
The Price of Stochastic Anarchy

Christine Chung1, Katrina Ligett2?, Kirk Pruhs1??, and Aaron Roth2

1 Department of Computer Science
University of Pittsburgh

{chung,kirk}@cs.pitt.edu
2 Department of Computer Science

Carnegie Mellon University
{katrina,alroth}@cs.cmu.edu

Abstract. We consider the solution concept of stochastic stability, and propose
the price of stochastic anarchy as an alternative to the price of (Nash) anarchy
for quantifying the cost of selfishness and lack of coordination in games. As a
solution concept, the Nash equilibrium has disadvantages that the set of stochas-
tically stable states of a game avoid: unlike Nash equilibria, stochastically stable
states are the result of natural dynamics of computationally bounded and decen-
tralized agents, and are resilient to small perturbations from ideal play. The price
of stochastic anarchy can be viewed as a smoothed analysis of the price of an-
archy, distinguishing equilibria that are resilient to noise from those that are not.
To illustrate the utility of stochastic stability, we study the load balancing game
on unrelated machines. This game has an unboundedly large price of Nash anar-
chy even when restricted to two players and two machines. We show that in the
two player case, the price of stochastic anarchy is 2, and that even in the general
case, the price of stochastic anarchy is bounded. We conjecture that the price of
stochastic anarchy is O(m), matching the price of strong Nash anarchy without
requiring player coordination. We expect that stochastic stability will be useful in
understanding the relative stability of Nash equilibria in other games where the
worst equilibria seem to be inherently brittle.
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1 Introduction

Quantifying the price of (Nash) anarchy is one of the major lines of research in algorith-
mic game theory. Indeed, one fourth of the authoritative algorithmic game theory text
edited by Nisan et al. [20] is wholly dedicated to this topic. But the Nash equilibrium
solution concept has been widely criticized [15, 4, 9, 10]. First, it is a solution charac-
terization without a road map for how players might arrive at such a solution. Second,
at Nash equilibria, players are unrealistically assumed to be perfectly rational, fully
informed, and infallible. Third, computing Nash equilibria is PPAD-hard for even 2-
player, n-action games [6], and it is therefore considered very unlikely that there exists
a polynomial time algorithm to compute a Nash equilibrium even in a centralized man-
ner. Thus, it is unrealistic to assume that selfish agents in general games will converge
precisely to the Nash equilibria of the game, or that they will necessarily converge to
anything at all. In addition, the price of Nash anarchy metric comes with its own weak-
nesses; it blindly uses the worst case over all Nash equilibria, despite the fact that some
equilibria are more resilient than others to perturbations in play.

Considering these drawbacks, computer scientists have paid relatively little atten-
tion to if or how Nash equilibria will in fact be reached, and even less to the question of
which Nash equilibria are more likely to be played in the event players do converge to
Nash equilibria. To address these issues, we employ the stochastic stability framework
from evolutionary game theory to study simple dynamics of computationally efficient,
imperfect agents. Rather than defining a-priori states such as Nash equilibria, which
might not be reachable by natural dynamics, the stochastic stability framework allows
us to define a natural dynamic, and from it derive the stable states. We define the price
of stochastic anarchy to be the ratio of the worst stochastically stable solution to the
optimal solution. The stochastically stable states of a game may, but do not necessar-
ily, contain all Nash equilibria of the game, and so the price of stochastic anarchy may
be strictly better than the price of Nash anarchy. In games for which the stochastically
stable states are a subset of the Nash equilibria, studying the ratio of the worst stochas-
tically stable state to the optimal state can be viewed as a smoothed analysis of the
price of anarchy, distinguishing Nash equilibria that are brittle to small perturbations in
perfect play from those that are resilient to noise.

The evolutionary game theory literature on stochastic stability studies n-player
games that are played repeatedly. In each round, each player observes her action and its
outcome, and then uses simple rules to select her action for the next round based only
on her size-restricted memory of the past rounds. In any round, players have a small
probability of deviating from their prescribed decision rules. The state of the game is
the contents of the memories of all the players. The stochastically stable states in such a
game are the states with non-zero probability in the limit of this random process, as the
probability of error approaches zero. The play dynamics we employ in this paper are
the imitation dynamics studied by Josephson and Matros [16]. Under these dynamics,
each player imitates the strategy that was most successful for her in recent memory.

