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Iterative Database Construction

We’ve seen ”The Net Mechanism”, which shows that by using correlated noise, we can answer queries
with much lower noise rates than we can by using the Laplace mechanism alone. The net mechanism
was mostly an information theoretic upper bound, however. In this lecture, we’ll start introducing the
machinery to rederive the same bounds in a more algorithmic way.

This will have several benefits:

1. It will lead to more efficient algorithms, and the possibility of deriving very efficient algorithms.

2. By deriving the bounds using multi-stage algorithms, we can apply composition theorems and get
improved accuracy for (ε, δ)-differential privacy.

3. We will be able to adapt these algorithms to work in the interactive setting.

The algorithms we present will be based on an abstraction called a “database update algorithm”.
Roughly, such an algorithm works by maintaining a sequence of data structures D1, D2, . . . that

give increasingly good approximations to the input database D (in a sense that depends on the DUA).
Moreover, these mechanisms produce the next data structure in the sequence by considering only one
query Q that distinguishes the real database in the sense that Q(Dt) differs significantly from Q(D).

Syntactically, we will consider functions of the form U : N|X | × C ×R → D, where D represents a
class of datastructures on which queries in C can be evaluated. The inputs to U are a data structure in
D, which represents the current data structure Dt; a query Q, which represents the distinguishing query,
and may be restricted to a certain set C; and also a real number. which estimates Q(D). Formally, we
define a database update sequence, to capture the sequence of inputs to U used to generate the database
sequence D1, D2, . . ..

Definition 1 (Database Update Sequence) Let D ∈ N|X | be any database and let
{(Dt, Qt, vt)}t=1,...,L ∈ (D×C ×R)L be a sequence of tuples. We say the sequence is an (U,D, C, α, L)-
database update sequence if it satisfies the following properties:

1. D1 = U(∅, ·, ·),

2. for every t = 1, 2, . . . , L, |Qt(D)−Qt(Dt)| ≥ α,

3. for every t = 1, 2, . . . , L, |Qt(D)− vt| < α,

4. and for every t = 1, 2, . . . , L− 1, Dt+1 = U(Dt, Qt, vt).

We note that for all of the DUAS we consider, the approximate answer vt is used only to determine the
sign of Qt(D) − Qt(Dt), which is the motivation for requiring that vt have error smaller than α. The
main measure of efficiency we’re interested in from a DUA is the maximum number of updates we need
to perform before the database Dt approximates D well with respect to the queries in C. To this end
we define a Database Update Algorithm as follows:

Definition 2 (Database Update Algorithm (DUA)) Let U : D × C ×R → D be an update rule
and let B : R → R be a function. We say U is a B(α)-DUA for query class C if for every database
D ∈ N|X |, every (U,D, C, α, L)-database update sequence satisfies L ≤ B(α).
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Note that the definition of an B(α)-DUA implies that if U is a B(α)-DUA, then given any maximal
(U,D, C, α, L)-database update sequence, the final database DL must satisfy maxQ∈C

∣∣Q(D)−Q(DL)
∣∣ ≤

α or else there would exist another query satisfying property 2 of Definition 1, and thus there would
exist a (U,D, C, α, L+ 1)-database update sequence, contradicting maximality.

A Database Update Algorithm will be useful together with a corresponding distinguisher, for finding
queries Q to use in the next step of the database update sequence.

Definition 3 ((F (ε), γ)-Private Distinguisher) Let C be a set of queries, let γ ≥ 0 and let F (ε) : R→
R be a function. An algorithm Distinguishε : N|X |×D → C is an (F (ε), γ)-Private Distinguisher for C if
for every setting of the privacy parameter ε, it is ε-differentially private with respect to D and if for every
D ∈ N|X |, D′ ∈ D it outputs a Q∗ ∈ C such that |Q∗(D) − Q∗(D′)| ≥ maxQ∈C |Q(D) − Q(D′)| − F (ε)
with probability at least 1− γ.

For those paying attention, a distinguisher is just an agnostic learning algorithm for C.

Algorithm 1 The Iterative Construction (IC) Mechanism. It takes as input a parameter ε0, an
(F (ε0), γ)-Private Distinguisher Distinguish for C, together with an B(α)-iterative database construction
algorithm U for C.
IC(D,α, ε0,Distinguish, U):

Let D0 = U(∅, ·, ·).
for t = 1 to B(α/2) do

Let Q(t) = Distinguish(D,Dt−1)

Let v̂(t) = Q(t)(D) + Lap
(

1
ε0n

)
.

if |v̂(t) −Q(t)(Dt−1)| < 3α/4 then
Output D′ = Dt−1.

else
Let Dt = U(Dt−1, Q(t), v̂(t)).

end if
end for
Output D′ = DB(α/2).

The analysis of this algorithm just involves checking the technical details of a simple intuition. Privacy
will follow because the algorithm is just the composition of 2B(α) steps, each of which is ε0-differentially
private. Accuracy follows because we are always outputting the last database in a maximal database
update sequence. If the algorithm has not yet formed a maximal DUS, then the distinguishing algorithm
will find a distinguishing query to add another step to the sequence.

