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Mechanism Design via Differential Privacy

In this class, we continue using digital goods auctions with valuations vi ∈ [0, 1] as a case study for
another technique in mechanism design. Recall that two lectures ago, we designed an auction for the
digital goods setting that was dominant strategy truthful, and for any vector of valuations v, obtained
revenue:

Rev(v) ≥ OPT(v)−O(
√
n)

Where here OPTv = maxp∈[0,1] p · |{i : vi ≥ p} denotes the revenue of the best fixed price.
In this class, we will aim for another point on the tradeoff space – we will relax our solution concept

to asymptotic dominant strategy truthfulness, and in exchange, will try and obtain a better revenue
guarantees. The tool we will use to do this is differential privacy, an algorithmic stability constraint
that is primarily studied as a means of doing data analysis while protecting the privacy of individuals
in the data set.

Recall: Why can we not simply compute the price p∗ = arg maxp∈[0,1] p · |{i : vi ≥ p} that optimizes
revenue, and use that price? The reason is that this price will be highly manipulable by one of the
bidders – it will be vi∗ for some bidder i∗, who will have strong incentive to lower his bid. But what
if we can compute a price p that is almost independent of the reported valuation vi for every buyer i?
Will this yield in some sense an approximate truthfulness guarantee? This will be the idea behind our
approach.

Definition 1 Two bid vectors v, v′ ∈ [0, 1]n are neighbors if they differ in just a single agent’s bid: i.e.
if there exists an index i such that vj = v′j for every index j 6= i.

We can now define differential privacy:

Definition 2 A mechanism M : [0, 1]n → O is ε-differentially private if for every pair of neighboring
bid vectors v, v′ ∈ [0, 1]n, and for every outcome x ∈ O:

Pr[M(v) = x] ≤ exp(ε) Pr[M(v′) = x]

. Here you should think of ε < 1 as a small constant, and think of exp(ε) ≈ (1+ε). Using the exponential
form will simply be more convenient mathematically. (And for ε ≤ 1 we have 1 + ε ≤ exp(ε) ≤ 1 + 2ε)

We can also define what we mean by approximate dominant strategy truthfulness:

Definition 3 A mechanism M : [0, 1]n → O is ε-approximately dominant strategy truthful if for every
bidder i, every utility function ui : [0, 1] × O → [0, 1], every vector of valuations v ∈ [0, 1]n, and every
deviation v′i ∈ [0, 1], if we write v′ = (v−i, v

′
i), then:

Eo∼M(v)[ui(vi, o)] ≥ Eo∼M(v′)[ui(vi, o)]− ε

In other words, we require that no bidder can substantially (by more than ε) increase his utility by
mis-reporting his valuation.

Differential privacy will be useful for us because differentially private mechanisms are automatically
ε-approximately dominant strategy truthful.

Theorem 4 If a mechanism M : [0, 1]n → O is ε-differentially private, then M is also ε-approximately
dominant strategy truthful.
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Proof Fix any buyer i, valuation vector v, and utility function ui : [0, 1]×O → [0, 1].

Eo∼M(v)[ui(vi, o)] =
∑
o∈O

ui(vi, o) · Pr[M(v) = o]

≥
∑
o∈O

ui(vi, o) · exp(−ε) Pr[M(v′) = o]

= exp(−ε)Eo∼M(v′)[ui(vi, o)]

≥ Eo∼M(v′)[ui(vi, o)]− ε

where the last inequality follows because for ε < 1, exp(−ε) ≥ 1− ε, and ui(vi, o) ≤ 1.

Great! So to design an approximately truthful mechanism that guarantees high revenue, it is suf-
ficient to design a differentially private mechanism with high revenue. Lets see if we can do so in a
straightforward way: directly picking a price that approximately maximizes revenue for the particular
bidder valuations that have been reported.

As we have done in the last two lectures, lets pick a finite subset of prices P ⊂ [0, 1] to select from.
Now consider the following mechanism (an instantiation of what is called “the exponential mechanism”
in its more general form):

ExpMech(v, ε, P ):

Define Rev(p, v) = p · |{i : vi ≥ p}|.
Output each p ∈ P according to the following probability distribution:

Pr[p] =
1

φ(v)
exp

(
ε ·Rev(p, v)

2

)
where

φ(v) =
∑
p∈P

exp

(
ε ·Rev(p, v)

2

)

First, we prove that the exponential mechanism is ε-differentially private (and hence ε-approximately
truthful):

Theorem 5 For any ε, P : ExpMech(·, ε, P ) is ε-differentially private.

Proof Fix any pair of neighboring bid vectors v, v′ and any output p. We have:

Pr[ExpMech(v, ε, P ) = p] =
1

φ(v)
exp

(
ε ·Rev(p, v)

2

)
≤ 1

φ(v)
exp

(
ε · (Rev(p, v′) + 1)

2

)
=

1

φ(v)
exp

( ε
2

)
exp

(
ε ·Rev(p, v′)

2

)
≤ exp

( ε
2

) 1

φ(v′)
exp

( ε
2

)
exp

(
ε ·Rev(p, v′)

2

)
= exp(ε) Pr[ExpMech(v′, ε, P ) = p]

It remains to bound the revenue that the exponential mechanism obtains.

21-2



Theorem 6 For any P , v, ε, δ, with probability 1− δ, ExpMech(v, ε, P ) outputs a price p such that:

Rev(p, v) ≥ max
p∗∈P

Rev(p∗, v)− 2

ε
· ln
(
|P |
δ

)
Proof Let p∗ = maxp∗∈P Rev(p∗, v). For any value x, we have:

Pr
p

[Rev(p, v) ≤ x] ≤ Prp[Rev(p, v) ≤ x]

Prp[Rev(p, v) = Rev(p∗, v)]

≤ |P | · exp(εx/2)

exp(εRev(p∗, v)/2)

= |P | · exp

(
ε · (x−Rev(p∗, v))

2

)
Now choose x = Rev(p∗, v)− 2

ε · ln
(
|P |
δ

)
. Plugging that in above, we get:

Pr
p

[Rev(p, v) ≤ x] ≤ |P | · exp(− ln

(
|P |
δ

)
)

= |P | · δ
|P |

= δ

Now we can put all the pieces together. We have an approximately truthful way to select a revenue
maximizing price from a finite set of prices P , where the revenue guarantees with respect to the best
price in P degrade as a function of |P |. This is a familiar tradeoff – the larger P is, the closer it is to
containing an optimal price, but the worse we will be able to approximate it. However, in this case, the
dependence we see on |P | is only logarithmic... Lets again see what happens when we take the natural
discretization:

P = {α, 2α, 3α, . . . , 1}

Note that just as in the last lecture, |P | = 1/α, and that we have the guarantee that for all v:

max
p∈P

Rev(p, v) ≥ max
p∈[0,1]

Rev(p, v)− αn

Combining this bound with the guarantee of the exponential mechanism, we see that if we discretize
the price space by α, with probability 0.99, we obtain revenue:

Rev(p, v) ≥ OPT− α · n−O
(

1

ε
ln

(
1

α

))
Choosing α = 1/n, we find that for any ε, we can obtain an ε-approximately dominant strategy

truthful mechanism which obtains revenue:

Rev(p, v) ≥ OPT−O
(

log n

ε

)
If we take e.g. ε = O(1/ log(n)), then we have an asymptotically truthful mechanism (in the sense that it
becomes exactly truthful in the limit as n→∞, that improves by an exponential factor on the revenue
guarantee that we were able to obtain with an exactly truthful mechanism for the same problem.
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