To illustrate the utility of stochastic stability, we study the price of stochastic anar-
chy of the unrelated load balancing game [2, 1, 11]. To our knowledge, we are the first
to quantify the loss of efficiency in any system when the players are in stochastically
stable equilibria. In the load balancing game on unrelated machines, even with only two
players and two machines, there are Nash equilibria with arbitrarily high cost, and so
the price of Nash anarchy is unbounded. We show that these equilibria are inherently
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brittle, and that for two players and two machines, the price of stochastic anarchy is
2. This result matches the strong price of anarchy [1] without requiring coordination
(at strong Nash equilibria, players have the ability to coordinate by forming coalitions).
We further show that in the general n-player, m-machine game, the price of stochastic
anarchy is bounded. More precisely the price of stochastic anarchy is upper bounded by
the nmth n-step Fibonacci number. We also show that the price of stochastic anarchy
is at least m + 1.

Our work provides new insight into the equilibria of the load balancing game. Un-
like some previous work on dynamics for games, our work does not seek to propose
practical dynamics with fast convergence; rather, we use simple dynamics as a tool for
understanding the inherent relative stability of equilibria. Instead of relying on player
coordination to avoid the Nash equilibria with unbounded cost (as is done in the study
of strong equilibria), we show that these bad equilibria are inherently unstable in the
face of occasional uncoordinated mistakes. We conjecture that the price of stochastic
anarchy is closer to the linear lower bound, paralleling the price of strong anarchy.

In light of our results, we believe the techniques in this paper will be useful for
understanding the relative stability of Nash equilibria in other games for which the worst
equilibria are brittle. Indeed, for a variety of games in the price of anarchy literature,
the worst Nash equilibria of the lower bound instances are not stochastically stable.

1.1 Related Work

We give a brief survey of related work in three areas: alternatives to Nash equilibria as
a solution concept, stochastic stability, and the unrelated load balancing game.

Recently, several papers have noted that the Nash equilibrium is not always a suit-
able solution concept for computationally bounded agents playing in a repeated game,
and have proposed alternatives. Goemans et al. [15] study players who sequentially
play myopic best responses, and quantify the price of sinking that results from such
play. Fabrikant and Papadimitriou [9] propose a model in which agents play restricted
finite automata. Blum et al. [4, 3] assume only that players’ action histories satisfy a
property called no regret, and show that for many games, the resulting social costs are
no worse than those guaranteed by price of anarchy results.

Although we believe this to be the first work studying stochastic stability in the
computer science literature, computer scientists have recently employed other tools
from evolutionary game theory. Fisher and Vöcking [13] show that under replicator
dynamics in the routing game studied by Roughgarden and Tardos [22], players con-
verge to Nash. Fisher et al. [12] went on to show that using a simultaneous adaptive
sampling method, play converges quickly to a Nash equilibrium. For a thorough survey
of algorithmic results that have employed or studied other evolutionary game theory
techniques and concepts, see Suri [23].

Stochastic stability and its adaptive learning model as studied in this paper were first
defined by Foster and Young [14], and differ from the standard game theory solution
concept of evolutionarily stable strategies (ESS). ESS are a refinement of Nash equilib-
ria, and so do not always exist, and are not necessarily associated with a natural play
dynamic. In contrast, a game always has stochastically stable states that result (by con-
struction) from natural dynamics. In addition, ESS are resilient only to single shocks,
whereas stochastically stable states are resilient to persistent noise.
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Stochastic stability has been widely studied in the economics literature (see, for
example, [24, 17, 19, 5, 7, 21, 16]). We discuss in Sect. 2 concepts from this body of
literature that are relevant to our results. We recommend Young [25] for an informative
and readable introduction to stochastic stability, its adaptive learning model, and some
related results. Our work differs from prior work in stochastic stability in that it is the
first to quantify the social utility of stochastically stable states, the price of stochastic
anarchy.

