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Walrasian Equilibrium

In this lecture, we bring money into the picture, while still thinking about a “matching” like problem.
Suppose we have:

1. We have m goods G for sale

2. n buyers i who each have valuation functions over bundles, vi : 2G → [0, 1].

Buyers have quasi-linear utility functions, which means they can (linearly) trade off their value for goods
and their value for money. If each good j ∈ G has a price pj , then a buyer i gets the following utility
for buying a bundle S ⊆ G:

ui(S) = vi(S)−
∑
j∈S

pj

The question we want to ask in this class is how we should price and allocate goods so that everyone
is happy with their allocation. Is this even possible? If it is, can we do so and also achieve a high welfare
allocation? We will see that in some settings, the answer is surprisingly yes.

First we need to talk about feasible allocations:

Definition 1 An allocation S1, . . . , Sn ⊆ G is feasible if for all i 6= j, Si ∩ Sj = ∅ We write OPT to
denote the socially optimal feasible allocation:

OPT = max
S1,...,Sn feasible

∑
i

vi(S)

We now introduce a notion of pricing equilibrium, that corresponds to everyone being happy with
the chosen allocation.

Definition 2 A set of prices p together with an allocation S1, . . . , Sn form an (ε-approximate) Walrasian
equilibrium if:

1. S1, . . . , Sn is feasible, and

2. For all i, buyer i is receiving his (ε) most preferred bundle given the prices:

vi(Si)−
∑
j∈Si

pj ≥ max
S∗⊆G

vi(S∗)− ∑
j∈S∗

pj

− ε
and,

3. All unallocated items have zero price: for all j 6∈ S1 ∪ . . . ∪ Sn, pj = 0.

At Walrasian equilibrium, no buyer wants to buy a different bundle, and the seller does not want to
lower any of the prices – the only things that aren’t selling can’t sell (they already have price 0). We
might naturally have two questions about Walrasian equilibria: first, do they exist, in general? Second,
when they do exist, are they compatible with achieving welfare close to OPT?

We answer the second question first.

Theorem 3 If S1, . . . , Sn form an ε-Walrasian equilibrium allocation, then they achieve nearly optimal
welfare. In particular: ∑

i

vi(Si) ≥ OPT− εn
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Proof Let p be the corresponding Walrasian equilibrium prices, and let S′1, . . . , S
′
n be any other feasible

allocation. We know from the 2nd Walrasian equilibrium condition that for every player i, we have:

vi(Si)−
∑
j∈Si

pj ≥ vi(S′i)−
∑
j∈S′i

pj − ε

(Since in particular, vi(Si) is within ε of the value of player i’s most preferred bundle.) Since this is true
for every player i, we can sum over all n of these inequalities to get:

∑
i

vi(Si)−∑
j∈Si

pj

 ≥∑
i

vi(S′i)−∑
j∈S′i

pj

− εn
In particular, by simply re-ordering the sums, we have equivalently:∑

i

vi(Si)−
∑

j∈S1∪...∪Sn

pj ≥
∑
i

vi(S
′
i)−

∑
j∈S′1∪...∪S′n

pj − εn

Noting that for any j 6∈ S1 ∪ . . .∪ Sn, we must have pj = 0 (the third Walrasian equilibrium condition),
we can conclude that on the left hand side: ∑

j∈S1∪...∪Sn

pj =
∑
j

pj

and hence we can rewrite the inequality to conclude:∑
i

vi(Si) ≥
∑
i

vi(S
′
i) + (

∑
j

pj −
∑

j∈S′1∪...∪S′n

pj)− εn ≥
∑
i

vi(S
′
i)− εn

Finally, taking S′1, . . . , S
′
n to be the optimal allocation gives the theorem.

Ok – so Walrasian equilibria are great when we have them. Not only is everyone getting their most
preferred bundle, but the allocation is also always globally optimal! Of course, this is only interesting if
they ever exist. Do they?

Lets start by considering a simple case: when buyers have so-called unit-demand valuations, meaning
they want to buy a bundle of only 1 item. Formally, for each buyer i:

vi(S) = max
j∈S

vi({j})

We can think about such a valuation function as being determined by just m numbers, one for each
good:

vi,j ≡ vi({j}).
Note that finding the welfare maximizing allocation for unit demand bidders is just the problem of

finding the maximum weight matching in a bipartite graph between buyers and goods, where the edge
weight between buyer i and good j is vi,j .

We will show:

Theorem 4 For any set of unit demand buyers, a Walrasian equilibrium always exists.

Proof We will prove this theorem constructively, by considering a natural ascending price auction
that works much like the deferred acceptance algorithm. Initially, every bidder will be unmatched, and
all goods will have price 0. Then, in turns, unmatched bidders will bid on their most preferred item at
the current prices. Their bid will make them the new high bidder on the good they bid on, and we will
increment its price. At all times, we will consider the bidder i tentatively matched to good j to be the
current high bidder on good j, and we will halt when all bidders are matched.

