
NETS 412: Algorithmic Game Theory March 21 2017

Lecture 14
Lecturer: Aaron Roth Scribe: Aaron Roth

Auction Design

Last lecture we studied pricing equilibria. In this lecture, we continue our study of money as a means
of exchange, from the perspective of mechanism design. Specifically, we begin our study of how to design
auctions, which will be mechanisms for choosing outcomes, while managing the incentives of individuals
to report to the mechanism their true preferences.

We will consider a very general setting:

1. We have a set of possible alternatives A that we want to choose from.

2. We have a set of n agents i each of whom have a valuation function vi ∈ V . Each valuation function
vi : A→ R≥0.

3. An outcome o = (a, p) denotes an alternative a ∈ A together with a payment vector p =
(p1, . . . , pn) ∈ Rn specifying a payment pi for each agent.

4. Agents have quasilinear utility functions. The utility that agent i experiences for outcome o = (a, p)
is:

ui(o) = vi(a)− pi

For example, this could model an allocation problem – we could have some set of goods, and the
alternative a could represent a feasible allocation of the goods. Alternatively, it could model a public
goods problem – a city could be choosing whether or not to build a library (which everyone gets to enjoy
if it is built), together with how to fund it.

A mechanism is a method of mapping agent’s reported valuations to an outcome:

Definition 1 A mechanism is a pair of functions:

1. A choice rule X : V n → A

2. A payment rule P : V n → Rn

Any choice of these two functions yields some mechanism or auction. Lets lay out a “wish list” of
desiderata that our dream auction would satisfy:

First, at a minimum, we would like the auction to be safe to participate in – nobody should ever end
up with negative utility. Otherwise we will find that we have no takers:

Definition 2 (Individual Rationality) A mechanism is individually rational (IR) if for every agent
i and for every v ∈ V n:

vi(X(v)) ≥ P (v)i

i.e. nobody is ever asked to pay more than their (reported) value for the outcome.

Second, if we want to have any idea what our auction rule is doing over the real valuation functions
as opposed to the reported valuation functions, we would like that the agents are incentivized to report
their true valuations:

Definition 3 (Dominant Strategy Truthfulness) A mechanism is dominant strategy truthful if for
every agent i, for every v ∈ V n, and for every alternative report v′i ∈ V , we have:

ui(X(v), P (v)) ≥ ui(X(v
′
i, v−i), P (v′i, v−i))

or equivalently:
vi(X(v))− P (v)i ≥ vi(X(v′i, v−i))− P (v′i, v−i)i
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Third, we would actually like the mechanism to compute a high quality outcome!

Definition 4 (Allocative Efficiency) A mechanism is allocatively efficient, or “Social Welfare Max-
imizing”, if for all v ∈ V n, if a = X(v), then for all a′ ∈ A we have:∑

i

vi(a) ≥
∑
i

vi(a
′)

Finally – we’re not saints – we want to achieve all of this without the mechanism itself having to lose
money.

Definition 5 (No Deficit) A mechanism is no deficit if for all v ∈ V n:∑
i

P (v)i ≥ 0

i.e. in total, the mechanism does not have to pay to run the auction.

We will start by illustrating some of these issues with a simple example – a single item auction.
Here we have A = [n] (representing which of the n agents get the single item for sale). Valuations

are single dimensional. We will abuse notation by writing V = R≥0, but these valuations will really be
functions of the form:

vi(a) =

{
vi, a = i;
0, otherwise.

where vi ∈ R≥0 is agent i’s value for the item for sale.
So – can we satisfy all of our desiderata?
First, we must design our allocation rule. If it is to be allocatively efficient, our hands are tied! We

must choose X(v) = arg maxi vi. What about the payment rule? Lets think how we are constrained.

1. By individual rationality, we must have p(v)j ≤ 0 for all j 6= X(v). Lets try p(v)j = 0, so it only
remains to fix p(v)i for i = X(v). Similarly, we know p(v)i ≤ vi.

2. We could try p(v)i = vi. Does this lead to an incentive compatible auction? Why not?

3. What about p(v)i = arg maxj 6=X(v) vj . Is this incentive compatible? Yes? Why? (Informally:
Consider i = X(v). Raising his bid does not change his payment or his allocation, so he has no
incentive to do it. Lowering his bid does not change his payment or his allocation until he lowers
v′i < vj , at which point he goes from winning to losing, at a price he would have been willing to
pay – so he also has no incentive to do this. For j 6= X(v), lowering his bid does not change his
payment or allocation. Raising his bid doesn’t either until he raises it to v′j > vi, at which point
he goes to winning, but at a price vi > vj which he would not want to pay...)

Observe that this “second price” is also no deficit, since it only asks for non-negative payments, so it
satisfies all of our desiderata, at least in this simple setting. This is called the “Vickrey auction”. Note
that it results in the same allocation and payment as the “Ascending price” or “English” auction you
may have seen on TV.

What about other pricing rules? What if the winner pays the 3rd highest price?
Lets see if we can generalize this beyond single item auctions...

