
NETS 412: Algorithmic Game Theory ♥ February 14, 2017 ♥

Lecture 9
Lecturer: Aaron Roth Scribe: Aaron Roth

Achieving No Swap Regret

Recall that we argued last lecture that in any game, if every player plays according to the polynomial
weights algorithm, then their empirical play history will converge to a coarse correlated equilibrium very
quickly. In this lecture, we will give a new learning algorithm such that if every player plays according
to it (in any game!) their empirical play history will converge to a correlated equilibrium.

To do this, we will again revisit the experts setting in which we derived the polynomial weights
algorithm, but this time ask for an even stronger guarantee.

Recall our regret-based characterization of correlated equilibria:

Definition 1 A distribution D over action profiles is an ε-approximate correlated equilibrium if for every
player i, and for every strategy modification rule Fi : Ai → Ai:

Ea∼D[Regreti(a, Fi)] ≤ ε.

Recall that Regreti(a, Fi) = ui(Fi(ai), a−i)− ui(a).

Just as before, we will think about how to arrive at such distributions D by instead thinking about
regret on a sequence of play profiles a1, . . . , aT . The new notion of regret we will define is called swap-
regret. To disambiguate this with the notion of regret on play sequences we discussed previously, we will
now call the previous notion external regret.

Definition 2 A sequence of action profiles a1, . . . , aT has swap-regret ∆(T) if for every player i, and
every strategy modification rule Fi : Ai → Ai we have:

1

T

T∑
t=1

ui(a
t) ≥ 1

T

T∑
t=1

ui(Fi(ai), a−i)−∆(T)

If ∆(T) = oT (1), we say that the sequence of action profiles has no swap regret.

Unlike external regret, which merely guarantees that every player is achieving average utility as high as
they would have had they played their best fixed action in hindsight, a sequence of action profiles with
no swap regret guarantees that no player could do substantially better in hindsight even if they were
allowed to swap every action of a particular type with an arbitrary different action, separately for each
of their actions.

The reason we will be interested in regret on sequences of actions is because of the following simple
consequence: if a sequence of action profiles has low swap regret, then the distribution D that selects
uniformly at random amongst those profiles will be an approximate correlated equilibrium.

Theorem 3 If a sequence of action profiles a1, . . . , aT has ∆(T) swap- regret, then the distribution

D = 1
T

∑T
t=1 a

t (i.e. the distribution that picks among the action profiles a1, . . . , aT uniformly at random)
is a ∆(T)-approximate correlated equilibrium.

Proof This follows immediately from the definitions. For any player i:

Eat∼D[Regreti(a
t, Fi)] =

1

T

T∑
t=1

(
ui(Fi(a

t
i), a

t
−i)− ui(at)

)
≤ ∆(T)

9-1

Hence, we can approach the problem of finding correlated equilibria by reasoning about sequences of
action profiles with small swap-regret. To do this, we revisit the problem of selecting amongst a set of
experts. Recall the setting:

In rounds t = 1, . . . , T :

1. The algorithm picks an expert at ∈ {1, . . . , k} from among the set of k experts.

2. Each expert i experiences loss `ti, and the algorithm experiences loss `tat
.

Write LT
Alg =

∑T
t=1 `

t
at

for the cumulative loss of the algorithm after T rounds. We want to find an
algorithm that can guarantee, for arbitrary sequences of losses:

1

T
LT
Alg ≤

1

T

T∑
t=1

`tFi(at)
+ ∆(T)

for all Fi : [k]→ [k] and for ∆(T) = o(1).
Note that this is a strictly stronger guarantee than the polynomial weights algorithm provides: we

recover the guarantee of the polynomial weights algorithm by instantiating the above bound only with
constant strategy modification rules Fi.

