# **Basic Definitions**

#### Aaron Roth

University of Pennsylvania

January 26 2021

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

## Overview

Today we'll give (review) the basic definitions that will underly our study this semester.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Overview

- Today we'll give (review) the basic definitions that will underly our study this semester.
- Games, Best Responses, Dominant Strategies, Iterated Elimination...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## Overview

- Today we'll give (review) the basic definitions that will underly our study this semester.
- Games, Best Responses, Dominant Strategies, Iterated Elimination...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Solution concepts: Nash equilibrium

# A Game

## Definition

A game is an interaction defined by:

► A set of players P



# A Game

## Definition

A game is an interaction defined by:

A set of players P

A finite set of actions A<sub>i</sub> for each player i ∈ P. We write A = ×<sup>n</sup><sub>i=1</sub>A<sub>i</sub> to denote the action space for all players, and A<sub>-i</sub> = ×<sub>j≠i</sub>A<sub>j</sub> to denote the action space of all players excluding player j.

# A Game

## Definition

A game is an interaction defined by:

A set of players P

A finite set of actions A<sub>i</sub> for each player i ∈ P. We write A = ×<sup>n</sup><sub>i=1</sub>A<sub>i</sub> to denote the action space for all players, and A<sub>-i</sub> = ×<sub>j≠i</sub>A<sub>j</sub> to denote the action space of all players excluding player j.

• A utility function  $u_i : A \to \mathbb{R}$  for each player  $i \in P$ .

Basic assumption: players will always try and act so as to maximize their utility.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Basic assumption: players will always try and act so as to maximize their utility.

#### Definition

The *best-response* to a set of actions  $a_{-i} \in A_{-i}$  for a player *i* is any action  $a_i \in A_i$  that maximizes  $u_i(a_i, a_{-i})$ :

$$a_i \in rg\max_{a \in A_i} u_i(a, a_{-i})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Interlude

Question: Is game theory just for sociopaths?



### Interlude

**Question:** Is game theory just for sociopaths? **Answer:** Not necessarily. (Assumes only that people have consistent preferences)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## The General Idea for Prediction

# "In any stable situation, all players should be playing a best response."

## The General Idea for Prediction

# "In any stable situation, all players should be playing a best response."

(Otherwise, by definition, the situation would not be stable – somebody would want to change their action.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# When are there stable solutions?

#### Definition

For a player *i*, an action  $a \in A_i$  (weakly) dominates action  $a' \in A_i$  if it is always beneficial to play *a* over *a'*. That is, if for all  $a_{-i} \in A_{-i}$ :

$$u_i(a,a_{-i}) \geq u_i(a',a_{-i})$$

and the inequality is strict for some  $a_{-i} \in A_{-i}$ .

# When are there stable solutions?

#### Definition

For a player *i*, an action  $a \in A_i$  (weakly) dominates action  $a' \in A_i$  if it is always beneficial to play *a* over *a'*. That is, if for all  $a_{-i} \in A_{-i}$ :

$$u_i(a,a_{-i}) \geq u_i(a',a_{-i})$$

and the inequality is strict for some  $a_{-i} \in A_{-i}$ .

Can normally eliminate dominated strategies from consideration – there is never a situation in which they are the (unique) best response.

# **Dominant Strategies**

#### Definition

An action  $a \in A_i$  is *dominant* for player *i* if it weakly dominates all actions  $a' \neq a \in A_i$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# **Dominant Strategies**

#### Definition

An action  $a \in A_i$  is *dominant* for player *i* if it weakly dominates all actions  $a' \neq a \in A_i$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. A very strong guarantee – Always a best response.

# **Dominant Strategies**

#### Definition

An action  $a \in A_i$  is *dominant* for player *i* if it weakly dominates all actions  $a' \neq a \in A_i$ .

- 1. A very strong guarantee Always a best response.
- 2. No need to reason about what your opponents are doing.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dominant Strategy Equilibrium

Dominant strategies normally don't exist, but when they do, predictions are easy.

# Dominant Strategy Equilibrium

# Dominant strategies normally don't exist, but when they do, predictions are easy.

#### Definition

An action profile  $a = (a_1, ..., a_n) \in A$  is a *dominant strategy* equilibrium of the game  $(P, \{A_i\}, \{u_i\})$  if for every  $i \in P$ ,  $a_i$  is a dominant strategy for player *i*.

# Example: Prisoner's Dilemma

|         | Confess | Silent |
|---------|---------|--------|
| Confess | (1, 1)  | (5,0)  |
| Silent  | (0,5)   | (3,3)  |

Figure: Prisoner's Dilemma



# Example: Prisoner's Dilemma

|         | Confess | Silent |
|---------|---------|--------|
| Confess | (1, 1)  | (5,0)  |
| Silent  | (0,5)   | (3,3)  |

Figure: Prisoner's Dilemma

(Confess, Confess) is a dominant strategy equilibrium is Prisoner's Dilemma.

・ロト・4回ト・4回ト・目・9900

It still makes sense to eliminate *dominated* strategies from consideration.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

It still makes sense to eliminate *dominated* strategies from consideration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sometimes, once you've done this, new strategies have become dominated.

- It still makes sense to eliminate *dominated* strategies from consideration.
- Sometimes, once you've done this, new strategies have become dominated.
- ▶ We can consider eliminating dominated strategies *iteratively*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It still makes sense to eliminate *dominated* strategies from consideration.
- Sometimes, once you've done this, new strategies have become dominated.
- ▶ We can consider eliminating dominated strategies *iteratively*.
- If we are lucky, "iterated elimination of dominated strategies" leads to a unique surviving strategy profile.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Iterated Elimination: Example 1



Figure: Example 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Iterated Elimination: Example 2



Figure: Example 2

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

We can still ask for a "stable" profile of actions.

