i* and actions a_i^* we have:

$$\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t}) \geq \frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{*}_{i}, a^{t}_{-i}) - \Delta(T)$$

We say that such an action sequence is *no-regret* if $\Delta(T) = o_T(1)$.

- 1. How to generate a sequence of no-regret play?
- 2. Have every player play polynomial weights. Then $\Delta(T) = O(2\sqrt{\frac{\log k}{T}})$
- 3. But not the only way...

Definition

A sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$ if for all players *i* and actions a_i^* we have:

$$\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t}) \geq \frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{*}_{i}, a^{t}_{-i}) - \Delta(T)$$

We say that such an action sequence is *no-regret* if $\Delta(T) = o_T(1)$.

- 1. How to generate a sequence of no-regret play?
- 2. Have every player play polynomial weights. Then $\Delta(T) = O(2\sqrt{\frac{\log k}{T}})$
- 3. But not the only way...
- 4. A permissive family of dynamics.

Dynamics

Given a sequence of action profiles a^1, \ldots, a^T , write $\bar{a}_i = \frac{1}{T} \sum_{i=1}^T a_i^t$ to denote the mixed strategy for player *i* that selects an action in $\{a_i^1, \ldots, a_i^T\}$ uniformly at random.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dynamics

Given a sequence of action profiles a^1, \ldots, a^T , write $\bar{a}_i = \frac{1}{T} \sum_{i=1}^T a_i^t$ to denote the mixed strategy for player *i* that selects an action in $\{a_i^1, \ldots, a_i^T\}$ uniformly at random.

Theorem

Consider any zero sum separable graphical game G. If a sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$, then the mixed strategies:

 $(\bar{a}_1,\ldots,\bar{a}_n)$

forms an $n\Delta(T)$ -approximate Nash equilibrium.

Dynamics

Given a sequence of action profiles a^1, \ldots, a^T , write $\bar{a}_i = \frac{1}{T} \sum_{i=1}^T a_i^t$ to denote the mixed strategy for player *i* that selects an action in $\{a_i^1, \ldots, a_i^T\}$ uniformly at random.

Theorem

Consider any zero sum separable graphical game G. If a sequence of action profiles a^1, \ldots, a^T has regret $\Delta(T)$, then the mixed strategies:

 $(\bar{a}_1,\ldots,\bar{a}_n)$

forms an $n\Delta(T)$ -approximate Nash equilibrium.

If every player plays using polynomial weights, they converge to an $\epsilon\text{-approximate}$ Nash equilibrium by in:

$$T = \frac{4n^2 \log k}{\epsilon^2}$$

many rounds. In a two player game this is $T = 16 \log(k)/\epsilon^2$ steps.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

1. A useful fact: for every action $a_i^* \in A_i$ we have:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{(i,j)\in E} u_i^{i,j}(a_i^*, a_j^t) = \sum_{\substack{(i,j)\in E}} \sum_{t=1}^{T} \frac{1}{T} u_i^{i,j}(a_i^*, a_j^t) \\ = \sum_{\substack{(i,j)\in E}} u_i^{i,j}(a_i^*, \bar{a}_j)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

1. A useful fact: for every action $a_i^* \in A_i$ we have:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{(i,j)\in E} u_i^{i,j}(a_i^*, a_j^t) = \sum_{\substack{(i,j)\in E\\ (i,j)\in E}} \sum_{t=1}^{T} \frac{1}{T} u_i^{i,j}(a_i^*, a_j^t) \\ = \sum_{\substack{(i,j)\in E\\ (i,j)\in E}} u_i^{i,j}(a_i^*, \bar{a}_j)$$

Suppose every player *i* is playing according to *ā_i*. Let *a_i** be the best response of player *i* to the distribution of his opponents. We know:

$$\sum_{(i,j)\in E} u_i^{i,j}(a_i^*,ar{a}_j) \geq \sum_{(i,j)\in E} u_i^{i,j}(ar{a}_i,ar{a}_j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. We also know, since a^1, \ldots, a^t have $\Delta(T)$ regret, that for all $i \in P$:

$$\underbrace{\frac{1}{T}\sum_{t=1}^{T}\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{t},a_{j}^{t})}_{LHS} \geq \underbrace{\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) - \Delta(T)}_{RHS}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

