NETS 412: Algorithmic Game Theory March 23, 2017

Lecture 15
Lecturer: Aaron Roth Scribe: Aaron Roth

Auction Design in Single Parameter Domains

Last lecture, we saw the VCG mechanism, which has a tremendous number of nice features, and achieves
them all in a very general setting. However, the VCG mechanism was particular to maximizing social
welfare: Y, vi(a). What if we want to design an auction to maximize some other objective? What can
we do?

One thing we can do is (slightly) generalize VCG to maximize any affine objective function:

Z a;vi(a) + Bla).

You will prove this generalization on the homework.
What else can we do? In simple settings, as we will see, we can completely characterize the set of
objective functions we can optimize truthfully.

Definition 1 (Single Parameter Domain) A single parameter domain with a set of alternatives A
is defined by a public value summarization function:

such that agent i’s valuation function is parameterized by a real number v; € R, and values outcome a
at v; - w;(a)

i.e. single parameter domains are simple settings in which an agent’s valuation can be described by a
single real number. Or in other words, it is already known what an agent’s relative preferences are over
outcome — the only thing unspecified is the strength of their preferences.

Many things are single parameter domains. For example:

1. Single item auctions. We already know that agent ¢ prefers to win the item than to lose it — all
that needs to be specified is how much agent i values the item. Here:

1, a=71;
wit) ={

otherwise.

2. Buying a path in a network: In this problem, agents correspond to edges in a network, and
will experience some cost if they are used. The mechanism would like to buy service from a set of
agents that form a path in the network, to optimize some objective (minimize social cost, maximize
throughput, etc.) Here an alternative a is a set of edges and:

we(a){ 1, e€ A

0, otherwise.

3. Job Scheduling: In this problem, the agents correspond to machines i, each of whom has a different
cost ¢; for running one unit of computation. Jobs j have different sizes ¢; (i.e. a job that would cost
machine i £; - ¢; to run), and the task is to allocate jobs to machines to optimize some objective.
We write a;; = 1 if job j is allocated to machine 7. Then:

w; (a) = Z aijﬁj
J

15-1

4. Online Advertising: Each alternative a allocates a set of advertising slots, where a;; = 1 if slot j
is allocated to advertiser i. Each advertiser has some utility v; for each unique viewer who sees
his ad. He may receive many advertising slots, but the same viewer might see multiple slots. His
total utility is proportional to the number of viewers who see his ad. Let E; be the set of viewers
who see slot j. Here:

wie)=| |J B
Jixij=1

We will be interested in monotone choice rules: i.e. choice rules so that agents can only increase their
value for the final allocation by raising their bid.

Definition 2 (Monotone Choice Rule) A choice rule X for a single parameter domain is monotone-
non-decreasing in v; if for allv_; € R"~1, and for every v} > v;:

wi (X (vi,v—i)) < wi(X (v}, v-4))

For example, in a single item auction, this constraint requires that if an agent wins the item at bid v;,
he must also win the item at all higher bids v} > v;.

We will prove that an allocation rule can be made truthful (by pairing it with an appropriate payment
rule) if and only if it is monotone.

Theorem 3 A mechanism defined in a single parameter domain can be made truthful if and only if
X (v) is monotone non-decreasing for all v;. In this case, it can be made truthful by using payment rule:

P(v); = vjw;(a*) — /Ovi w;i (X (z,v-4))dz

where a* = X (v).

Proof To simplify notation, fix some agent ¢ and v_;, write v for v;, and write y(v) for w(z(v)). (i.e.
in a single item auction, we now write y(v) = 1 if 7 is allocated at bid v, and 0 otherwise).

First we show the backwards direction — assuming X (v) is monotone non-decreasing and the payment
rule is as given, we show that the auction is truthful. What we need to show is:

v-y(v) = P(v)i 2 v-y(v') = P(');

for all v'. Plugging in the definition of the payment rule, we have to show:

’

v y(v) — v y(v) + / " y(2)dz > vy(o) —oy() + / " y(2)dz

Which is equivalent to showing:

[oz = [y - 0 - o) W
0 0
To show this, consider two cases:

1. Case 1: v/ > v. In this case, equation 1 becomes:

/

/ " y(2)dz < (o — o)y(v))

But this is true by monotonicity. We know that y(v") > y(z) for all z <’, and so:

’ ’

[Ju y(z)dz < /: y(v')dz = (v —v)y(v')

This is also easy to see by drawing a picture.

15-2

2. Case 2: v/ < v. In this case, equation 1 becomes:

[vtz =)

Again, this follows from monotonicity since we know that y(v') < y(z) for all z > v’. Hence, we
have:

/v” y(z)dz > /v” y(')dz = (v — v)y(v')

’ ’

Once again, a picture helps too.

It remains to prove the forwards direction. We must show that if we are given a truthful mechanism, its
allocation rule must be monotone. Suppose we are given an arbitrary truthful mechanism over a single
parameter domain. Fix any v’ > v. By truthfulness, we must have:

v-y(v) = P(v)i 2 v-y(v') = P(v');

since a bidder with valuation v cannot benefit by misreporting value v'. However, we also know that a
bidder with valuation v’ cannot benefit by misreporting v, and so we also have:

So the allocation rule must be monotone! H

15-3

