
CIS 800/002 The Algorithmic Foundations of Data Privacy November 15, 2011

Lecture 18
Lecturer: Aaron Roth Scribe: Aaron Roth

Streaming Algorithms: User Level Pan Privacy

Suppose we want to compute some statistic on a gigantic stream of data, that we get to see one element
at a time. Maybe this stream represents the names of users who type in a specific search query on
Google. In this setting, the stream σ = σ1, . . . , σk, . . . where each σi ∈ X represents the name of a
single individual, among a set of |X| possible individuals. Maybe we want to estimate the density of the
stream: what fraction of elements from X appear in σ at least once? A couple of issues arise:

1. The stream might be much to large to store in memory, so we want to do this with memory much
less than the length of the stream.

2. We want to protect the privacy of any individual in the stream, even if they appear in the stream
many times.

3. Maybe we even want to offer privacy guarantees if someone hacks into our servers and gets to
observe the internal state of the algorithm...

Lets think about these issues one at a time. The first issue is relatively straightforward, and is a
constraint on the algorithm (common in streaming settings) independent of privacy.

The second issue relates to how we define neighboring streams. Recall that differential privacy is
defined with respect to a neighbor relation:

Definition 1 A streaming algorithm A : X∗ → R is ε-differentially private if for all pairs of neighboring
streams σ, σ′ ∈ X∗, and all events S ⊆ R:

Pr[M(σ) ∈ S] ≤ exp(ε) Pr[M(σ′) ∈ S]

If we want to protect user level privacy (i.e. protecting whether or not a user appears in the stream,
independently of how many times he appears), then we can define two streams to be neighbors if they
differ in any number of occurrences of a single user x ∈ X:

Definition 2 Write σ−x to denote the stream that results from σ after all instances of x have been
removed. Two streams σ, σ′ ∈ X∗ are user-level neighbors if there exists some x ∈ X such that σ−x =
σ′−x.

The third issue relates to how we define the output of a mechanism M(σ). A mechanism has a set of
internal states S, a function Update : S ×X → S which updates its internal state given its last state,
and the next element of the stream, and a function Output : S → R. Normally we think of the output of
the mechanism M(σ) as simply being the result of Output(s) where s is the final state of the mechanism.
For a stream prefix σ≤i we can also write Update(σ≤i) and Output(σ≤i) to denote the mapping to states
and outputs given by running update on each element of the stream, and then running output on the
final element. We might want pan-privacy with respect to a single un-announced intrusion.

Definition 3 For a mechanism M : X∗ → R with internal states from set S, write M i : X → S×R for
the mechanism with output M i(σ) = (M(σ),Update(σ≤i)) that also outputs the state of the mechanism
at time i. M is ε-pan-private with respect to a single intrusion of M i is ε-differentially private for all i.

The idea is that M should be differentially private even if an adversary unexpectedly gets access to
the state of the mechanism at any (single) time. We could similarly define pan privacy with respect to
multiple intrusions...

We will see how to solve the density estimation problem with a pan-private streaming algorithm
guaranteeing user level privacy. Recall our initial example: a stream consisting of the names of users
from some universe X, who search on Google/Bing/Yahoo using a particular search term. We wish to
estimate the fraction of users who appear in the stream.
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Definition 4 The density of a stream σ ∈ X∗ is

d(σ) =
1

|X|
{x : ∃ i : σi = x}

We will give a user-level pan-private algorithm for estimating the density of a stream σ. We will
sample bits from two distributions over bits {0, 1}. D0 is the distribution such that Pr[1] = 1

2 . D1(ε) is
the distribution such that Pr[1] = 1

2 + ε
4 .

Density(ε, α, β)

Let m = 200 log 1/β
ε2α2 .

Sample a set of m representatives M of elements x ∈ X and construct a table of size m. For each
x ∈M , generate a value bx ∼ D0.
for each i do

If σi ∈M then let bσi
∼ D1.

end for
Compute θ = 1

m

∑
x∈M bx

Output θ̂ =
4(θ− 1

2 )

ε + Lap
(

1
εm

)
The key insights are:

1. The algorithm provides user level privacy because if x has not appeared in the stream then bx ∼ D0,
and otherwise bx ∼ D1, no matter how many times x has appeared.

2. The algorithm provides pan-privacy becauseD0 andD1 are two distributions that are “differentially
private” and no other information other than a sample from these distributions is stored about
each x. θ̂ is then re-randomized with Laplace noise to provide privacy even if the adversary has
seen the state of the mechanism at some previous time step.

Theorem 5 Density preserves user level 2ε-pan privacy.

Proof Let σ, σ′ be x-adjacent. For x 6∈ M , no information about x is stored, and perfect privacy is
guaranteed. For x ∈M :

Pr[bx = 1|σ]

Pr[bx = 1|σ′]
≤ 1/2 + ε/4

1/2
= 1 + ε/2 ≤ exp(ε/2)

and so privacy is guaranteed against a single intrusion. Even conditioned on knowing the state of the
algorithm, the output is ε-differentially private by the guarantees of the Laplace mechanism.

Theorem 6 Except with probability β:
|d(σ)− θ̂| ≤ α

Proof We have 3 sources of error to control. First, let d(M) denote the density within the subsample
m. By the additive Chernoff bound:

Pr[|d(M)− d(σ)| ≥ α/3] ≤ exp(−(2/9)mα2) ≤ β

3

Next, note that:

E[θ] = d(M)(
1

2
+
ε

4
) +

(1− d(M))

2
=

1

2
+
εd(M)

4
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Hence E[θ̂] = d(M). We have:

Pr[|θ̂ − d(M) ≥ 2α/3] ≤ Pr[|θ − E[θ]| ≥ α

3
· ε

4
] + Pr[Lap

(
1

εm

)
≥ α

3
]

≤ exp

(
−2mα2ε2

144

)
+ exp

(
−εmα

3

)
≤ 2β

3

which completes the proof.

Bibliographic Information The content of this lecture is from Dwork, Naor, Pitassi, Rothblum,
and Yekhanin, “Pan Private Streaming Algorithms”, 2010.
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