Lets think about how to do this. For a fixed sequence of decisions by our algorithm, define:

Sj = {t : at = j}

to be the set of time steps that the algorithm chose expert j.
One guiding observation will be the following: To achieve the desired bound, it would be sufficient

that for every j:
1

|Sj |
∑
t∈Sj

`tat
≤ 1

|Sj |
min
i

∑
t∈Sj

`ti + ∆(T)

In other words, we can achieve no swap regret if we can achieve no external regret separately on each
sequence of actions Sj . This is because the best strategy modification rule in hindsight simply swaps
each action j for the best fixed action in hindsight over Sj .

Following this idea, we will give an algorithm for achieving no swap regret that will run k separate
copies of the polynomial weights algorithm, one for each action j.

The algorithm will work as follows:

1. Initialize k copies of the PW algorithm one for each action j ∈ [k].

2. At each time t, denote by q(1)t, . . . , q(k)t the distribution maintained by each copy of the PW
algorithm over the experts. We will combine these into a single distribution over experts pt ≡
(pt1, . . . , p

t
k)

3. The losses `t1, . . . , `
t
k for the experts arrive. To each copy i of the PW algorithm, we report losses

pti`
t
1, . . . , p

t
i`

t
k for each of the k experts. (i.e. to copy i, we report the true losses scaled by pti).

The above algorithm is fully specified, except for how we combine the k PW distributions q(1)t, . . . , q(k)t

into a single distribution over experts pt. We do so as follows. For each expert j, define:

ptj =

k∑
i=1

pti · q(i)tj

The above set of equations have a unique solution (note that there are k linear equations in k unknowns).
Given the definition, we have two equivalent ways of viewing how experts are picked at each round

t. Either:

9-2

1. Each expert i is chosen with probability pti or

2. With probability pti we select the i’th copy of the polynomial weights algorithm, and then select
expert j according to the probability distribution q(i)t.

From the perspective of the i’th copy of polynomial weights, its expected loss at round t is:

k∑
j=1

q(i)tj · (pti`tj) = pti

k∑
j=1

q(i)tj`
t
j

Therefore, by the guarantee of the polynomial weights algorithm, we have for all experts j∗:

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj`
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti`
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

Summing the left hand side of the above over all k copies of the PW algorithm, we get:

LHS =
1

T

T∑
t=1

k∑
i=1

pti

k∑
j=1

q(i)tj`
t
j =

1

T

T∑
t=1

k∑
j=1

ptj`
t
j =

1

T
LALG

i.e. the LHS is just the expected average loss of our algorithm! (Recall our two ways of viewing pj ...).
Recall that we can instantiate the RHS of the above inequality for any j∗ we choose, and we can

make a separate choice for each i. Fixing an arbitrary strategy modification rule F : [k] → [k], let us
make the following choice: for each i, we choose j∗ = F (i). Then, summing up over all i on the right,
we get:

RHS =
1

T

T∑
t=1

k∑
i=1

pti`
t
F (i) + 2k

√
log k

T

Combining the two sides, we get:

1

T
LALG ≤

1

T

T∑
t=1

k∑
i=1

pti`
t
F (i) + 2k

√
log k

T

In other words, we have proven the following theorem:

Theorem 4 There is an experts algorithm that, against an arbitrary sequence of losses, after T rounds
achieves ∆(T)-swap regret for:

∆(T) = 2k

√
log k

T

A couple of things to note:
First, ∆(T) = o(1), and so this is a no-swap-regret algorithm, and hence if every player plays

according to it in an arbitrary game, play converges to the set of correlated equilibria. Note that just
like the polynomial weights algorithm, players need not know anything about the game to play it - they
only need to be able to compute their utilities for the action profiles actually played, for each of their
own actions.

Second, convergence is fast. Setting ∆(T) ≤ ε, we see that we reach ε-swap regret (and hence
ε-approximate correlated equilibrium) after T steps for:

T =
4k2 ln(k)

ε2

9-3

This is larger than the time we needed to achieve no external regret by a factor of k2, but still
polynomial in the number of actions. Hence, not only do correlated equilibria exist in all games, they
are always easy to find.

9-4

