
NETS 412: Algorithmic Game Theory April 6, 2015

Lecture 19
Lecturer: Aaron Roth Scribe: Aaron Roth

Profit Maximization in Online Auctions

In this lecture, we’ll bring the class full circle. We’ll consider a variant of the problem we considered
in the last lecture – profit maximization in digital goods auctions – in which the bidders now arrive
one at a time, and we need to decide whether or not to sell to each bidder as he arrives. To solve this
problem, we’ll revive and invoke our favorite algorithm from earlier in the class – the polynomial weights
algorithm.

Recall our solution to revenue maximization from last lecture involves randomly partitioning bidders
into two buckets, and then computing the optimal price in one bucket to charge to the other. This in
particular means that in order to run this algorithm, it is necessary to have all bidders present before
any sales are made, because all of them are necessary to compute the price we will charge. However,
in practice, we often start selling things, and then customers arrive slowly over time. We can’t wait
until we have seen “all” of the bidders before selling things (if this even makes sense – we might have
no definite end time in mind), and instead have to make decisions about whether to sell to individual
customers immediately after they arrive, without knowing who will come next. We might be able to
vary our price with time, however. This is the problem we will consider this lecture, which is called an
online auction.

Our goal is to find a truthful online auction which approximates the optimal revenue. Recall that
our benchmark is OPT(v) = maxk∈[n](k · v(k)), and that the random sampling auction achieves a 4
approximation1. In this class, in addition to working in the more difficult online setting, we will attempt
to achieve a 1 approximation in the limit! That is, we want an algorithm that obtains revenue Rev such
that under natural conditions, limn→∞

Rev
OPT = 1.

First, lets formally define our setting:

Definition 1 In an online digital goods auction, we have n bidders with valuations vi ∈ [1, h].

• At time t, bidder t arrives and reports valuation v′t.

• An item is allocated according to rule xt(v
′
1, . . . , v

′
t), and payment pt(v

′
1, . . . , v

′
t) is collected. Note

that the allocation and payment rule is allowed to depend on previous bidders, but not future
bidders.

It will be helpful for us to think about a particularly simple kind of allocation and payment rule:

Definition 2 In a take-it-or-leave-it (TIOLI) auction:

• At time t, a fixed price st = st(v
′
1, . . . , v

′
t−1) is computed.

• The item is sold according to the following allocation and payment rules:

xt(v
′
1, . . . , vt−1, v

′
t) = 1⇔ v′t ≥ st pt(v

′
1, . . . , v

′
t−1) = st

In other words, the item is sold at a fixed price st to bidders with valuation above the price, and the price
st is computed independently of bidder t’s own bid.

The following is a simple observation:

Theorem 3 Any take-it-or-leave-it auction is dominant strategy truthful.

1Actually, a 4 approximation to the relaxed benchmark OPT≥2(v)

19-1

Proof Since the price that bidder t faces is computed independently of his own bid, over/under-
reporting does not influence the price – it can only result in agent t winning the item at a price he was
not willing to pay, or failing to win the item even when he would have been willing to pay the price.

(Actually, its not hard to see that it is without loss of generality to consider TIOLI auctions... In single
parameter domains, truthful auctions must be monotone. For deterministic auctions, this means that
the allocation rule for each bidder must be determined by a fixed, bid-independent threshold (i.e. the
fixed price)).

Our goal will be to learn the best fixed price (recall this is the benchmark we are competing against).
The idea will be to use the polynomial weights algorithm, using prices as experts.

Lets recall the setting and guarantees of the polynomial weights algorithm: given a collection of N
experts, each of whom experience losses `ti ∈ [0, 1] each day t, the polynomial weights algorithm with
update parameter ε is able to select experts so as to achieve expected loss after T rounds:

LTPW ≤ (1 + ε) min
k∈[N]

LTk +
ln(N)

ε

(When we set ε =
√

ln(N)
T and observed that LTk ≤ T , we got LTPW ≤ mink∈[N] L

T
k + 2

√
T ln(N)) It

will be more convenient for us to work in the setting in which the experts experience gains rather than
losses. Here, the equivalent guarantee is:

GTPW ≥ (1− ε) max
k∈[N]

GTk −
ln(N)

ε

Lets fix some collection of N prices N ⊆ [1, h] and treat them as “experts”. What should we interpret
their gains as?

If we use price si on bidder i, we obtain revenue:

ri =

{
si, if vi ≥ si;
0, if vi < si.

To run the polynomial weights algorithm, we need to normalize the gains to be in [0, 1], and so for price
p ∈ N , we define its gain to be:

gtp =

{
p/h, if vi ≥ p;
0, if vi < si.

Note that because p ≤ h, we have gtp ∈ [0, 1].

Let RevTp denote the revenue of using fixed price p for the first T bidders:

RevTp = p · |{i ≤ T : vi ≥ p}|

Recall that by our normalization, GTp =
RevTp
h . If we use the polynomial weights mechanism to select

a price at every round, we get a Take-It-Or-Leave-It mechanism, which we know is dominant strategy
truthful. Moreover, the polynomial weights guarantee tells us that:

GTPW ≥ (1− ε) max
k∈[N]

GTk −
ln(N)

ε

which (multiplying through by h) is equivalent to:

RevTPW ≥ (1− ε) max
p∈N

RevTp −
h ln(N)

ε
.

19-2

So how should we choose our set of prices N? There is a tradeoff – choosing a larger set makes
maxp∈N Rev

T
p guaranteed to be closer to OPT(v), but on the other hand also makes ln(N) larger...

Consider setting prices as multiples of (1 + α) for some α > 0 – i.e. let:

N = {1, (1 + α), (1 + α)2, (1 + α)3, . . . , bhc1+α} = {(1 + α)i : i ∈ [0, log1+α(h)]}

Then we have:

N ≤ ln(h)

ln(1 + α)
≤ (1 + α) ln(h)

α

(here we use the inequality ln(1 + x) ≥ x
x+1 for x ≥ −1).

We also know that:

max
p∈N

RevTp ≥ (1− α) max
k∈N

k · v(k) = (1− α)OPT(v)

(This is because whatever the optimal price v(k) is, we can always pick a smaller price p such that
p ≥ (1− α)v(k). At least as many sales are made at this price, and we lose only a (1− α) factor of our
revenue on each sale.)

Combining these guarantees, we can achieve:

RevTPW ≥ (1− ε)(1− α)OPT(v)− h

ε

(
ln ln(h) + ln(

1 + α

α
)

)
≥ (1− ε− α)OPT(v)− h

ε

(
ln ln(h) + ln(

2

α
)

)
ε and α are parameters that we can choose. Choosing them to optimize the expression (using the magic
of Mathematica!) we obtain:

RevTPW ≥ OPT(v)− 2

√
hOPT log

(
200OPT(v) log(h)

h

)
How should we interpret this guarantee? It differs from OPT be some additive term, so it is incom-

parable to the guarantee of the random sampling auction. On the other hand, if we have:

OPT ≥ Ω̃

(
h

ε2

)
(where the are ignoring log factors), then we have RevTPW ≥ (1 − ε)OPT, which is much better than a
4 approximation. Moreover, as n grows large, we expect the optimal revenue to grow, and so we expect
this condition to hold in the limit for arbitrarily small ε.

19-3

