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Efficient Interactive Query Release Mechanisms

Recall that last time we gave a reduction from database update algorithms to query release mecha-
nisms in the interactive setting (We no longer need a distinguisher!). We proved the following theorem.

Theorem 1 Together with a B(α)-Database Update Algorithm, OnlineIC is (3α, β)-useful for α such
that:

α =
4B(α)(log |C|+ log(2/β))

εn

Moreover, this reduction is efficiency preserving! That is, the running time per update is at most the
running time per update of the database update algorithm. All that remains to give a computationally
efficient algorithm is to give a computationally efficient database update algorithm. This is precisely
what we will do for the class of sparse linear queries.

Definition 2 (Sparsity) The sparsity of a linear query Q : X → [0, 1] is |{x ∈ X : Q(x) > 0}|, the
number of elements in the universe on which it takes a non-zero value. We say that a query is m-sparse
if its sparsity is at most m. We will also refer to the class of all m-sparse linear queries, denoted Qm.
We say that a query class is sparse if it is m-sparse for m =poly(n).

We will assume that given an m-sparse query, we can quickly (in time polynomial in m) enumerate the
elements x ∈ X on which Q(x) > 0.

We will give a variant on the Multiplicative Weights DUA for sparse queries that has running time
which depends only on m for m-sparse queries, rather than on |X|. Surprisingly, the accuracy we obtain
will also depend only on m and will be independent of |X|! That is, the mechanism will make sense even
in an infinite universe model, in which there is no pre-specified bound on the size of the data universe.

The idea of the algorithm will be to run the multiplicative weights DUA on a smaller universe X̂.
Because the queries are sparse, we know that only a small number of universe elements will ever require
an update. If we knew which these were, we could run the MW algorithm only on this subset! The
problem is that we do not know which universe elements these may be ahead of time. The trick will be
to defer the decision of which elements from X to map to X̂ until the last minute, adaptively assigning
elements to elements of X̂ only as updates are performed. To do this, we run our algorithm on a
datastructure which we call a sparse multiplicative weights datastructure.

Definition 3 (Sparse Multiplicative Weights Data Structure) The sparse multiplicative weights
data structure D of size s is composed of three parts. We write D = (D,h, ind).

1. D is a collection of s real valued variables x1, . . . , xs, with xi ∈ [0, 1] for all i ∈ [s]. Variable xi for
i ∈ [s] is referenced by D[i]. Initially xi = 1/s for all i ∈ [s]. We define D[i] = 0 for all i > s.

2. h is a hash table h : X → [s] ∪ ∅ mapping elements in the universe X to indices i ∈ [s]. Elements
x ∈ X can also be unassigned in which case we write h(x) = ∅. Initially, h(x) = ∅ for all x ∈ X

3. ind ∈ [s+ 1] is a counter denoting the index of the first unassigned variable. For all i < ind, there
exists some x ∈ X such that h(x) = i. For all i ≥ ind, there does not exist any x ∈ X such that
h(x) = i. Initially ind = 1.

If ind ≤ s, we can add an unassigned element x ∈ X to D. Adding an element x ∈ X to D sets
h(x)← ind and increments ind← ind + 1. If ind = s+ 1, attempting to add an element causes the data
structure to report FAILURE.
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A linear query Q is evaluated on a sparse MW data structure D = (D,h) as follows.

Q(D) =
∑

x∈X :Q(x)>0∧h(x)6=∅

Q(x) ·D[h(x)] +
∑

x∈X :Q(x)>0∧h(x)=∅

Q(x) ·D[ind]

We can now define the sparse multiplicative weights algorithm:

Algorithm 1 The Sparse Multiplicative Weights (SMW) IDC Algorithm for m-sparse queries. It is
instantiated with an accuracy parameter η = α/2. It takes as input a sparse MW datastructure D, an
m-sparse query Q ∈ Qm, and an estimate of the query value vt.

SMW(Dt = (Dt, ht, indt), Qt, vt):

if Dt = ∅ then
Let s be the smallest integer such that s/(log(s) + 1) ≥ 4m/α2.
Return a new Sparse MW data structure D1 = (D1, h1, ind1) of size s with h1(x) = ∅ for all x ∈ X ,
xi = 1/s for all i ∈ [s], and ind1 = 1.

end if
Let Dt+1 = (Dt+1, ht+1, indt+1)← Dt
Update: For all x ∈ X such that Qt(x) > 0: If ht+1(x) = ∅ then add x to Dt+1.
if vt < Qt(Dt) then

Update: For all x ∈ X such that Qt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(−ηQt(x))

else
Update: For all x ∈ X such that Qt(x) > 0: Let

Dt+1[ht+1(x)]← Dt+1[ht+1(x)] · exp(ηQt(x))

end if
Normalize: For all i ∈ [s]:

Dt+1[i] =
Dt+1[i]∑s
j=1Dt+1[j]

Output Dt+1.

