
CIS 800/002 The Algorithmic Foundations of Data Privacy November 3, 2011

Lecture 15
Lecturer: Aaron Roth Scribe: Aaron Roth

Private Combinatorial Optimization: Min Cut

We have now exhausted much of what I know about the problem of private query release, so it is time
to move onto a new topic: combinatorial optimization. Here we will be concerned with solving search
problems, where the goal is to not only release the numeric objective value of some optimization problem,
but also the solution itself which leads to that objective value. The field of approximation algorithms
generally concentrates on finding near-optimal solutions in polynomial time to NP-hard optimization
problems. In this setting, the only reason that we cannot achieve exact solutions is our own feeble
computational limitations. When we require that our algorithms satisfy differential privacy as well,
however, we also have an information theoretic constraint preventing us from returning exact solutions.
Therefore, when privacy is a constraint, it makes sense to study approximation algorithms even for
problems which are polynomial time solvable. That is what we will do today.

Definition 1 An undirected graph G = (V,E) is defined by a vertex set V of size |V | = n and an edge
set E ⊂ V × V . If (u, v) ∈ E We say that there is an edge between vertex u and vertex v if (u, v) ∈ E.
For undirected graphs, we consider (u, v) to be equivalent to (v, u).

An important question when formulating a privacy problem is what is the granularity of privacy that
we wish to protect. We will consider edge privacy, meaning we will view V as publicly known, and view
the edge set E as the private database. That is, if we have two edge sets E,E′ differing in a single edge:
|E4E′| ≤ 1, defining two graphs G = (V,E) and G′ = (V,E′), and an algorithm A : V × (2V)→ R, the
constraint of (ε, δ)-privacy would require that for all S ⊆ R: Pr[A(G) ∈ S] ≤ exp(ε) Pr[A(G′) ∈ S] + δ.
We could also choose to try and protect vertex privacy, which would insist that algorithms be insensitive
to the addition or removal of a vertex, as well as all (possibly n− 1) edges adjacent to it. This would be
a much stronger privacy guarantee, but less would be possible.

In general, a combinatorial optimization problem is defined by a feasible set and an objective function.

Definition 2 An optimization problem P = (F , Q) is an feasible set of solutions together with an
objective function Q : F → R. For a problem P , we write OPT(P) = minx∈F Q(x).

We can now define the min-cut problem.

Definition 3 A cut is a subset of vertices S ⊆ V . The value of a cut in a graph G, written CG(S, SC)
is defined to be the number of edges crossing from S to SC = V \ S:

CG(S, SC) = |{(u, v) ∈ E : u ∈ S, v 6∈ S}|

The min-cut problem is: given a graph G = (V,E), return a cut S ⊆ V minimizing the quantity
CG(S, SC). That is, the feasible set is F = {S ⊆ V }, and the objective function is Q(S) = CG(S, SC).
There are many classical algorithms to compute this quantity exactly in polynomial time, if privacy
is not a concern. In the non-private setting, approximation algorithms typically give multiplicative
approximation guarantees, but in private settings, additive approximations will be necessary.

Definition 4 An algorithm A is an (T (ε), F (ε))-private approximation algorithm for a class of opti-
mization problems P, if it is ε-differentially private, and for any P = (F , Q) ∈ P, with high probability:

Q(A(P)) ≤ T (ε)OPT(P) + F (ε)

Observe that the value of the min-cut is a 1-sensitive function, so we can easily output its value with
only constant additive error. But we want to actually output the cut itself.

We will make use of a by now standard fact about graph cuts, first proven by Karger.

15-1

Theorem 5 (Karger’s Min-Cut Theorem) For any graph G = (V,E) with |V | = n and min-cut
size C, and for any α ≥ 1 there are at most n2α cuts of size at most α ·C. Moreover, given a graph, all
of these cuts can be found efficiently.

If you haven’t seen this theorem before, it is worth reading about – its really cool! Karger gives a
randomized “contraction” algorithm that is very simple, and an analysis that shows that when you run
it on a graph, any fixed cut of size at most αC will be output with probability at least n−2α – and hence
there can be at most n2α of them! This gives a fast algorithm for finding min-cuts as well, but we won’t
cover that here...

The idea of our algorithm will be simple, but for a few twists. We will seek to simply select the
smallest cut using the exponential mechanism. We will be able to prove, using Karger’s theorem, that
the exponential mechanism gives a good result, so long as the true min-cut in the graph is not too small.
But what if it is? We’ll first change the graph to increase the size of the min-cut in a privacy preserving
way. Finally, we have to sample from the exponential mechanism efficiently, so we’ll sample just from
the set of small cuts (which we can generate with Kargers algorithm), and show that this still preserves
(ε, δ) privacy. So here is the algorithm:

Min-Cut(G = (V,E), ε)

Let H0 ⊂ H1 ⊂ H2 ⊂ . . . ⊂ H(n
2)

be an arbitrary strictly increasing sequence of edge sets on V .

Choose index i with probability proportional to exp(−ε|OPT((V,E ∪Hi))− 16 lnn
ε |).

