Privacy of Numeric Queries Via
Simple Value Perturbation



Differential Privacy
A Basic Model

* Let X represent an abstract data universe and
D be a multi-set of elements from X.

— i.e. D can contain multiple copies of an element
X € X.

* Convenient to represent D as a histogram:
D € NIXI
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Differential Privacy
A Basic Model

* i.e for a database of heights
- D = {5'2,6'1,5'8,5'8,6'0} c [4 — 8]
-D =(...,1,0,0,0,0,0,2,0,0,0,1,1,0, ...) € R*8
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Differential Privacy
A Basic Model

* The size of a database n:

—Asaset:n = |D|.

— As a histogram: n = HDH1 = Zg'l |ID]i]|
Definition: £; (Manhattan) Distance.
For ¥ € R¢,

|9|‘1 = Nit 9]



Differential Privacy
A Basic Model

e The distance between two databases:
— As a set: |DAD'].

— As a histogram: |[|D — D’”1



Differential Privacy
A Basic Model

* i.e for a database of heights
- D = {5'2,6'1,5'8,5'8,6'0} c [4 — 8]
-D =(...,1,0,0,0,0,0,2,0,0,0,1,1,0, ...) € R*S
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-D'=(...,2,1,0,0,0,0,1,0,0,0,1,1,0, ...) € R*8

DI|, =11+ 12l + 1] +[1] =5
D'||, = 12l + 11+ 1] + 1]+ 1] = 6
D-D'l|, = -1+ |-1] + 1] = 3




Basic Lower Bound:
Blatant Non-Privacy

* How much noise is hecessary to guarantee
privacy?

* Asimple model.
— For simplicity, D € {0,1}/X! (i.e. no repeated elts)
— A query is a bit vector Q € {0,1}/¥]
—Q(D) =(Q,D) = 2;.o7=1 DIi]

* A “subset sum query”

* For § C |n] write Qs for the vector:
: 1, i €S



Basic Lower Bound:
Blatant Non-Privacy

Definition: A mechanism M:{0,1}" - R is
blatantly non-private if on any database D, an
adversary can use y = M (D) to reconstruct
D' = A(y) that agrees with D on all but o(n)
entries:

1D — D’Hl € o(n)



Basic Lower Bound:
Blatant Non-Privacy

Answering all subset-sum queries requires linear
noise.

Definition: A mechanism M: {0,1}/X! - R adds
noise bounded by « if for every D € {0,1}%] and
for every query S € [n]: M(D) = y such that

|Qs(D) — Qs(Y)| < «



Basic Lower Bound:
Blatant Non-Privacy

Theorem: Let M be a mechanism that adds
noise bounded by «a. Then there exists an
adversary that given M (D) can construct a

database D’ such that ‘ D —D'| , S 4o

— So adding noise o(n) leads to blatant non-privacy

®




Basic Lower Bound:
Blatant Non-Privacy

Proof: Consider the following adversary.

Claim 1: The algorithm always outputs
some D'

Yes: D' = D passes all tests. ’
o “D,p_ oil <4 « If1Qs(D") — Qs(r)| < a for
aim 2. o = *¢ all S C X then:

let SO ={x€X:x €D’ ,x €D}  OQutput D’
letS1={x€X:x€D,x&D'}
Observe ||D’ — D||1 = |SO| + |S1|
So: If ||D’ — D||1 > 4a then max(|S0|,|S1]|) > 2a. WLOG assume |SO| > 2a.
We know Qo (D) = 0, so by accuracy: Qgo(1) < a.
But Qgo(D') > 2a, so it must be: [Qso(D’) — Q5o (r)| > [2a — ]| =
So it would have failed one of the tests...

* Letr =M(D)
* Foreach D' € {0,1}/X!




Basic Lower Bound:
Blatant Non-Privacy

* Bad news!
— Accuracy n/2 is trivial.
— Accuracy n/40 already lets an adversary
reconstruct 9/10ths of the database entries!
e But that attack required answering all possible
gueries...

— Guiding lower bound: Going forward, we will only
try to be accurate for restricted classes of queries.



Differential Privacy
A Basic Model

Definition: A randomized algorithm with domain
NIXl and range R

M:NXl - R
is (€, 0)-differentially private if:

1) For all pairs of databases D, D' € N!X| such
that HD — D’I‘1 < 1 and;
2) For all events S € R:

Pr[M(D) € S] < e Pr[M(D’") € S] + 6.




Resilience to Post Processing

Proposition: Let M: NIXI - R be (¢, §)-
differentially private and let f: R = R’ be an
arbitrary function. Then:

foM:NXl - R’
is (€, 0)-differentially private.




Resilience to Post Processing

Proof:
1) Consider any pair of databases D, D’ € NI¥! with ||D — D’||1 < 1.
2) Consider any event S € R'.
3)LetT € R bedefinedasT ={r eR: f(r) € S}.
Now:
Pr[f(M(D)) € S| = Pr[M(D) € T]
<e‘PrIM(D") €eT]+6
= e¢Pr|f(M(D)) € S|+ 6
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Resilience to Post Processing

Take away message:

1) f asthe adversaries analysis: can incorporate arbitrary auxiliary
information the adversary may have. Privacy guarantee holds no matter
what he does.

2) [ asour algorithm: If we access the database in a differentially private
way, we don’t have to worry about how our algorithm post-processes the
result. We only have to worry about the data access steps.



Answering Numeric Queries

* Suppose we have some numeric question

about the private database that we want to
know the answer to:

Q: NXI - RF, Q(D) =7

* How do we do it privately?
— How much noise do we have to add?
— What are the relevant properties of Q7



Answering Numeric Queries

Definition: The £;-sensitivity of a query
Q: NI¥l - RK js:
6S(@ = max [lQ(D)- QM|

D,D":||D-D'|| =1

i.e. how much can 1 person affect the value of the query?
“How many people in this room have brown eyes”: Sensitivity 1

“How many have brown eyes, how many have blue eyes, how many have
green eyes, and how many have red eyes”: Sensitivity 1

“How many have brown eyes and how many are taller than 6°”: Sensitivity 2



Answering Numeric Queries

The Laplace Distribution:
Lap(b) is the probability distribution with p.d.f.:

1 | x|
p(x |b) = o3, €XP (—7>

i.e. a symmetric exponential distribution
Y ~Lap(b), E[lY|]]=0b |
Pr[|Y|=>¢t-b] =€t /-




Answering Numeric Queries:
The Laplace Mechanism

Laplace(D, Q: NXI - Rk ¢):
1. LetA = GS(Q).

2. Fori=1tok:letY; ~ Lap(%).
3. OutputQ(D) + (Yq, ..., Y%)

Independently perturb each coordinate of the output with Laplace noise
scaled to the sensitivity of the function.

Idea: This should be enough noise to hide the contribution of any single
individual, no matter what the database was.



Answering Numeric Queries:
The Laplace Mechanism

Laplace(D, Q: NXI - Rk ¢):
1. LetA = GS(Q).

2. Fori=1tok:letY; ~ Lap(%).
3. OutputQ(D) + (Yq, ..., Y%)




To Ponder

* Where is there room for improvement?

— The Laplace mechanism adds independent noise
to every coordinate...

— What happens if the user asks (essentially) the
same question in every coordinate?

— Read [Dinur,Nissim03]: a computationally efficient
attack that gives blatant non-privacy for a
mechanism that adds noise bounded by o(\/n).



