
CIS 800/002 The Algorithmic Foundations of Data Privacy November 8, 2011

Lecture 16
Lecturer: Aaron Roth Scribe: Aaron Roth

Private Combinatorial Optimization: Vertex Cover

In this class, we will see one more approximation algorithm, this time for the vertex cover problem. The
vertex cover problem differs from the min-cut problem we saw last time in two ways. The first (and
least important) is that the vertex cover problem is NP complete. That is, we couldn’t hope to have
an efficient algorithm to get an exact solution even if we didn’t care about privacy. But since we are
concerned about privacy, we have to settle for an approximation anyhow...

The more important difference from our perspective, is that the constraints defining the set of feasible
solutions for the vertex cover problem are a function of the private data! This means we won’t be able
to output a solution in its standard representation at all, and will have to get creative.

Definition 1 An undirected graph G = (V,E) is defined by a vertex set V of size |V | = n and an edge
set E ⊂ V × V . If (u, v) ∈ E We say that there is an edge between vertex u and vertex v if (u, v) ∈ E.
For undirected graphs, we consider (u, v) to be equivalent to (v, u).

Definition 2 A vertex cover of G = (V,E), S ⊆ V is a subset of vertices such that for all (u, v) ∈ E,
u ∈ S or v ∈ S. The size of the vertex cover is |S|. The objective of the minimum vertex cover problem
is to return a vertex cover of minimum cardinality. Write OPT(G) to denote a vertex cover of minimum
cardinality.

First, let us observe two things: the cardinality of the minimum vertex cover is a 1-sensitive function
(with respect to changes in the edge set), and so we can release this with noise only O(1/ε). On the
other hand, suppose we must release an explicit vertex cover S ⊆ V . If there is any pair u, v such that
u, v 6∈ S, then if S is a vertex cover, it must be that (u, v) 6∈ S. Hence, we won’t be able to explicitely
release a vertex cover S of size less than |S| < |V |−1, and so no non-trivial approximations are possible.

Instead we will output an implicit representation of a vertex cover. For each potential edge e =
(u, v) ∈ V × V , we will output an orientation c(e) ∈ {u, v}. Such a set of orientations will correspond to
a vertex cover in any graph G = (V,E) as follows: the vertex cover will be S =

⋃
e∈E{c(e)}. Note that

S must by definition be a valid vertex cover for every graph G.
We will represent our edge orientations by outputting a permutation π over the vertices V . Each edge

e = (u, v) will have orientation c(e) = u if u appears earlier than v in π. Our algorithm will start with a
graph G1 = (V1, E1) and repeatedly select a vertex v ∈ V to output, with probability proportional to its
degree, plus some extra “hallucinated” edges, added for privacy. If a vertex v is selected, it is output as
the next vertex in the permutation, and the algorithm recurses on Gi = (Vi, Ei) where Vi = Vi−1 \ {v},
and Ei = Ei−1 \ {(u, v) : u ∈ V }. We write ni = |Vi| = n − i + 1 and mi = |Ei|. The algorithm is as
follows:

Algorithm 1 Unweighted Vertex Cover

1: let n← |V |, V1 ← V,E1 ← E.
2: for i = 1, 2, . . . , n do
3: let wi ← (4/ε)×

√
n/(n− i+ 1).

4: pick a vertex v ∈ Vi with probability proportional to dEi
(v) + wi.

5: output v. let Vi+1 ← Vi \ {v}, Ei+1 ← Ei \ ({v} × Vi).
6: end for

Theorem 3 (Privacy) ALG’s differential privacy guarantee is max{1/w1,
∑

i 2/iwi} ≤ ε for the set-
tings of wi above.

16-1

Proof For any two sets of edges A and B, and any permutation π, let di be the degree of the ith

vertex in the permutation π and let mi be the remaining edges, both ignoring edges incident to the first
i− 1 vertices in π.

Pr[ALG(A) = π]

Pr[ALG(B) = π]
=

n∏
i=1

(wi + di(A))/((n− i+ 1)wi + 2mi(A))

(wi + di(B))/((n− i+ 1)wi + 2mi(B))
.

