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Overview

I Today we’ll dive into zero sum games.

I They have a very special property: the minimax theorem.

I And a close connection to the polynomial weights algorithm
(and related algorithms)

I Playing the polynomial weights algorithm in a zero sum game
leads to equilibrium (a plausible dynamic!)

I In fact, we’ll use it to prove the minimax theorem.



Overview

I Today we’ll dive into zero sum games.

I They have a very special property: the minimax theorem.

I And a close connection to the polynomial weights algorithm
(and related algorithms)

I Playing the polynomial weights algorithm in a zero sum game
leads to equilibrium (a plausible dynamic!)

I In fact, we’ll use it to prove the minimax theorem.



Overview

I Today we’ll dive into zero sum games.

I They have a very special property: the minimax theorem.

I And a close connection to the polynomial weights algorithm
(and related algorithms)

I Playing the polynomial weights algorithm in a zero sum game
leads to equilibrium (a plausible dynamic!)

I In fact, we’ll use it to prove the minimax theorem.



Overview

I Today we’ll dive into zero sum games.

I They have a very special property: the minimax theorem.

I And a close connection to the polynomial weights algorithm
(and related algorithms)

I Playing the polynomial weights algorithm in a zero sum game
leads to equilibrium (a plausible dynamic!)

I In fact, we’ll use it to prove the minimax theorem.



Overview

I Today we’ll dive into zero sum games.

I They have a very special property: the minimax theorem.

I And a close connection to the polynomial weights algorithm
(and related algorithms)

I Playing the polynomial weights algorithm in a zero sum game
leads to equilibrium (a plausible dynamic!)

I In fact, we’ll use it to prove the minimax theorem.



Zero Sum Games

Definition
A two player zero sum game is any two player game such that for
every a ∈ A1 × A2, u1(a) = −u2(a).(i.e. at every action profile, the
utilities sum to zero)

1. Strictly adversarial games: The only way for player 1 to
improve his payoff is to harm player 2, and vice versa.

2. Closely related to linear programming, adversarial machine
learning, and lots of other things.
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Example

Consider the “Presidential Election Game”:

Morality Tax-Cuts
Economy (3,-3) (-1,1)
Society (-2,2) (1,-1)

Since utilities always sum to zero, we can more economically write
the game by specifying only the row player’s utility:

Morality Tax-Cuts
Economy 3 -1
Society -2 1

The row player (Max) wishes to maximize the utility. The column
player (Min) wishes to minimize the utility.
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How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. What if Max has to go first and announce his strategy, letting
Min best respond?

2. If Max announces mixed strategy (1/2, 1/2), what should Min
do?

3. Min should pick the action that minimizes her cost! She can
compute:

E[Morality] =
1

2
· 3 +

1

2
· (−2) =

1

2

E[Tax− Cuts] =
1

2
· (−1) +

1

2
· 1 = 0

4. So she plays Tax-cuts.



How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. What if Max has to go first and announce his strategy, letting
Min best respond?

2. If Max announces mixed strategy (1/2, 1/2), what should Min
do?

3. Min should pick the action that minimizes her cost! She can
compute:

E[Morality] =
1

2
· 3 +

1

2
· (−2) =

1

2

E[Tax− Cuts] =
1

2
· (−1) +

1

2
· 1 = 0

4. So she plays Tax-cuts.



How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. What if Max has to go first and announce his strategy, letting
Min best respond?

2. If Max announces mixed strategy (1/2, 1/2), what should Min
do?

3. Min should pick the action that minimizes her cost! She can
compute:

E[Morality] =
1

2
· 3 +

1

2
· (−2) =

1

2

E[Tax− Cuts] =
1

2
· (−1) +

1

2
· 1 = 0

4. So she plays Tax-cuts.



How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. What if Max has to go first and announce his strategy, letting
Min best respond?

2. If Max announces mixed strategy (1/2, 1/2), what should Min
do?

3. Min should pick the action that minimizes her cost! She can
compute:

E[Morality] =
1

2
· 3 +

1

2
· (−2) =

1

2

E[Tax− Cuts] =
1

2
· (−1) +

1

2
· 1 = 0

4. So she plays Tax-cuts.



How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. More generally, if Max announces he is going to play
according to (p, 1− p)...

2. Min will play the strategy that minimizes her cost:

arg min(p · 3− 2(1− p), p · (−1) + (1− p))

3. So what should Max do, knowing this?

4. He should play:

arg max
p

min(p · 3− 2(1− p), p · (−1) + (1− p))

5. And if Min goes first, she should play:

arg min
q

max(q · 3− (1− q), q · (−2) + (1− q))
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How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. Going first in a zero sum game is only a disadvantage. It
reveals your strategy and lets your opponent respond
optimally.

2. But how much of a disadvantage? Lets see. What should
Max do?

3. He should play (p, 1− p) to equalize the cost of Min’s two
actions: i.e. he should pick p such that:

3p − 2(1− p) = −p + (1− p)⇔ 5p − 2 = 1− 2p ⇔ p =
3

7

4. So Max should play (3/7, 4/7)...

5. And when Min best responds, he gets payoff 1− 2p = 1/7.
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How to Play This Game

Morality Tax-Cuts
Economy 3 -1
Society -2 1

1. And what if Min goes first?

2. Min should play so as to equalize the payoff of Max’s two
options.

3. i.e. she should play (q, 1− q) such that:

3q − (1− q) = −2q + (1− q)⇔ 4q − 1 = −3q + 1⇔ q =
2

7

4. So Min should play (2/7, 5/7).

5. When Max best responds, Min suffers cost 4q − 1 = 1/7.

6. Hmmm...
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Hmmm

1. So in this case it was no disadvantage to go first...

2. The max min value of the game exactly equal to the min max
value of the game.

3. This immediately implies that (3/7, 4/7), (2/7, 5/7) is a Nash
equilibrium of the game, since both players are getting
payoff/cost 1/7, and we have just derived that both are best
responding to one another.