Theorem 4 The Sparse Multiplicative Weights algorithm is a B(α)-DUA for the class of m-sparse
queries Qm, where:

B(α) = 4
log s

α2

and s is the smallest integer such that s/(log(s) + 1) ≥ 4m/α2.

Proof [Proof Sketch] The proof is a modification of the proof that the multiplicative weights mechanism
is a B(α)-DUA for B(α) = 4 log |X|/α2, and is very similar. There are just a couple of hitches – in
particular, we have to define a potential function with respect only to the elements in our smaller universe,
which we have to be careful about because we are assigning elements to this universe adaptively. To
handle this, we consider a different potential function for each maximal database update sequence,
defined in terms of the assignments of universe elements in the last datastructure in the sequence. But
there are no major surprises. We won’t go over the details that part of the proof again, just the structure.

Briefly, We will consider any maximal (SMW,D, C, α, L)-database update sequence {(Dt, Qt, vt)}t=1,...,L.

We must argue that L ≤ 4(log s+1)
α2 and that no data structure Dt in the sequence ever returns FAIL-

URE when the SMW algorithm attempts to add some element x ∈ X to it. Consider the real private
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database D and the final data structure in the sequence DT = (DT , hT , indT ). We will define a non-
negative potential function Ψ based on hT and D̂ and show that it decreases significantly at each step.
We define:

Ψt
def
=

∑
x:hT (x)6=∅

D̂[x] log

(
D̂[x]

Dt[hT (x)]

)

Lemma 5 For all t ∈ [L], Ψt ≥ − 1
e and Ψ0 ≤ log s

Proof Similar to before (with a couple of complicating details – i.e. observe that the potential function
can now indeed be negative).

We will argue that in every step the potential drops by at least α2/4. Because the potential begins
at log s, and must always be non-negative, we therefore know that there can be at most L ≤ 4 log s/α2

steps. To begin, let us see exactly how much the potential drops at each step:

Lemma 6
Ψt −Ψt+1 ≥ α2/4

Proof Similar to before (with a couple of complicating details – query evaluation on the data structure
must be checked to behave correctly).

Theorem 4 then immediately follows by combining Claim 5 with Lemma 6:

−1

e
≤ ΨT ≤ log s− L · α

2

4

Solving for L we find:

L ≤ 4
log s+ 1/e

α2
< 4

log s+ 1

α2

Finally to see that the SMW data structure never reports FAILURE, it suffices to observe that indT ≤ s.
Because each query Qt is assumed to be m-sparse, at most m variables can be added to the SMW data
structure at each update. Therefore, we have

indT ≤ m · T ≤
4m(log s+ 1)

α2
≤ s

The last inequality follows from recalling that we chose s such that s/(log s+1) ≥ 4m/α2. This completes
the proof.

As a result, we get:

Theorem 7 For any 0 < ε, δ, β < 1 There exists an (ε, δ)-differentially private query release mechanism
in the interactive setting, with running time per query Õ(m/α2) that is (α, β)-accurate with respect to
the set of all m-sparse linear queries Qm, with:

α = O

 (logm)
1/4
(

log 4
δ log k

β

)1/2
(ε · n)

1/2


Note that this theorem not only improves over our general results in terms of running time (running

time m/α2 instead of |X|), it improves on them in terms of the accuracy it achieves for sparse queries!
Where log |X| previously appeared, now appears only logm!
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This means that we can handle queries even over an infinite universe (i.e. with string-valued ele-
ments with no a-priori upper bound on string length). Of course our algorithm must be able to read the
name of each universe element encountered, and so the running time of the algorithm will have some
dependence on the length of the maximum length string encountered during the run of the algorithm,
but no dependence on any a-priori (unboundedly large!) upper bound on string length. The accuracy
will continue to have no dependence on universe size!

Bibliographic Information The sparse multiplicative weights algorithm is from Blum and Roth, “Fast
Private Data Release Algorithms for Sparse Queries”, 2011. It is a modification of the multiplicative
weights algorithm of Hardt and Rothblum, given in “A Multiplicative Weights Mechanism for Privacy
Preserving Data Analysis”, 2010. The modification is analogous to the modification of the online learn-
ing algorithm Winnow to work in the infinite attribute model, given by Blum in “Learning Boolean
Functions in an Infinite Attribute Space”, 1990.
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