Definition 6 The Groves Mechanism has choice rule:

X(v) = arg max
a∈A

∑
i

vi(a)
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and payment rule:

P (v)i = hi(v−i)−
∑
j 6=i

vj(a
∗)

where hi is an arbitrary function (crucially, independent of vi), and a∗ = X(v) is the socially optimal
outcome.

We note that the Groves mechanism is really a family of mechanisms, instantiated by a choice of hi.
This can be anything – even hi ≡ 0 is a valid choice.

We start by observing that the Groves mechanism satisfies at least two of our desiderata:

Theorem 7 The Groves mechanism is dominant strategy incentive compatible and Allocatively efficient.

Proof It is allocatively efficient by definition, so it remains to verify that it is dominant strategy
incentive compatible.

Fix any agent i, and reports v−i of the other players. We have:

ui(X(v), P (v)) = vi(a
∗) +

∑
j 6=i

vj(a
∗)− hi(v−i)

where a∗ = arg maxa∈A

(∑
j 6=i vi(a) + v′i(a)

)
. Agent i wishes to report v′i to maximize his utility. Note

that hi(v−i) has no dependence on his report, so equivalently, agent i wishes to report v′i to maximize:

vi(a
∗) +

∑
j 6=i

vj(a
∗) =

∑
i

vi(a
∗)

But note that if agent i truthfully reports v′i = vi, then a∗ maximizes this quantity by definition. Hence,
it is a dominant strategy for all agents to report truthfully.

The intuition here is that the payment scheme of the Groves mechanism aligns the incentives of the
agents and the mechanism designer: both prefer higher social welfare outcomes.

Lets consider an example, instantiating the Groves mechanism in a single item auction setting (will,
recall A = [n]). Lets take hi(v−i) = 0 for all i. Suppose we have two bidders, with values for the item
v1 = 5 and v2 = 8. Truthful bidding results in X(v) = 2, resulting in social welfare 8. The payment rule
mandates:

P (v)1 = −8 P (v)2 = 0

Both bidders get utility 8 (exactly equal to the social welfare), and have no beneficial deviations. Note
however that the auction is not no-deficit, because it pays the losing bidder $8! Note however that the
mechanism is trivially individually rational – nobody can ever be required to make a positive payment...

We get truthfulness no matter how we pick the functions hi. The question is whether we can make
a clever choice of hi to achieve the no-deficit property, without breaking individual rationality! (Note it
would be easy to break individual rationality with a bad choice of hi...) This is what the VCG mechanism
does:

Definition 8 (The Vickrey-Clarke-Groves (VCG) Mechanism) The VCG mechanism is an in-
stantiation of the Groves mechanism with

hi(v−i) =
∑
j 6=i

vj(a
∗
−i)

where a∗−i = arg maxa∈A
∑

j 6=i vj(a) is the alternative that maximizes social welfare among all agents
other than agent i. In other words, the VCG mechanism has payment rule:

P (v)i =
∑
j 6=i

vj(a
∗
−i)−

∑
j 6=i

vj(a
∗)
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The idea behind VCG payments is that every agent i is charged the “negative externality” that he
imposes on the market – i.e. the difference between the welfare of everyone else when i is in the market,
compared to if he were not. We will show that the VCG mechanism satisfies all of our desiderata.

Theorem 9 The VCG mechanism is allocatively efficient and dominant strategy incentive compatible.

Proof It is an instantiation of the Groves mechanism.

Theorem 10 The VCG mechanism is individually rational.

Proof We need to show that Agent i’s utility satisfies:

ui(o) = vi(a
∗) +

∑
j 6=i

vi(a
∗)−

∑
j 6=i

vi(a
∗
−i) ≥ 0

Or equivalently: ∑
i

vi(a
∗) ≥

∑
j 6=i

vi(a
∗
−i)

But note that if this is not the case, since vi is non-negative, we would have:∑
i

vi(a
∗
−i) ≥

∑
j 6=i

vi(a
∗
−i) >

∑
i

vi(a
∗)

But this would contradict the allocative efficiency of a∗!

Finally, to complete the picture:

Theorem 11 The VCG mechanism is no-deficit.

Proof We will in fact show the stronger claim that for all i, P (v)i ≥ 0. Recall that:

P (v)i =
∑
j 6=i

vj(a
∗
−i)−

∑
j 6=i

vj(a
∗)

This is non-negative whenever: ∑
j 6=i

vj(a
∗
−i) ≥

∑
j 6=i

vj(a
∗)

But note that this is always the case, since a∗−i is explicitely defined to be the maximizer of
∑

j 6=i vj(a)
over all a ∈ A.

So the VCG mechanism satisfies all of our wildest dreams, in an extremely general setting! Perhaps
we can end the class here?

Not quite – we will see that the VCG mechanism still leaves a bit to be desired. It doesn’t maximize
other objectives (like e.g. revenue), and it isn’t always computationally efficient.
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