
Privacy of Numeric Queries Via 
Simple Value Perturbation 

The Laplace Mechanism 



Differential Privacy 
A Basic Model 

• Let 𝑋 represent an abstract data universe and 
𝐷 be a multi-set of elements from 𝑋. 

– i.e. 𝐷 can contain multiple copies of an element 
𝑥 ∈ 𝑋. 

• Convenient to represent 𝐷 as a histogram: 

𝐷 ∈ ℕ|𝑋| 

 
𝐷 𝑖 = | 𝑥 ∈ 𝐷 ∶ 𝑥 = 𝑥𝑖 | 



Differential Privacy 
A Basic Model 

• i.e for a database of heights 

– 𝐷 = *5′2, 6′1, 5′8, 5′8, 6′0+ ⊂ ,4 − 8- 

– 𝐷 = … , 1,0,0,0,0,0,2,0,0,0,1,1,0, … ∈ ℝ48 
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Differential Privacy 
A Basic Model 

• The size of a database 𝑛: 

– As a set: 𝑛 = |𝐷|. 

– As a histogram: 𝑛 = 𝐷
1
=  |𝐷 𝑖 |

|𝑋|
𝑖=1  

Definition: ℓ1 (Manhattan) Distance. 

For 𝑣 ∈ ℝ𝑑, 𝑣 
1
=  |𝑣 𝑖|

𝑑
𝑖=1 . 

 

 



Differential Privacy 
A Basic Model 

• The distance between two databases: 

– As a set: 𝐷Δ𝐷′ . 

– As a histogram: 𝐷 − 𝐷′
1

 

 

 



Differential Privacy 
A Basic Model 

• i.e for a database of heights 

– 𝐷 = *5′2, 6′1, 5′8, 5′8, 6′0+ ⊂ ,4 − 8- 

– 𝐷 = … , 1,0,0,0,0,0,2,0,0,0,1,1,0, … ∈ ℝ48 

 

– 𝐷′ = … , 2,1,0,0,0,0,1,0,0,0,1,1,0, … ∈ ℝ48 

 
𝐷

1
= 1 + 2 + 1 + 1 = 5 

𝐷′
1
= 2 + 1 + 1 + 1 + 1 = 6 

𝐷 − 𝐷′
1
= −1 + −1 + 1 = 3 
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Basic Lower Bound: 
Blatant Non-Privacy 

• How much noise is necessary to guarantee 
privacy? 

• A simple model. 
– For simplicity, 𝐷 ∈ 0,1 |𝑋| (i.e. no repeated elts) 

– A query is a bit vector 𝑄 ∈ 0,1 |𝑋| 

– 𝑄 𝐷 = 𝑄,𝐷 =  𝐷,𝑖-𝑖∶𝑄 𝑖 =1  

• A “subset sum query” 

• For 𝑆 ⊆ ,𝑛- write 𝑄𝑆 for the vector: 

𝑄𝑆 𝑖 =   
1, 𝑖 ∈ 𝑆
 0, 𝑖 ∉ 𝑆

 



Basic Lower Bound: 
Blatant Non-Privacy 

Definition: A mechanism 𝑀: 0,1 𝑛 → 𝑅 is 
blatantly non-private if on any database 𝐷, an 
adversary can use y = 𝑀(𝐷) to reconstruct 
𝐷′ = 𝐴 𝑦  that agrees with 𝐷 on all but 𝑜(𝑛) 
entries: 

𝐷 − 𝐷′
1
∈ 𝑜(𝑛) 



Basic Lower Bound: 
Blatant Non-Privacy 

Answering all subset-sum queries requires linear 
noise.  