4. Lets investigate further...
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Order of Play

We use the notation [n] = {1, 2, . . . , n}, and ∆[n] to denote the
set of probability distributions over [n]:

Definition
For an n ×m matrix U (think about this as the payoff matrix in a
two player zero sum game if you like):

max min(U) = max
p∈∆[n]

min
y∈[m]

n∑
i=1

pi · U(i , y)

min max(U) = min
q∈∆[m]

max
x∈[n]

m∑
j=1

qj · U(x , j)

If U is a zero sum game, then max min(U) represents the payoff
that Max can guarantee if he goes first, and min max(U)
represents the payoff that he can guarantee if Min goes first.
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The Minimax Theorem
Recall going first is not an advantage. In math, for any game U:

min max(U) ≥ max min(U)

It turns out that in a zero sum game, it is also not a disadvantage:

Theorem (Von Neumann)

In any zero sum game U:

min max(U) = max min(U)

Corollary

In any Nash equilibrium of a zero sum game, Max plays a maxmin
strategy and Min plays a minmax strategy. Note that these can be
computed without needing to reason about what the other player
is doing.

Corollary

All Nash equilibria in Zero sum games have the same payoff – the
max min value of the game.
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The Minimax Theorem

1. None of these things are true of general games. (Consider
Battle of the Sexes)

2. It means Zero-sum games are easy to play: no need for
counter-speculation.

3. Its non-obvious. Von Neumann gave a complicated proof in
1928, writing “As far as I can see, there could be no theory of
games . . . without that theorem . . . I thought there was
nothing worth publishing until the Minimax Theorem was
proved”

4. Previously, Borell had proven it for the special case of 5× 5
matrices, and thought it was false for larger matrices.

5. But well give an easy, constructive proof.
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Proof

1. Suppose the theorem were false: there is some game U for
which min max(U) > max min(U).

2. Write v1 = min max(U) and v2 = max min(U) (And so
v1 = v2 + ε for some constant ε > 0).

3. In other words: if Min has to go first, then Max can guarantee
payoff at least v1, but if Max is forced to go first, then Min
can force Max to have payoff only v2.
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Proof: A Thought Experiment

Lets consider what happens when Min and Max repeatedly play
against each other as follows, for T rounds:

1. Min will play using the polynomial weights algorithm. i.e. at
each round t, the weights w t of the polynomial weights
algorithm will form her mixed strategy, and she will sample an
action at random from this distribution, updating based on
the losses she experiences at that round.

2. Max will play the best response to Min’s strategy. i.e. Max
will play x t = arg maxx Ey∼w t [U(x , y)].

What we know about each player’s average payoffs when they play
in this manner?



Proof: A Thought Experiment

Lets consider what happens when Min and Max repeatedly play
against each other as follows, for T rounds:

1. Min will play using the polynomial weights algorithm. i.e. at
each round t, the weights w t of the polynomial weights
algorithm will form her mixed strategy, and she will sample an
action at random from this distribution, updating based on
the losses she experiences at that round.

2. Max will play the best response to Min’s strategy. i.e. Max
will play x t = arg maxx Ey∼w t [U(x , y)].

What we know about each player’s average payoffs when they play
in this manner?



Proof: A Thought Experiment
We know from the guarantee of the polynomial weights algorithm:
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T
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t=1

E[U(x t , y t)] ≤ 1

T
min
y∗

T∑
t=1

U(x t , y∗) + ∆(T )

= min
y∗

T∑
t=1

1

T
U(x t , y∗) + ∆(T )

= min
y∗

Ex∼x̄ [U(x , y∗)] + ∆(T )

x̄ is the mixed strategy that puts weight 1/T on each action x t .
∆(T ) is the regret bound of the polynomial weights algorithm:

∆(T ) = 2

√
log n

T
.

By definition, miny∗ Ex∼x̄U(x , y∗) ≤ max min(U) = v2 and so:
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Proof: A Thought Experiment

But: on each day t Max is best responding to Min’s mixed
strategy w t . So...

1

T

T∑
t=1

E[U(x t , y t)] =
1

T

T∑
t=1

max
x∗

Ey∼w t [U(x∗, y)]

≥ 1

T

T∑
t=1

v1

= v1

Combining these inequalities:

v1 ≤ v2 + ∆(T )

Since v1 = v2 + ε:
ε ≤ ∆(T )

Taking T large enough leads to contradiction.
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Reflection

1. An amazing feature of Polynomial Weights: It guarantees that
no matter what, you do as well as if you had gotten to observe
your opponent’s strategy, and then best respond after the fact.

2. Using the polynomial weights algorithm guarantees that a
player using gets payoff quickly approaching the (unique)
value of the game.

3. It does so without needing to know what the game is. The
game matrix is not an input to the PW algorithm!

4. The only information needed is the realized payoffs are for the
actions as it plays the game.
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Thanks!

See you next class — stay healthy, and wear a mask!