Lets analyze the ascending price auction. First, does it even ever halt and output anything? (It
does)
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Algorithm 1 The Ascending Price Auction with increment ε.

For all j ∈ G, set pj = 0, µ(j) = ∅.
while There exist any unmatched bidders do

for Each unmatched bidder i do
i “bids” on j∗ = arg maxj(vi,j − pj) if vi,j∗ − pj∗ > 0. Otherwise, bidder i drops out. (and is
“matched” to nothing):
µ(j∗) is now unmatched. Set µ(j∗)← i
pj∗ ← pj∗ + ε

end for
end while
Output (p, µ).

Lemma 5 The ascending price auction halts after at most n
ε bids.

Proof We first claim that at any point during the algorithm, we must have:∑
j

pj ≤ n

This is because once a good becomes matched, it stays matched for the rest of the algorithm (even
though bidders might become unmatched). Hence, all unmatched goods must have price pj = 0. We
also have that for any fixed good j, pj ≤ 1. This is because no bidder ever bids on any good j such that
vi,j − pj ≤ 0, and by assumption vi,j ≤ 1 for all i, j. Finally, since there are at most n agents, at most
n goods are ever matched, and so at most n goods can have positive price.

To complete the proof, simply note that each bid increases
∑
j pj by ε. Since

∑
j pj begins at 0 and

never exceeds n, there can be no more than n
ε bids.

So we know the algorithm halts and outputs some pricing and matching.

Lemma 6 The output (p, µ) of the ascending price auction is an ε-approximate Walrasian equilibrium.

Proof We verify the equilibrium conditions. First, observe that by construction, the auction only
returns feasible allocations.

Next observe that if good j is unallocated, it must never have received a bid in the auction (once a
good is allocated, it stays allocated), and hence pj = 0.

Finally, note that vi,µ(i) − pµ(i) ≥ maxj(vi,j − pj)− ε. To see this, note that by construction, at the
time bidder i was matched to good µ(i), we must have had:

µ(i) ∈ arg max
j

(vi,j − pj)

Since that time, pj increased by only ε, and other prices have only increased (not decreased). That
completes the proof.

Hence, equilibrium prices always exist in matching markets.

What about for more general valuation functions? We will see on the homework that Walrasian
equilibrium need not exist for all valuation functions.

Lets think about what we need in order to generalize the ascending price auction and the proof that
it constructs a Walrasian equilibrium. We can certainly generalize the auction to work for more general
valuation functions. Rather than having each bidder i bid on their most preferred item, we have them
bid on their most preferred bundle. We say a bidder is unsatisfied if she is not currently matched to her
ε-most preferred bundle:

For each unsatisfied bidder i:
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1. i bids on every item she is not the high bidder on in a set S∗ ∈ arg maxS⊆G(vi(S)−
∑
j∈S pj)

2. For all j ∈ S∗, µ(j)← i, pj ← pj + ε/m.

Certainly now, after a bidder gets to bid, she is matched to her ε-most preferred bundle, and she remains
so if she is not out-bid on any of her items (since other prices only rise). However, for our analysis, we
also needed the fact that once a good became matched, it stayed matched (so that we could argue that
unmatched goods have price 0). Hence, we do not want that when a bidder i bids, she abandons any
of the goods she is currently matched to. That is, we always want bidder i’s most preferred bundle to
include as a subset all of the goods she is currently matched to. If this is so, our proof that the ascending
price auction always terminates at a Walrasian equilibrium will go through.

Lets formalize this condition.
For price vectors p, p′, write p � p′ to mean that pj ≤ p′j for all j. Let wi(p) = arg maxS⊆G(vi(S)−∑
j∈S pj) be player i’s demand set at prices p.

Definition 7 Valuation function vi satisfies the gross substitutes property if for every p � p′ and for
every S ∈ wi(p), if S′ = {j ∈ S : pj = p′j}, then there exits S∗ ∈ wi(p′) such that S′ ⊆ S∗.

In other words, “Raising the prices on goods j 6= i doesn’t decrease a bidder’s demand for good j”.

Operationally, Gross substitutes valuations satisfy the condition we want. Any good for which bidder i
has not been out-bid on has not had its price raised, and so must still be part of a bundle in bidder i’s
demand set.

Hence, we have:

Theorem 8 In any market in which all buyers satisfy the gross substitutes condition, Walrasian equi-
libria exist.

In fact, it is known that this is the largest set of valuation functions for which Walrasian equilibria are
guaranteed to exist. For any valuation function vi that does not satisfy the gross substitutes conditions,
there exist a set of valuation functions v−i for the other players, each satisfying gross substitutes, for
which there are no Walrasian equilibrium prices!
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