We also note a connection between the stochastically stable states of the game and
the sinks of a game, recently introduced by Goemans et al. as another way of studying
the dynamics of computationally bounded agents. In particular, the stochastically stable
states of a game under the play dynamics we consider correspond to a subset of the
sink equilibria, and so provide a framework for identifying the stable sink equilibria.
In potential games, the stochastically stable states of the play dynamics we consider
correspond to a subset of the Nash equilibria, thus providing a method for identifying
which of these equilibria are stable.

In this paper, we study the price of stochastic anarchy in load balancing. Even-Dar
et al. [1] show that when playing the load balancing game on unrelated machines, any
turn-taking improvement dynamics converge to Nash. Andelman et al. [1] observe that
the price of Nash anarchy in this game is unbounded and they show that the strong price
of anarchy is linear in the number of machines. Fiat et al. [11] tighten their upper bound
to match their lower bound at a strong price of anarchy of exactly m.

2 Model and Background

We now formalize (from Young [24]) the adaptive play model and the definition of
stochastic stability. We then formalize the play dynamics that we consider. We also
provide in this section the results from the stochastic stability literature that we will
later use for our results.

2.1 Adaptive Play and Stochastic Stability

Let G = (X, π) be a game with n players, where X =
∏n

j=1 Xi represents the strategy
sets Xi for each player i, and π =

∏n
j=1 πi represents the payoff functions πi : X → R

for each player. G is played repeatedly for successive time periods t = 1, 2, . . ., and at
each time step t, player i plays some action st

i ∈ Xi. The collection of all players’
actions at time t defines a play profile St = (St

1, S
t
2, . . . , S

t
n). We wish to model com-

putationally efficient agents, and so we imagine that each agent has some finite memory
of size z, and that after time step t, all players remember a history consisting of a se-
quence of play profiles ht = (St−z+1, St−z+2, . . . , St) ∈ (X)z .

We assume that each player i has some efficiently computable function pi : (X)z ×
Xi → R that, given a particular history, induces a sampleable probability distribution
over actions (for all players i and histories h,

∑
a∈Xi

pi(h, a) = 1). We write p for∏
i pi. We wish to model imperfect agents who make mistakes, and so we imagine that

at time t each player i plays according to pi with probability 1− ε, and with probability
ε plays some action in Xi uniformly at random.3 That is, for all players i, for all actions

3 The mistake probabilities need not be uniform random—all that we require is that the distri-
bution has support on all actions in Xi.
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a ∈ Xi, Pr[st
i = a] = (1− ε)pi(ht, a) + ε

|Xi| . The dynamics we have described define
a Markov process PG,p,ε with finite state space H = (X)z corresponding to the finite
histories. For notational simplicity, we will write the Markov process as P ε when there
is no ambiguity.

The potential successors of a history can be obtained by observing a new play pro-
file, and “forgetting” the least recent play profile in the current history.

Definition 2.1. For any S′ ∈ X , A history h′ = (St−z+2, St−z+3, . . . , St, S′) is a
successor of history ht = (St−z+1, St−z+2, . . . , St).

The Markov process P ε has transition probability pε
h,h′ of moving from state h =

(S1, . . . , Sz) to state h′ = (T 1, . . . , T z):

pε
h,h′ =

{∏n
i=1(1− ε) pi(h, T z

i ) + ε
|Xi| if h′ is a successor of h;

0 otherwise.

We will refer to P 0 as the unperturbed Markov process. Note that for ε > 0,
pε

h,h′ > 0 for every history h and successor h′, and that for any two histories h and
ĥ not necessarily a successor of h, there is a series of z histories h1, . . . , hz such that
h1 = h, hz = ĥ, and for all 1 < i ≤ z, hi is a successor of hi−1. Thus there is positive
probability of moving between any h and any ĥ in z steps, and so P ε is irreducible.
Similarly, there is a positive probability of moving between any h and any ĥ in z + 1
steps, and so P ε is aperiodic. Therefore, P ε has a unique stationary distribution µε.

The stochastically stable states of a particular game and player dynamics are the
states with nonzero probability in the limit of the stationary distribution.

Definition 2.2 (Foster and Young [14]). A state h is stochastically stable relative to
P ε if limε→0 µε(h) > 0.

Intuitively, we should expect a process P ε to spend almost all of its time at its stochas-
tically stable states when ε is small.