Definition: A mechanism 𝑀: 0,1 |𝑋| → 𝑅 adds 
noise bounded by 𝛼 if for every 𝐷 ∈ 0,1 |𝑋| and 
for every query 𝑆 ⊆ ,𝑛-: 𝑀 𝐷 = 𝑦 such that 

 
𝑄𝑆 𝐷 − 𝑄𝑆 𝑦 ≤ 𝛼 



Basic Lower Bound: 
Blatant Non-Privacy 

Theorem: Let 𝑀 be a mechanism that adds 
noise bounded by 𝛼. Then there exists an 
adversary that given 𝑀(𝐷) can construct a 

database 𝐷′ such that 𝐷 − 𝐷′
0
≤ 4𝛼 

– So adding noise 𝑜(𝑛) leads to blatant non-privacy 
  



Basic Lower Bound: 
Blatant Non-Privacy 

Proof: Consider the following adversary. 

 • Let 𝑟 = 𝑀(𝐷) 
• For each 𝐷′ ∈ *0,1+|𝑋| 

• If 𝑄𝑆 𝐷′ − 𝑄𝑆 𝑟 ≤ 𝛼 for 
all 𝑆 ⊆ 𝑋 then: 
• Output 𝐷′ 

Claim 1: The algorithm always outputs 
some 𝐷′.  
Yes: 𝐷′ = 𝐷 passes all tests. 

Claim 2: D′ − D
0
≤ 4α 

Let 𝑆0 = *𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝐷′, 𝑥 ∉ 𝐷+ 
Let 𝑆1 = *𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝐷, 𝑥 ∉ 𝐷′+ 

Observe 𝐷′ − 𝐷
1
= 𝑆0 + |𝑆1| 

So: If D′ − D
1
> 4α  then max 𝑆0 , 𝑆1 > 2𝛼. WLOG assume 𝑆0 > 2𝛼. 

We know 𝑄𝑆0 𝐷 = 0, so by accuracy: 𝑄𝑆0 𝑟 ≤ 𝛼. 
But 𝑄𝑆0 𝐷′ > 2𝛼, so it must be: 𝑄𝑆0 𝐷′ − 𝑄𝑆0 𝑟 > 2𝛼 − 𝛼 = 𝛼 
So it would have failed one of the tests… 



Basic Lower Bound: 
Blatant Non-Privacy 

• Bad news! 

– Accuracy 𝑛/2 is trivial. 

– Accuracy 𝑛/40 already lets an adversary 
reconstruct 9/10ths of the database entries! 

• But that attack required answering all possible 
queries… 

– Guiding lower bound: Going forward, we will only 
try to be accurate for restricted classes of queries. 



Differential Privacy 
A Basic Model 

Definition: A randomized algorithm with domain 
ℕ|𝑋| and range 𝑅 

 𝑀:ℕ|𝑋| → 𝑅  

is (𝜖, 𝛿)-differentially private if: 

1) For all pairs of databases 𝐷,𝐷′ ∈ ℕ|𝑋| such 
that 𝐷 − 𝐷′

1
≤ 1 and,  

2) For all events 𝑆 ⊆ 𝑅: 
Pr 𝑀 𝐷 ∈ 𝑆 ≤ ⅇ𝜖 Pr 𝑀 𝐷′ ∈ 𝑆 + 𝛿. 

Differing in 1 
person’s data 

Private algorithms must be 
randomized 



Resilience to Post Processing 

Proposition: Let 𝑀:ℕ|𝑋| → 𝑅 be (𝜖, 𝛿)-
differentially private and let 𝑓: 𝑅 → 𝑅′ be an 
arbitrary function. Then: 

𝑓 ∘ 𝑀:ℕ 𝑋 → 𝑅′ 

is (𝜖, 𝛿)-differentially private. 

Thinking about the output of 
M can’t make it less private. 



Resilience to Post Processing 

Proof: 
1) Consider any pair of databases 𝐷, 𝐷′ ∈ ℕ|𝑋| with 𝐷 − 𝐷′

1
≤ 1. 

2) Consider any event 𝑆 ⊆ 𝑅′. 

3) Let 𝑇 ⊆ 𝑅 be defined as 𝑇 = *𝑟 ∈ 𝑅 ∶ 𝑓 𝑟 ∈ 𝑆+. 

