
Algorithmic Game Theory: Problem Set 4
Due online via GradeScope before the start of class on Tuesday, March 26

Remember you can work together on problem sets, but list everyone you worked with, and everyone turn

in their own assignment. Ask questions on Slack.

University Housing (15 pts)

Many of you have likely gone through the laborious process of securing on-campus housing before. Setting

housing population limits aside, it turns out that Penn’s housing allocation mechanism isn’t Pareto optimal

anyhow. Let’s explore a model involving upperclassmen and freshmen to see if we can improve on this.

Model:

• Let P1 denote upperclassmen (i.e., previous tenants) and P2 denote freshmen (i.e., new applicants).

• Let H1 denote occupied rooms (by an upperclassman) and H2 denote unoccupied rooms.

– |P1| = |H1|, |P2| = |H2|

• Every student has a strict preference ordering over all rooms in H1 ∪H2.

• Upperclassmen have the option to return to their occupied room and not participate in the mechanism.

We want it to be individually rational for the upperclassmen to participate in it.

Consider the following mechanism, analogous to top trading cycles in this model:

Algorithm 1 University Housing

0: P 1 = P1 ∪ P2

0: H1 = H1 ∪H2

0: t = 1

0: while |P t| > 0 do Construct a graph Gt = (V t, Et) where V t = P t ∪Ht and Et includes the following

edges:

- Each remaining student points to their most preferred remaining room.

- Each occupied house with a remaining upperclassman tenant points to the tenant.

- All other houses point to the unmatched student with the lowest number. Find a cycle Ct and assign

each player in it to the room they are pointing to.

0: P t+1 = P t − {set of all players in Ct}.
0: Ht+1 = Ht − {set of all houses in Ct}.
0: t = t+ 1

0: end while=0

1. (3 pts) Prove that this mechanism halts.
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Algorithmic Game Theory ( ): Problem Set 4University Housing (15 pts) (continued)

2. (3 pts) Prove that this mechanism produces a Pareto optimal allocation.

3. (4 pts) Prove that this mechanism is individually rational.

Hint: This is particularly relevant for the upperclassmen.

4. (5 pts) Prove that this mechanism is dominant strategy incentive compatible.

Hint: For some agent, let round T be the one in which they’re assigned a room when reporting truthfully,

and let round T ′ be the one when reporting dishonestly (in an arbitrary way). Consider cases when

T = T ′, T > T ′, and T < T ′, and show that in all cases, it is best to report truthfully.

Nonatomic Selfish Routing Games (20 points)

A routing game is described by a graph G(V,E) that aims to model how traffic on a network like the inter-

net operates. Each edge e ∈ E has a cost function ce(x) associated with it. Players aim to minimize their

individual cost as they traverse from the source node s to the sink node t. In a nonatomic routing game,

players are modelled as a continuum, cumulatively controlling a unit flow in the graph, with each player

controlling an infinitesimally small fraction of the flow. That is to say, the fraction of players that uses each

edge is what contributes to cost; each individual player does not contribute much on their own — nothing

in this limiting case.

In the particular nonatomic routing game we study in this problem, there are only 2 vertices and 2 edges.

• V = {s, t}, E = {e1, e2}

– e1 = (s, t), ce1(x) = xa for some a ≥ 0

– e2 = (s, t), ce2(x) = 1

In particular, a “flow” (the continuous analogue of an action profile) in this simple game is specified by

a single number x ∈ [0, 1] which specifies what fraction of the population takes edge 1 — the remaining

1−x fraction of the population takes edge 2. Since individuals are assumed to be infinitesimally small, their

unilateral deviations would not affect the flow. Thus a flow is said to be at Nash equilibrium if all s → t

paths have the same cost.

We define our objective function (i.e., social cost), which we want to minimize, as follows, where x is the

fraction of players using e1:

Objective(x) = x · ce1(x) + (1− x) · ce2(1− x)

Thus OPT (the minimal social cost) is:

= min
x∈[0,1]

x · ce1(x) + (1− x) · ce2(1− x)
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Algorithmic Game Theory ( ): Problem Set 4Nonatomic Selfish Routing Games (20 points) (continued)

1. (4 pts) Find a Nash equilibrium of this game (described by the fraction of players x that take the top

edge), and prove that it is unique.

2. (2 pts) Calculate the social cost at this NE.

3. (4 pts) In order to minimize social cost, compute the optimal fraction x∗ of players that must use e1
in terms of a.

4. (5 pts) Compute Objective(x∗) in terms of α.

5. (3 pts) For α = 1, what is the price of anarchy of this game? What is the price of stability?

6. (2 pts) Can you compute an upper bound for the price of anarchy in this class of games that holds

uniformly for all α? If so, what is the upper bound, and if not, why?

School Choice Mechanisms (15 points)

School choice refers to a policy in which parents can choose which school their child will attend, as opposed

to being assigned a public school based on where they reside. Since public schools have enrollment caps,

mechanism design has been central to determine which students can enroll in different schools. In fact,

mechanisms like deferred acceptance have been used for this exact purpose! But here we will consider a dif-

ferent school choice mechanism (not based on the deferred acceptance algorithm) and consider its properties.

Model:

• LetM andW denote sets of students and schools respectively. It is not necessarily true that |M | = |W |.

• Every student has a strict preference ordering over all schools, and vice-versa.

• Each student mi ∈M will want 1 school.

• Each school wj ∈W will want up to cj students, for some cj ∈ Z+.

Consider the following mechanism for school choice:

Algorithm 2 School Choice Mechanism

0: µ(m) = ∅ for all m ∈M {No students have been matched yet}
0: for i = 1 to |W | do
0: M i

w ← The set of all unmatched students with school w as their ith ranked school.

0: W i ← The set of all schools that are not at full capacity in round i.

0: for w ∈W i do Assign students m ∈M i
w to school w in order of w’s preference ordering until

all students in M i
w are matched or w has reached full capacity.

0: end for

0: end for=0

We want to determine what properties this mechanism has. For the following questions, you must either

explicitly prove the statement or disprove it with a counterexample and explanation. Your responses should

make reference to the preferences ≻ of students and schools.
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1. (5 pts) If students and schools report true preferences, does this mechanism output a Pareto optimal

matching?

2. (5 pts) If students and schools report true preferences, does this mechanism output a stable matching?

3. (5 pts) For students, is this mechanism dominant strategy incentive compatible?

Distributional Domination (10 pts)

An action in a game can be strongly dominated by a distribution over other actions even if it is not dominated

by any single other action. For example, consider the following game:

a b

A 1, 6 0, 2

B 0, 4 1, 1

C 0.3, 5 0.3, 2

The action C for the row player is not dominated by either actions A and B, but it is dominated by the mixed

strategy that plays A with probability 1/2 and B with probability 1/2 (since this gets payoff in expectation

at least 1/2 against any strategy of the column player, which is greater than 0.3).

More generally, given a two player game with action sets A1 and A2 and utility functions u1 and u2, we

say that an action a1 ∈ A1 for player 1 is distributionally strictly dominated if there exists a mixed strategy

p ∈ ∆A1 such that for every action a2 ∈ A2, u1(p, a2) > u1(a1, a2).

Prove that each action ai ∈ A1 is a best response to some mixed strategy q ∈ ∆A2 if and only if ai
is not distributionally strictly dominated. In other words, if and only if ai is not strictly distributionally

dominated, there is some q ∈ ∆A2 such that:

ai ∈ arg max
a∈A1

u1(a, q).

HINT: Use the minimax theorem.
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