Theorem 4 The IC algorithm is ε-differentially private for ε0 ≤ ε/2B(α/2). The IC algorithm is
(ε, δ)-differentially private for ε0 ≤ ε

4
√
B(α/2) log(1/δ)

.

Proof The algorithm runs at most 2B(α/2) compositions of ε0-differentially private algorithms. Recall
that ε0 differentially private algorithms are 2kε0 differentially private under 2k-fold composition, and
are (ε′, δ) private for ε′ =

√
4k ln(1/δ′)ε0 + 2kε0(eε0 − 1). Plugging in the stated values for ε0 proves the

claim.

Now we analyze the utility of the IC mechanism:

Theorem 5 Given an (F (ε), γ)-private distinguisher and a B(α)-DUA, the Iterative Construction mech-
anism is (α, β) accurate for:

α ≥ max

[
4 log(2B(α/2)/β)

ε0n
, 2F (ε0)

]
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so long as γ ≤ β/(2B(α/2)).

Proof The analysis is straightforward.
Recall that if Yi ∼ Lap(1/(εn)), we have: Pr[|Yi| ≥ t/(εn)] = exp(−t). By a union bound, if

Y1, . . . , Yk ∼ Lap(1/(εn)), Pr[maxi |Yi| ≥ t/(εn)] ≤ k exp(−t). Therefore, because we make at most
B(α/2) draws from Lap(1/(ε0n)), except with probability at most β/2, for all t:

|v̂(t) −Q(t)(D)| ≤ 1

ε0n
log

2B(α/2)

β
≤ α

4

Note that by assumption, γ ≤ β/(2B(α/2)), so we also have that except with probability β/2:

|Q(t)(D)−Q(t)(Dt−1)| ≥ max
Q∈C
|Q(D)−Q(Dt−1)| − F (ε0) ≥ max

Q∈C
|Q(D)−Q(Dt−1)| − α

2

For the rest of the argument, we will condition on both of these events occurring, which is the case
except with probability β.

There are two cases. Either a database D′ = DB(α/2) is output, or database D′ = Dt−1 for t ≤
B(α/2) is output. First, suppose D′ = DB(α/2). Since for all t it must have been such that |v̂(t) −
Q(t)(Dt−1)| ≥ 3α/4 and by our conditioning, |v̂(t) − Q(t)(D)| ≤ α

4 , we know for all t: |Q(t)(D) −
Q(t)(Dt−1)| ≥ α/2. Therefore, the sequence (Dt, Q(t), v̂(t)), formed a maximal (U,D, C, α/2, B(α/2))-
Database Update Sequence. Therefore, we have that maxQ∈C |Q(D)−Q(D′)| ≤ α/2 as desired.

Next, suppose D′ = Dt−1 for t < B(α/2). Then it must have been the case that for t, |v̂(t) −
Q(t)(Dt−1)| < 3α/4. By our conditioning, in this case it must be that |Q(t)(D) − Q(t)(Dt−1)| < α/2,
and that therefore by the properties of an (F (ε0), γ)-distinguisher:

max
Q∈C
|Q(D)−Q(D′)| < α/2 + F (ε0) ≤ α

as desired.

Note that we can use the exponential mechanism as a distinguisher: take the domain to be C, and let
the quality score be: q(D,Q) = |Q(D) − Q(Dt)|, which has sensitivity 1/n. Applying the exponential
mechanism utility theorem, we get:

Theorem 6 The exponential mechanism is an (F (ε), γ) distinguisher for:

F (ε) =
2

nε

(
log
C
γ

)
Therefore, using the exponential mechanism as a distinguisher, Theorem 5 gives:

Theorem 7 Given a B(α)-DUA, the Iterative Construction mechanism is (α, β) accurate for:

α ≥ max

[
4 log(2B(α/2)/β)

ε0n
,

4

nε0

(
log
C
γ

)]
so long as γ ≤ β/(2B(α/2)).

Plugging in our values of ε0:

Theorem 8 Given a B(α)-DUA, the Iterative Construction mechanism is (α, β) accurate and ε-differentially
private for:

α ≥ 8B(α/2)

nε

(
log
C
γ

)
and (ε, δ)-differentially private for:

α ≥
16
√
B(α/2) log(1/δ)

nε

(
log
C
γ

)
so long as γ ≤ β/(2B(α/2)).
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We will see next time that database update algorithms actually exist, and recover the net-mechanism
bounds, and even improve them for the case of (ε, δ)-differential privacy.

Bibliographic Information The abstraction of a ”Database Update Algorithm” was given by Gupta,
Roth, and Ullman in ”Iterative Database Constructions and Private Data Release”, 2011. Algorithms
based on this framework were given initially in the interactive setting by Roth and Roughgarden in
”Interactive Privacy Via the Median Mechanism”, 2010, and then Hardt and Rothblum, ”A Multiplica-
tive Weights Mechanism for Privacy Preserving Data Analysis”, 2010. The non-interactive mechanism
paired with an agnostic learner was given by Gupta, Hardt, Roth, and Ullman in ”Privately Releasing
Conjunctions and the Statistical Query Barrier”, 2011.
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