
NETS 412: Algorithmic Game Theory January 26 and 31, 2016

Lecture 4 and 5
Lecturer: Aaron Roth Scribe: Aaron Roth

The Polynomial Weights Algorithm

In the last several lectures, we have seen several games in which best response dynamics inevitably
converges to a Nash equilibrium; however, there are also plenty of games (we saw an example in class)
for which best response dynamics does not converge, even if they have pure strategy Nash equilibria. In
such games, what should players do? What should we expect to happen?

In this lecture, we will give a natural learning algorithm that players can use to play a game. To
introduce it, we abstract away the game, and the other players, and start by asking how a player should
make predictions in a sequential setting. As a simple example to keep in mind, consider the following
toy model of predicting the stock market: every day the market goes up or down, and you must predict
what it will do before it happens (so that you can either buy or short shares). You don’t have any
information about what the market will do, and it may behave arbitrarily, so you can’t hope to do well
in an absolute sense. However, every day, before you make your prediction, you get to hear the advice
of a bunch of experts, who make their own predictions. These “experts” may or may not know what
they are talking about, and you start off knowing nothing about them. Nevertheless, you want to come
up with a rule to aggregate their advice so that you end up doing (almost) as well as the best expert
(whomever he might turn out to be) in hindsight. Sounds tough.

Lets start with an even easier case:

• There are N experts who will make predictions in T rounds.

• At each round t, each expert i makes a prediction pti ∈ {U,D} (up or down).

• We (the algorithm) aggregate these predictions somehow, to make our own prediction ptA ∈ {U,D}.
Then we learn the true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e. ptA 6= ot), then we
made a mistake.

• To make things easy, we will assume at first that there is one perfect expert who never makes a
mistake (but we don’t know who he is).

Can we find a strategy that is guaranteed to make at most log(N) mistakes?
We can, using the simple halving algorithm!

Algorithm 1 The Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do

Let St
U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St

D = St \ St
U be the set

who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Its not hard to see that the halving algorithm makes at most logN mistakes under the assumption
that one expert is perfect:

Theorem 1 If there is at least one perfect expert, the halving algorithm makes at most logN mistakes.

Proof Since the algorithm predicts with the majority vote, every time it makes a mistake at some
round t, at least half of the remaining experts have made a mistake and are eliminated, and hence

4 and 5-1

|St+1| ≤ |St|/2. On the other hand, the perfect expert is never eliminated, and hence |St| ≥ 1 for all t.
Since |S1| = N , this means there can be at most logN mistakes.

Not bad – logN is pretty small even if N is large (e.g. if N = 1024, logN = 10, if N = 1, 048, 576,
logN = 20), and doesn’t grow with T , so even with a huge number of experts, the average number of
mistakes made by this algorithm is tiny.

What if no expert is perfect? Suppose the best expert makes OPT mistakes. Can we find a way to
make not too many more than OPT mistakes?

The first approach you might try is the iterated halving algorithm:

Algorithm 2 The Iterated Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do
If |St| = 0 Reset: Set St ← {1, . . . , N}.
Let St

U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St
D = St \ St

U be the set
who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Theorem 2 The iterated halving algorithm makes at most log(N)(OPT + 1) mistakes.

Proof As before, whenever the algorithm makes a mistake, we eliminate half of the experts, and so
the algorithm can make at most logN mistakes between any two resets. But if we reset, it is because
since the last reset, every expert has made a mistake: in particular, between any two resets, the best
expert has made at least 1 mistake. This gives the claimed bound.

We should be able to do better though. The above algorithm is wasteful in that every time we reset,
we forget what we have learned! The weighted majority algorithm can be viewed as a softer version of
the halving algorithm: rather than eliminating experts who make mistakes, we just down-weight them:

Algorithm 3 The Weighted Majority Algorithm

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t

U =
∑

i:pt
i=U wi be the weight of experts who predict up, and W t

D =
∑

i:pt
i=D wi be the weight

of those who predict down.
Predict with the weighted majority vote: If W t

U > W t
D, predict ptA = U , else predict ptA = D.

Down-weight experts who made mistakes: For all i such that pti 6= ot, set wt+1
i ← wt

i/2
end for

Theorem 3 The weighted majority algorithm makes at most 2.4 (OPT + log(N)) mistakes.