When A and B differ in exactly one edge, di(A) = di(B) for all i except the first endpoint incident to
the edge in the difference. Until this term mi(A) and mi(B) differ by exactly one, and after this term
mi(A) = mi(B). The number of nodes is always equal, of course. Letting j be the index in π of the first
endpoint of the edge in difference, we can cancel all terms after j and rewrite

Pr[ALG(A) = π]

Pr[ALG(B) = π]
=
wj + dj(A)

wj + dj(B)
×
∏
i≤j

(n− i+ 1)wi + 2mi(B)

(n− i+ 1)wi + 2mi(A)
.

An edge may have arrived in A, in which case mi(A) = mi(B) + 1 for all i ≤ j, and each term in
the product is at most one; moreover, dj(A) = dj(B) + 1, and hence the leading term is at most
1 + 1/wj < exp(1/w1), which is bounded by exp(ε/2).

Alternately, an edge may have departed from A, in which case the lead term is no more than
one, but each term in the product exceeds one and their product must now be bounded. Note that
mi(A) + 1 = mi(B) for all relevant i, and that by ignoring all other edges we only make the product
larger. Simplifying, and using 1 + x ≤ exp(x), we see

∏
i≤j

(n− i+ 1)wi + 2mi(B)

(n− i+ 1)wi + 2mi(A)
≤

∏
i≤j

(n− i+ 1)wi + 2

(n− i+ 1)wi + 0
=

∏
i≤j

(
1 +

2

(n− i+ 1)wi

)
≤ exp

∑
i≤j

2

(n− i+ 1)wi

 .

The wi are chosen so that
∑

i 2/(n− i+ 1)wi = (ε/
√
n)
∑

i 1/2
√
i is at most ε.

Theorem 4 (Accuracy) For all G, E[ALG(G)] ≤ (2+2avgi≤nwi)×|OPT (G)| ≤ (2+16/ε)|OPT(G)|.

Proof Let OPT (G) denote an arbitrary optimal solution to the vertex cover problem on G. The
proof is inductive, on the size n of G. For G with |OPT (G)| > n/2, the theorem holds. For G with
|OPT (G)| ≤ n/2, the expected cost of the algorithm is the probability that the chosen vertex v is
incident to an edge, plus the expected cost of ALG(G \ v).

E[ALG(G)] = Pr[v incident on edge] + Ev[E[ALG(G \ v)]] .

We will bound the second term using the inductive hypothesis. To bound the first term, the probability
that v is chosen incident to an edge is at most (2mwn + 2m)/(nwn + 2m), as there are at most 2m
vertices incident to edges. On the other hand, the probability that we pick a vertex in OPT (G) is at
least (|OPT (G)|wn +m)/(nwn + 2m). Since |OPT (G)| is non-negative, we conclude that

Pr[v incident on edge] ≤ (2 + 2wn)(m/(nwn + 2m)) ≤ (2 + 2wn) Pr[v ∈ OPT (G)]

Since 1[v ∈ OPT (G)] ≤ |OPT (G)| − |OPT (G \ v)|, and using the inductive hypothesis, we get

E[ALG(G)] ≤ (2 + 2wn)× (|OPT (G)| − Ev[|OPT (G \ v)|]) + (2 + 2avgi<nwi)× Ev[|OPT (G \ v)|]
= (2 + 2wn)× |OPT (G)|+ (2avgi<nwi − 2wn)× Ev[|OPT (G \ v)|]

The probability that v is from an optimal vertex cover is at least (|OPT (G)|wi + m)/(nwi + 2m), as
mentioned above, and (using (a + b)/(c + d) ≥ min{a/c, b/d}) is at least min{|OPT (G)|/n, 1/2} =

16-2

|OPT (G)|/n, since |OPT (G)| < n/2 by assumption. Thus E[|OPT (G \ v)|] is bounded above by (1 −
1/n)× |OPT (G)|, giving

E[ALG(G)] ≤ (2 + 2wn)× |OPT (G)|+ (2avgi<nwi − 2wn)× (1− 1/n)× |OPT (G)| .

Simplification yields the claimed results, and instantiating wi completes the proof.

Bibliographic Information The vertex cover algorithm is from “Differentially Private Combinato-
rial Optimization”, 2010 by Gupta, Ligett, McSherry, Roth, and Talwar.

16-3