Choose a subset S ⊆ V with probability proportional to exp(−ε · C(V,E∪Hi)(S, S
C))

Output the cut S.

We will prove the following utility theorem:

Theorem 6 For any graph G, let Min-Cut(G, ε) = S. Then with probability at least 1 − O(1/n2):
CG(S, SC) ≤ OPT(G) + O(logn

ε). i.e. Min-Cut is a (T (ε), F (ε))-approximation algorithm for T (ε) = 1

and F (ε) = O(logn
ε).

Proof We will prove this using two lemmas. First we will argue that with high probability, the
algorithm chooses an index i such that: OPT((V,E ∪Hi)) is in the right range.

Lemma 7 With probability at least 1− 1/n2 we have:

8 lnn

ε
≤ OPT((V,E ∪Hi)) ≤ OPT(G) +

8 lnn

ε

Proof First suppose OPT(G) < 16 ln(n)/ε. Then there exists some i such that OPT((V,E ∪Hi)) −
16 lnn
ε = 0. Recall our utility theorem for the exponential mechanism. For any range R, output r, and

sensitivity-1 cost score q we have:

Pr[q(r) ≥ OPT +
2

ε
(log(R) + t)] ≤ e−t

Here, log(R) ≤ 2 log(n), and setting t = 2 log(n) as well we have:

Pr[|OPT((V,E ∪Hi))−
16 lnn

ε
| ≥ 8

ε
log n] ≤ 1

n2

Now, suppose OPT(G) ≥ 16 ln(n)/ε. Now we know that OPT((V,E ∪H0)) = OPT(G), and so applying
the utility theorem again we get:

Pr[|OPT((V,E ∪Hi))−
16 lnn

ε
| ≥ (OPT(G)− 16 lnn

ε
) +

8

ε
log n] ≤ 1

n2

15-2

Lemma 8 If OPT((V,E ∪Hi)) ≥ 8 lnn
ε and ε < 1 then:

Pr[C(V,E∪Hi)(S, S
C) ≥ OPT((V,E ∪Hi)) + b] ≤ 1

n2

for b = O(log n/ε)

Proof Let ct denote the number of cuts of size OPT((V,E ∪ Hi)) + t. Note that a cut of size
OPT((V,E ∪Hi)) + t will be output with probability at most exp(−εt). Therefore we have:

Pr[C(V,E∪Hi)(S, S
C) ≥ OPT((V,E ∪Hi)) + b] ≤

∑
t≥b

exp(−εt) · (ct − ct−1)

=

∑
t≥b

(exp(−εt)− exp(−ε(t+ 1)))ct

− exp(−εb)cb−1

≤
∑
t≥b

(exp(−εt)− exp(−ε(t+ 1)))ct

= (1− exp(−ε))
∑
t≥b

exp(−εt)ct

≤ (1− exp(−ε))
∑
t≥b

exp(−εt)ntε/4 lnn

= (1− exp(−ε))
exp(− 3

4 (b− 1) · ε)
exp(3

4ε)− 1

= O (exp(−(b− 1) · ε))

where the last line follows because if ε < 1, then (1 − exp(−ε))/(exp(3
4ε) − 1) = Ω(1). Plugging in

b = O(log n/ε) completes the proof.

Finally, putting the two pieces together, we get that except with probability at most 2/n2, we have:

CG(S, SC) ≤ C(V,E∪Hi)(S, S
C) ≤ OPT((V,E ∪Hi)) +O

(
log n

ε

)
≤ OPT(G) +O

(
log n

ε

)

Finally, lets consider the efficiency of the algorithm. We run the exponential mechanism twice. The
first run is selecting among a universe of only

(
n
2

)
elements, and so runs efficiently. The second run is

selecting among a set of 2n cuts, and so does not in obviously run efficiently. But here is a trick:
There was nothing special about the failure probability 1/n2 in our analysis: in fact, we could have

proven that for any constant c, the algorithm outputs a cut with error O(log n/ε) with probability at least
1/nc. Moreover, using Kargers algorithm, we can actually generate all cuts of size c · OPT(G) in time
n2c, and so for any graph with min-cut size at least log n/ε, we can generate all cuts of size OPT(G) +
O(log n/ε) in time polynomial in n (Because there can be at most n2c cuts of size c log n/ε). So what
our algorithm will do is first generate all cuts of size c log n/ε, and then run only over this polynomially
sized domain. This algorithm now runs in polynomial time: what are its privacy guarantees?

Consider a modified version of our exponential time Min-Cut algorithm, which reports “Fail” when-
ever it outputs a cut that has error worse than O(log n/ε), which occurs with probability at most (say)
n−c. We can couple our modified polynomial time algorithm with this exponential time algorithm,
and observe that their output distributions have statistical distance at most n−c. Therefore, because
the exponential time algorithm was (ε, 0)-differentially private, the polynomial time algorithm must be
(ε, δ)-differentially private for δ = n−c.

15-3

Bibliographic Information The min-cut algorithm is from “Differentially Private Combinatorial Op-
timization”, 2010 by Gupta, Ligett, McSherry, Roth, and Talwar.

15-4