When a player i plays at random rather than according to pi, we call this a mistake.

Definition 2.3 (Young [24]). Suppose h′ = (St−z+1, . . . , St) is a successor of h. A
mistake in the transition between h and h′ is any element St

i such that pi(h, St
i ) = 0.

Note that mistakes occur with probability ≤ ε.

We can characterize the number of mistakes required to get from one history to
another.

Definition 2.4 (Young [24]). For any two states h, h′, the resistance r(h, h′) is the
minimum total number of mistakes involved in the transition h → h′ if h′ is a successor
of h. If h′ is not a successor of h, then r(h, h′) = ∞.

Note that the transitions of zero resistance are exactly those that occur with positive
probability in the unperturbed Markov process P 0.

Definition 2.5. We refer to the sinks of P 0 as recurrent classes. In other words, a recur-
rent class of P 0 is a set of states C ⊆ H such that any state in C is reachable from any
other state in C and no state outside C is accessible from any state inside C.
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We may view the state space H as the vertex set of a directed graph, with an edge
from h to h′ if h′ is a successor of h, with edge weight r(h, h′).

Observation 2.6. We observe that the recurrent classes H1,H2, . . ., where each Hi ⊆
H , have the following properties:

1. From every vertex h ∈ H , there is a path of cost 0 to one of the recurrent classes.
2. For each Hi and for every pair of vertices h, h′ ∈ Hi, there is a path of cost 0

between h and h′.
3. For each Hi, every edge (h, h′) with h ∈ Hi, h

′ 6∈ Hi has positive cost.

Let ri,j denote the cost of the shortest path between Hi and Hj in the graph de-
scribed above. We now consider the complete directed graph G with vertex set {H1,H2, . . .}
in which the edge (Hi,Hj) has weight ri,j . Let Ti be a directed minimum-weight span-
ning in-tree of G rooted at vertex Hi. (An in-tree is a directed tree where each edge is
oriented toward the root.) The stochastic potential of Hi is defined to be the sum of the
edge weights in Ti.

Young proves the following theorem characterizing stochastically stable states:

Theorem 2.7 (Young [24]). In any n-player game G with finite strategy sets and any
set of action distributions p, the stochastically stable states of PG,p,ε are the recurrent
classes of minimum stochastic potential.

2.2 Imitation Dynamics

In this paper, we study agents who behave according to a slight modification of the
imitation dynamics introduced by Josephson and Matros [16]. (We note that this modi-
fication is of no consequence to the results of Josephson and Matros [16] that we present
below.) Player i using imitation dynamics parameterized by σ ∈ N chooses his action
at time t + 1 according to the following mechanism:

1. Player i selects a set Y of σ play profiles uniformly at random from the z profiles
in history ht.

2. For each play profile S ∈ Y , i recalls the payoff πi(S) he obtained from playing
action Si.

3. Player i plays the action among these that corresponds to his highest payoff; that
is, he plays the ith component of argmaxS∈Y πi(S). In the case of ties, he plays a
highest-payoff action at random.

The value σ is a parameter of the dynamics that is taken to be n ≤ σ ≤ z/2. These
dynamics can be interpreted as modeling a situation in which at each time step, players
are chosen at random from a pool of identical players, who each played in a subset of the
last z rounds. The players are computationally simple, and so do not counterspeculate
the actions of their opponents, instead playing the action that has worked the best for
them in recent memory.

We will say that a history h is monomorphic if the same action profile S has been
repeated for the last z rounds: h = (S, S, . . . , S). Josephson and Matros [16] prove the
following useful fact:

Proposition 2.8. A set of states is a recurrent class of the imitation dynamics if and
only if it is a singleton set consisting of a monomorphic state.
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Since the stochastically stable states are a subset of the recurrent classes, we can
associate with each stochastically stable state h = (S, . . . , S) the unique action profile
S it contains. This allows us to now define the price of stochastic anarchy with respect
to imitation dynamics. For brevity, we will refer to this throughout the paper as simply
the price of stochastic anarchy.

Definition 2.9. Given a game G = (X, π) with a social cost function γ : X → R, the
price of stochastic anarchy of G is equal to max γ(S)

γ(OPT) , where OPT is the play profile
that minimizes γ and the max is taken over all play profiles S such that h = (S, . . . , S)
is stochastically stable.

