Lecture 1: Introduction to Differential Privacy
and the Laplace Mechanism

1 Introduction

Differential privacy is a rigorous, mathematical framework that enables the
protection of individual privacy in datasets while still allowing for useful
statistical analysis. It ensures that any output from a differentially private
algorithm is nearly the same, whether or not an individual’s data is included
in the dataset. This provides a formal measure of privacy protection and
makes it difficult for an adversary to infer information about an individual.

2 Definition of Differential Privacy

2.1 Adjacent Datasets

Two datasets D; and D, are said to be adjacent if they differ in the data of
exactly one individual. Formally, they are adjacent if:

’DlAD2’ - 1

2.2 eDifferential Privacy

A randomized algorithm A satisfies e-differential privacy if for any two ad-
jacent datasets D; and D,, and for any possible output O C Range(.A), the
following inequality holds:




Here, € is a privacy parameter. Smaller values of € imply stronger privacy
guarantees.

3 The Laplace Mechanism

3.1 Definition

The Laplace mechanism is a fundamental technique for achieving differential
privacy. Given a function f : D — R?, where D is the domain of the dataset
and d is the dimension of the output, the Laplace mechanism adds Laplace
noise to the output of f.

Let b be the scale parameter of the Laplace distribution, which is given
by:

1 x
Lap(z|b) = 2¢ 7

Given a dataset D, the Laplace mechanism A is defined as:

A(D) = f(D) + Lap(0]p)*

3.2 Sensitivity

To ensure e-differential privacy, we need to determine the appropriate scale
parameter b. This is where the sensitivity of the function f comes into play.
The sensitivity Af of a function f is the maximum difference in the output
of f when applied to any two adjacent datasets:

Af = max [f(Dy) = f(D2)]h

Di,Dy:|D1ADy|=1

3.3 Achieving e-Differential Privacy

To achieve e-differential privacy, we choose the scale parameter b as:

_Af
e

With this choice of b, the Laplace mechanism A satisfies e-differential
privacy.

b



4 Proof: Laplace Mechanism is Differentially
Private

The Laplace mechanism A(D) = f(D) + Lap(0|b)? satisfies e-differential
privacy, where b = 2L and Af is the sensitivity of the function f.

Proof. Let Dy and D be any two adjacent datasets, and let O C Range(.A).
We need to show that:

Pr[A(D,) € O]

Pr[A(Dy) € O]

Let y; = f(D1) and yo = f(D2). Then, we have:

<ef

Pr[A(Dy) € O]  Prly + Lap(0|b)* € O]
Pr[A(Dsy) € O] Prlys + Lap(0[b)? € O]
By defining O" = {z — y; : € O}, we can rewrite the probability ratio
as:

Pr[Lap(0]b)? € O
Pr{Lap(0[p)? € O+ (y1 = y»)]
Let Lapy(z) = Lap(z|b). Then, for any = € O, we have:
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Lapy () _ %e
Lapy(z — (1 — y2)) %6_%
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The second-to-last inequality follows from the triangle inequality and the
definition of sensitivity. Thus, we have:

Lapy(z)
Lapy(z — (y1 — y2))
Integrating both sides of this inequality over z € O', we obtain:

<e
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Pr[Lap(0[b)? € O] <
e

Pr{Lap(0]b)¢ € O" + (y1 — y2)] —
This completes the proof that the Laplace mechanism satisfies e-differential
privacy. O

€

5 Example: Querying the Mean of a Dataset

Suppose we have a dataset D of n real numbers, where each number is in the
range [0, M]. We want to compute the mean of the dataset while preserving
differential privacy. To do this, we can use the Laplace mechanism.

5.1 Function and Sensitivity

First, we define the function f that computes the mean of a dataset:

(D)= 37D,

Next, we compute the sensitivity of f. Since the range of each data point
is [0, M], the maximum difference in the mean when we add or remove a data
point is % Therefore, the sensitivity Af is:

M
Af =—

n

5.2 Applying the Laplace Mechanism

To achieve e-differential privacy, we set the scale parameter b as:

Af M
€ e
Now, we can apply the Laplace mechanism to compute the differentially
private mean:

b:

A(D) = (D) + Lap(Olt) = = > Dy + Lap (0‘%>

By adding Laplace noise with the appropriate scale parameter, we can
compute the mean of the dataset while preserving e-differential privacy.
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6 Conclusion

In this lecture, we introduced the concept of differential privacy, defined
e-differential privacy, and analyzed the Laplace mechanism. We also demon-
strated how to apply the Laplace mechanism to query the mean of a dataset
while preserving privacy. In the next lectures, we will explore other mecha-
nisms and techniques for achieving differential privacy in various settings.
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