We can still ask for a "stable" profile of actions.

#### Definition

A profile of actions  $a = (a_1, ..., a_n) \in A$  is a *pure strategy Nash* Equilibrium if for each player  $i \in P$  and for all  $a'_i \in A_i$ :

$$u_i(a_i,a_{-i}) \geq u_i(a_i',a_{-i})$$

i.e. simultaneously, all players are playing a best response to one another.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We can still ask for a "stable" profile of actions.

#### Definition

A profile of actions  $a = (a_1, ..., a_n) \in A$  is a *pure strategy Nash* Equilibrium if for each player  $i \in P$  and for all  $a'_i \in A_i$ :

$$u_i(a_i,a_{-i}) \geq u_i(a_i',a_{-i})$$

i.e. simultaneously, all players are playing a best response to one another.

#### Claim

If iterated elimination of dominated strategies results in a unique solution, then it is a pure strategy Nash equilibrium.

We can still ask for a "stable" profile of actions.

#### Definition

A profile of actions  $a = (a_1, ..., a_n) \in A$  is a *pure strategy Nash* Equilibrium if for each player  $i \in P$  and for all  $a'_i \in A_i$ :

 $u_i(a_i, a_{-i}) \geq u_i(a'_i, a_{-i})$ 

i.e. simultaneously, all players are playing a best response to one another.

#### Claim

If iterated elimination of dominated strategies results in a unique solution, then it is a pure strategy Nash equilibrium.

#### Proof. Homework!

Problem 1: They don't always exist.

|       | Heads   | Tails   |
|-------|---------|---------|
| Heads | (1, -1) | (-1,1)  |
| Tails | (-1, 1) | (1, -1) |

Figure: Matching Pennies

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Problem 2: They aren't always unique.

|            | Bach  | Stravinsky |
|------------|-------|------------|
| Bach       | (5,1) | (0,0)      |
| Stravinsky | (0,0) | (1, 5)     |

Figure: Bach of Stravinsky

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

#### Definition

A two-player game is *zero-sum* if for all  $a \in A$ ,  $u_1(a) = -u_2(a)$ . (i.e. the utilities of of both players sum to zero at every action profile)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Definition

A two-player game is *zero-sum* if for all  $a \in A$ ,  $u_1(a) = -u_2(a)$ . (i.e. the utilities of of both players sum to zero at every action profile)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. e.g. Matching Pennies.

## Definition

A two-player game is *zero-sum* if for all  $a \in A$ ,  $u_1(a) = -u_2(a)$ . (i.e. the utilities of of both players sum to zero at every action profile)

- 1. e.g. Matching Pennies.
- 2. In matching pennies you should randomize to thwart your opponent: Flip a coin and play heads 50% of the time, and tails 50% of the time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Definition

A two-player game is *zero-sum* if for all  $a \in A$ ,  $u_1(a) = -u_2(a)$ . (i.e. the utilities of of both players sum to zero at every action profile)

- 1. e.g. Matching Pennies.
- 2. In matching pennies you should randomize to thwart your opponent: Flip a coin and play heads 50% of the time, and tails 50% of the time.

# Definition

A mixed-strategy  $p_i \in \Delta A_i$  is a probability distribution over actions  $a_i \in A_i$ : i.e. a set of numbers  $p_i(a_i)$  such that:

1. 
$$p_i(a_i) \ge 0$$
 for all  $a_i \in A_i$ 

2. 
$$\sum_{a_i\in A_i}p_i(a_i)=1.$$

For  $p = (p_1, \ldots, p_n) \in \Delta A_1 \times \ldots \times \Delta A_n$ , we write:

$$u_i(p) = E_{a_i \sim p_i}[u_i(a)]$$

# Mixed Strategy Nash Equilibria

#### Definition

A *mixed strategy Nash equilibrium* is a tuple

 $p = (p_1, \ldots, p_n) \in \Delta A_1 \times \ldots \times \Delta A_n$  such that for all *i*, and for all  $a_i \in A_i$ :

 $u_i(p_1,p_{-i}) \geq u_i(a_i,p_{-i})$ 

# Mixed Strategy Nash Equilibria

#### Definition

A mixed strategy Nash equilibrium is a tuple

 $p = (p_1, \ldots, p_n) \in \Delta A_1 \times \ldots \times \Delta A_n$  such that for all *i*, and for all  $a_i \in A_i$ :

$$u_i(p_1,p_{-i}) \geq u_i(a_i,p_{-i})$$

## Theorem (Nash)

Every game with a finite set of players and actions has a mixed strategy Nash equilibrium.

# Mixed Strategy Nash Equilibria

#### Definition

A mixed strategy Nash equilibrium is a tuple

 $p = (p_1, \ldots, p_n) \in \Delta A_1 \times \ldots \times \Delta A_n$  such that for all *i*, and for all  $a_i \in A_i$ :

$$u_i(p_1,p_{-i}) \geq u_i(a_i,p_{-i})$$

## Theorem (Nash)

Every game with a finite set of players and actions has a mixed strategy Nash equilibrium.

But... The proof is non-constructive, so its not necessarily clear how to find one of these, even though they exist

## Thanks!

See you next class — stay healthy, and wear a mask!