Now: 

Pr 𝑓 𝑀 𝐷 ∈ 𝑆 = Pr ,𝑀 𝐷 ∈ 𝑇- 

                                  ≤ ⅇ𝜖 Pr 𝑀 𝐷′ ∈ 𝑇 + 𝛿 

                                  = ⅇ𝜖 Pr 𝑓 𝑀 𝐷 ∈ 𝑆 + 𝛿 

 

Randomized mappings 𝑓 are just convex 
combinations of functions.  



Resilience to Post Processing 

Take away message: 

1) 𝑓 as the adversaries analysis: can incorporate arbitrary auxiliary 
information the adversary may have. Privacy guarantee holds no matter 
what he does. 

2) 𝑓 as our algorithm: If we access the database in a differentially private 
way, we don’t have to worry about how our algorithm post-processes the 
result. We only have to worry about the data access steps.  



Answering Numeric Queries 

• Suppose we have some numeric question 
about the private database that we want to 
know the answer to: 

𝑄:ℕ|𝑋| → ℝ𝑘 .            𝑄 𝐷 = ? 

 

• How do we do it privately? 

– How much noise do we have to add? 

– What are the relevant properties of 𝑄? 



Answering Numeric Queries 

Definition: The ℓ1-sensitivity of a query 

𝑄:ℕ|𝑋| → ℝ𝑘 is: 

𝐺𝑆 𝑄 = max
𝐷,𝐷′: 𝐷−𝐷′

1
≤1

𝑄 𝐷 − 𝑄 𝐷′
1

 

 
i.e. how much can 1 person affect the value of the query? 

“How many people in this room have brown eyes”: Sensitivity 1 

“How many have brown eyes, how many have blue eyes, how many have 
green eyes, and how many have red eyes”: Sensitivity 1  

“How many have brown eyes and how many are taller than 6’”: Sensitivity 2 



Answering Numeric Queries 

The Laplace Distribution: 

Lap(𝑏) is the probability distribution with p.d.f.: 

𝑝 𝑥 𝑏) =  
1

2𝑏
exp −

|𝑥|

𝑏
 

 

i.e. a symmetric exponential distribution 
𝑌 ∼ Lap 𝑏 , 𝐸 𝑌 = 𝑏 
Pr 𝑌 ≥ 𝑡 ⋅ 𝑏 = ⅇ−𝑡 



 

 

 

 

 
Independently perturb each coordinate of the output with Laplace noise 
scaled to the sensitivity of the function. 

 

Idea: This should be enough noise to hide the contribution of any single 
individual, no matter what the database was. 

Answering Numeric Queries: 
The Laplace Mechanism 

Laplace(𝐷, 𝑄: ℕ 𝑋 → ℝ𝑘 , 𝜖): 

1. Let Δ = 𝐺𝑆(𝑄). 

2. For 𝑖 = 1 to 𝑘: Let 𝑌𝑖 ∼ Lap(
Δ

𝜖
). 

3. Output 𝑄 𝐷 + (𝑌1, … , 𝑌𝑘) 



 

 

 

 

 

Answering Numeric Queries: 
The Laplace Mechanism 

Laplace(𝐷, 𝑄: ℕ 𝑋 → ℝ𝑘 , 𝜖): 

1. Let Δ = 𝐺𝑆(𝑄). 

2. For 𝑖 = 1 to 𝑘: Let 𝑌𝑖 ∼ Lap(
Δ

𝜖
). 

3. Output 𝑄 𝐷 + (𝑌1, … , 𝑌𝑘) 



To Ponder 

• Where is there room for improvement? 

– The Laplace mechanism adds independent noise 
to every coordinate… 

– What happens if the user asks (essentially) the 
same question in every coordinate?  

– Read [Dinur,Nissim03]: a computationally efficient 
attack that gives blatant non-privacy for a 
mechanism that adds noise bounded by 𝑜( 𝑛). 

 


