
Lecture 1: Introduction to Differential Privacy
and the Laplace Mechanism

1 Introduction

Differential privacy is a rigorous, mathematical framework that enables the
protection of individual privacy in datasets while still allowing for useful
statistical analysis. It ensures that any output from a differentially private
algorithm is nearly the same, whether or not an individual’s data is included
in the dataset. This provides a formal measure of privacy protection and
makes it difficult for an adversary to infer information about an individual.

2 Definition of Differential Privacy

2.1 Adjacent Datasets

Two datasets D1 and D2 are said to be adjacent if they differ in the data of
exactly one individual. Formally, they are adjacent if:

|D1∆D2| = 1

2.2 ϵ-Differential Privacy

A randomized algorithm A satisfies ϵ-differential privacy if for any two ad-
jacent datasets D1 and D2, and for any possible output O ⊆ Range(A), the
following inequality holds:

Pr[A(D1) ∈ O]

Pr[A(D2) ∈ O]
≤ eϵ

1



Here, ϵ is a privacy parameter. Smaller values of ϵ imply stronger privacy
guarantees.

3 The Laplace Mechanism

3.1 Definition

The Laplace mechanism is a fundamental technique for achieving differential
privacy. Given a function f : D → Rd, where D is the domain of the dataset
and d is the dimension of the output, the Laplace mechanism adds Laplace
noise to the output of f .

Let b be the scale parameter of the Laplace distribution, which is given
by:

Lap(x|b) = 1

2b
e−

|x|
b

Given a dataset D, the Laplace mechanism A is defined as:

A(D) = f(D) + Lap(0|b)d

3.2 Sensitivity

To ensure ϵ-differential privacy, we need to determine the appropriate scale
parameter b. This is where the sensitivity of the function f comes into play.
The sensitivity ∆f of a function f is the maximum difference in the output
of f when applied to any two adjacent datasets:

∆f = max
D1,D2:|D1∆D2|=1

∥f(D1)− f(D2)∥1

3.3 Achieving ϵ-Differential Privacy

To achieve ϵ-differential privacy, we choose the scale parameter b as:

b =
∆f

ϵ

With this choice of b, the Laplace mechanism A satisfies ϵ-differential
privacy.
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4 Proof: Laplace Mechanism is Differentially

Private

The Laplace mechanism A(D) = f(D) + Lap(0|b)d satisfies ϵ-differential
privacy, where b = ∆f

ϵ
and ∆f is the sensitivity of the function f .

Proof. Let D1 and D2 be any two adjacent datasets, and let O ⊆ Range(A).
We need to show that:

Pr[A(D1) ∈ O]

Pr[A(D2) ∈ O]
≤ eϵ

Let y1 = f(D1) and y2 = f(D2). Then, we have:

Pr[A(D1) ∈ O]

Pr[A(D2) ∈ O]
=

Pr[y1 + Lap(0|b)d ∈ O]

Pr[y2 + Lap(0|b)d ∈ O]

By defining O′ = {x − y1 : x ∈ O}, we can rewrite the probability ratio
as:

Pr[Lap(0|b)d ∈ O′]

Pr[Lap(0|b)d ∈ O′ + (y1 − y2)]

Let Lapb(x) = Lap(x|b). Then, for any x ∈ O′, we have:

Lapb(x)

Lapb(x− (y1 − y2))
=

1
2b
e−

|x|
b

1
2b
e−

|x−(y1−y2)|
b

= e
|x−(y1−y2)|−|x|

b

≤ e
|y1−y2|

b

≤ e
∆f
b

= eϵ

The second-to-last inequality follows from the triangle inequality and the
definition of sensitivity. Thus, we have:

Lapb(x)

Lapb(x− (y1 − y2))
≤ eϵ

Integrating both sides of this inequality over x ∈ O′, we obtain:
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Pr[Lap(0|b)d ∈ O′]

Pr[Lap(0|b)d ∈ O′ + (y1 − y2)]
≤ eϵ

This completes the proof that the Laplace mechanism satisfies ϵ-differential
privacy.

5 Example: Querying the Mean of a Dataset

Suppose we have a dataset D of n real numbers, where each number is in the
range [0,M ]. We want to compute the mean of the dataset while preserving
differential privacy. To do this, we can use the Laplace mechanism.

5.1 Function and Sensitivity

First, we define the function f that computes the mean of a dataset:

f(D) =
1

n

n∑
i=1

Di

Next, we compute the sensitivity of f . Since the range of each data point
is [0,M ], the maximum difference in the mean when we add or remove a data
point is M

n
. Therefore, the sensitivity ∆f is:

∆f =
M

n

5.2 Applying the Laplace Mechanism

To achieve ϵ-differential privacy, we set the scale parameter b as:

b =
∆f

ϵ
=

M

nϵ
Now, we can apply the Laplace mechanism to compute the differentially

private mean:

A(D) = f(D) + Lap(0|b) = 1

n

n∑
i=1

Di + Lap

(
0|M
nϵ

)
By adding Laplace noise with the appropriate scale parameter, we can

compute the mean of the dataset while preserving ϵ-differential privacy.
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6 Conclusion

In this lecture, we introduced the concept of differential privacy, defined
ϵ-differential privacy, and analyzed the Laplace mechanism. We also demon-
strated how to apply the Laplace mechanism to query the mean of a dataset
while preserving privacy. In the next lectures, we will explore other mecha-
nisms and techniques for achieving differential privacy in various settings.
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