1. We also know, since a^1, \ldots, a^t have $\Delta(T)$ regret, that for all $i \in P$:

$$\underbrace{\frac{1}{T}\sum_{t=1}^{T}\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{t},a_{j}^{t})}_{LHS} \geq \underbrace{\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) - \Delta(T)}_{RHS}$$

2. Summing the LHS over all players:

$$LHS = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{(i,j) \in E} u_i^{(i,j)}(a_i^t, a_j^t) = \frac{1}{T} \sum_{t=1}^{T} 0 = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

(why?)

1. For all $i \in P$:

$$\underbrace{\frac{1}{T}\sum_{t=1}^{T}\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{t},a_{j}^{t})}_{LHS} \geq \underbrace{\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) - \Delta(T)}_{RHS}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

1. For all $i \in P$:

$$\underbrace{\frac{1}{T}\sum_{t=1}^{T}\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{t},a_{j}^{t})}_{LHS}\geq\underbrace{\sum_{(i,j)\in E}u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j})-\Delta(T)}_{RHS}$$

2. Now summing the RHS:

$$RHS = \sum_{i=1}^{n} \sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*, \bar{a}_j) - n \cdot \Delta(T)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

1. Combining the bounds (LHS > RHS):

1. Combining the bounds (LHS > RHS): 2.

$$n\Delta(T) \geq \sum_{i=1}^{n} \sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*, \bar{a}_j)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Combining the bounds (LHS > RHS):
 2.

$$n\Delta(T) \geq \sum_{i=1}^{n} \sum_{(i,j)\in E} u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j})$$

=
$$\sum_{i=1}^{n} \left(\sum_{(i,j)\in E} u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) - \sum_{(i,j)\in E} u_{i}^{i,j}(\bar{a}_{i},\bar{a}_{j}) \right)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Combining the bounds (LHS > RHS):
 2.

$$n\Delta(T) \geq \sum_{i=1}^{n} \sum_{(i,j)\in E} u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j})$$

=
$$\sum_{i=1}^{n} \left(\sum_{(i,j)\in E} u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) - \sum_{(i,j)\in E} u_{i}^{i,j}(\bar{a}_{i},\bar{a}_{j}) \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. (why?)

Combining the bounds (LHS > RHS):
 2.

$$\begin{split} n\Delta(T) &\geq \sum_{i=1}^{n} \sum_{(i,j)\in E} u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) \\ &= \sum_{i=1}^{n} \left(\sum_{(i,j)\in E} u_{i}^{(i,j)}(a_{i}^{*},\bar{a}_{j}) - \sum_{(i,j)\in E} u_{i}^{i,j}(\bar{a}_{i},\bar{a}_{j}) \right) \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

3. (why?)

4. Lets think about each term...

$$n\Delta(T) \geq \sum_{i=1}^{n} \left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j) \right)$$

$$n\Delta(T) \geq \sum_{i=1}^n \left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j) \right)$$

1. For each term we have:

$$\left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j)\right) \ge 0$$
(why?)

$$n\Delta(T) \geq \sum_{i=1}^{n} \left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j) \right)$$

1. For each term we have:

$$\left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j)\right) \ge 0$$

(why?)

2. So for each player *i*:

$$\sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j) \geq \sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - n\Delta(T)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(why?)

$$n\Delta(T) \geq \sum_{i=1}^{n} \left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j) \right)$$

1. For each term we have:

$$\left(\sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - \sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j)\right) \ge 0$$

(why?)

2. So for each player *i*:

$$\sum_{(i,j)\in E} u_i^{i,j}(\bar{a}_i,\bar{a}_j) \geq \sum_{(i,j)\in E} u_i^{(i,j)}(a_i^*,\bar{a}_j) - n\Delta(T)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(why?)

3. Tada!

Thanks!

See you next class — stay healthy, and wear a mask!