Note that log(N) is a fixed constant, so the ratio of mistakes the algorithm makes compared to OPT is
just 2.4 in the limit – not great, but not bad.
Proof Let M be the total number of mistakes that the algorithm makes, and let W t =

∑
i w

t
i be the

total weight at step t. Note that on any round t in which the algorithm makes a mistake, at least half of
the total weight (corresponding to experts who made mistakes) is cut in half, and so W t+1 ≤ (3/4)W t.
Hence, we know that if the algorithm makes M mistakes, we have WT ≤ N · (3/4)M . Let i∗ be the best

4 and 5-2

expert. We also know that wT
i = (1/2)OPT, and so in particular, WT > (1/2)OPT. Combining these two

observations we know: (
1

2

)OPT

≤W ≤ N
(

3

4

)M

(
4

3

)M

≤ N · 2OPT

M ≤ 2.4(OPT + log(N))

as claimed.

We’ve been doing well; lets get greedy. What do we want in an algorithm? We might want:

1. It to make only 1 times as many mistakes as the best expert in the limit, rather than 2.4 times...

2. It to be able to handle N distinct actions (a separate action for each expert), not just two (up and
down)...

3. It to be able to handle experts having arbitrary costs in [0, 1] at each round, not just binary costs
(right vs. wrong)

Formally, we want an algorithm that works in the following framework:

1. In rounds 1, . . . , T , the algorithm chooses some expert it.

2. Each expert i experiences a loss `ti ∈ [0, 1]. The algorithm experiences the loss of the expert it
chooses: `tA = `tit .

3. The total loss of expert i is LT
i =

∑T
t=1 `

t
i, and the total loss of the algorithm is LT

A =
∑T

t=1 `
t
A.

The goal of the algorithm is to obtain loss not much worse than that of the best expert: mini L
T
i .

The polynomial weights algorithm can be viewed as a further smoothed version of the weighted
majority algorithm, and has a parameter ε which controls how quickly it down-weights experts. Notably,
it is randomized : rather than making deterministic decisions, it randomly chooses an expert to follow
with probability proportional to their weight.

Algorithm 4 The Polynomial Weights Algorithm (PW)

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t =

∑N
i=1 w

t
i .

Choose expert i with probability wt
i/W

t.
For each i, set wt+1

i ← wt
i · (1− ε`ti).

end for

Theorem 4 For any sequence of losses, and any expert k:

1

T
E[LT

PW] ≤ 1

T
LT
k + ε+

ln(N)

ε · T

In particular, setting ε =
√

ln(N)
T we get:

1

T
E[LT

PW] ≤ 1

T
min
k
LT
k + 2

√
ln(N)

T

4 and 5-3

In other words, the average loss of the algorithm quickly approaches the average loss of the best expert
exactly, at a rate of 1/

√
T . Note that this works against an arbitrary sequence of losses, which might

be chosen adaptively by an adversary. This is pretty incredible. In particular, it means we can use the
polynomial weights algorithm to play a game! We simply let each of the “experts” correspond to an
action in the game, and let the losses of the experts correspond to our costs in the game, given what
the other players did. The guarantee is that no matter what they do (even if they are trying explicitly
to cause us high loss), we are guaranteed to obtain payoff nearly as high as that of the best action in
hindsight! In fact, to obtain this guarantee, we don’t even need to know the payoff structure of the game
we are playing – to run the algorithm, all we need are the realized costs of each action, given what our
opponents ended up doing.

Ok, on to the proof:
Proof Let F t denote the expected loss of the polynomial weights algorithm at time t. By linearity of
expectation, we have E[LT

PW] =
∑T

t=1 F
t. We also know that:

F t =

∑N
i=1 w

t
i`

t
i

W t

How does W t change between rounds? We know that W 1 = N , and looking at the algorithm we see:

W t+1 = W t −
N∑
i=1

εwt
i`

t
i = W t(1− εF t)

So by induction, we can write:

WT+1 = N

T∏
t=1

(1− εF t)

Taking the log, and using the fact that ln(1− x) ≤ −x, we can write:

ln(W t+1) = ln(N) +

T∑
t=1

ln(1− εF t)

≤ ln(N)− ε
T∑

t=1

F t

= ln(N)− εE[LT
PW]

Similarly (using the fact that ln(1− x) ≥ −x− x2 for 0 < x < 1
2), we know that for every expert k:

ln(WT+1) ≥ ln(wT+1
k)

=

T∑
t=1

ln(1− ε`tk)

≥ −
T∑

t=1

ε`tk −
T∑

t=1

(ε`tk)2

≥ −εLT
k − ε2T

Combining these two bounds, we get:

ln(N)− εLT
PW ≥ −εLT

k − ε2T

for all k. Dividing by ε and rearranging, we get:

LT
PW ≤ min

k
LT
k + εT +

ln(N)

ε

4 and 5-4