Given a game G, we define the better response graph of G: The set of vertices
corresponds to the set of action profiles of G, and there is an edge between two action
profiles S and S′ if and only if there exists a player i such that S′ differs from S only
in player i’s action, and player i does not decrease his utility by unilaterally deviating
from Si to S′

i. Josephson and Matros [16] prove the following relationship between this
better response graph and the stochastically stable states of a game:

Theorem 2.10. If V is the set of stochastically stable states under imitation dynamics,
then V = {Si : (Si, . . . , Si) ∈ V} is either a strongly connected component of the
better response graph of G, or a union of strongly connected components.

Goemans et al. [15] introduce the notion of sink equilibria and a corresponding
notion of the “price of sinking”, which is the ratio of the social welfare of the worst
sink equilibrium to that of the social optimum. We note that the strongly connected
components of the better response graph of G correspond to the sink equilibria (under
sequential better-response play) of G, and so Theorem 2.10 implies that the stochasti-
cally stable states under imitation dynamics correspond to a subset of the sinks of the
better response graph of G, and we get the following corollary:

Corollary 2.11. The price of stochastic anarchy of a game G under imitation dynamics
is at most the price of sinking of G.

3 Load Balancing: Game Definition and Price of Nash Anarchy

The load balancing game on unrelated machines models a set of agents who wish to
schedule computing jobs on a set of machines. The machines have different strengths
and weaknesses (for example, they may have different types of processors or differing
amounts of memory), and so each job will take a different amount of time to run on
each machine. Jobs on a single machine are executed in parallel such that all jobs on
any given machine finish at the same time. Thus, each agent who schedules his job on
machine Mi endures the load on machine Mi, where the load is defined to be the sum of
the running times of all jobs scheduled on Mi. Agents wish to minimize the completion
time for their jobs, and social cost is defined to be the makespan: the maximum load on
any machine.

Formally, an instance of the load balancing game on unrelated machines is defined
by a set of n players and m machines M = {M1, . . . ,Mm}. The action space for each
player is Xi = M . Each player i has some cost ci,j on machine j. Denote the cost
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of machine Mj for action profile S by Cj(S) =
∑

i s.t. Si=j ci,j . Each player i has
utility function πi(S) = −Csi

(S). The social cost of an action profile S is γ(S) =
maxj∈M Cj(S). We define OPT to be the action profile that minimizes social cost:
OPT = argminS∈X γ(S). Without loss of generality, we will always normalize so
that γ(OPT) = 1.

The coordination ratio of a game (also known as the price of anarchy) was intro-
duced by Koutsoupias and Papadimitriou [18], and is intended to quantify the loss of
efficiency due to selfishness and the lack of coordination among rational agents. Given
a game G and a social cost function γ, it is simple to quantify the OPT game state S:
OPT = argmin γ(S). It is less clear how to model rational selfish agents. In most prior
work it has been assumed that selfish agents play according to a Nash equilibrium, and
the price of anarchy has been defined as the ratio of the cost of the worst (pure strategy)
Nash state to OPT. In this paper, we refer to this measure as the price of Nash anarchy,
to distinguish it from the price of stochastic anarchy, which we defined in Sect. 2.2.

Definition 3.1. For a game G with a set of Nash equilibrium states E , the price of
(Nash) anarchy is maxS∈E

γ(S)
γ(OPT) .

We show here that even with only two players and two machines, the load balancing
game on unrelated machines has a price of Nash anarchy that is unbounded by any
function of m and n. Consider the two-player, two-machine game with c1,1 = c2,2 = 1
and c1,2 = c2,1 = 1/δ, for some 0 < δ < 1. Then the play profile OPT = (M1,M2)
is a Nash equilibrium with cost 1. However, observe that the profile S∗ = (M2,M1)
is also a Nash equilibrium, with cost 1/δ (since by deviating, players can only increase
their cost from 1/δ to 1/δ + 1). The price of anarchy of the load balancing game is
therefore 1/δ, which can be unboundedly large, although m = n = 2.

4 Upper Bound on Price of Stochastic Anarchy

The load balancing game is an ordinal potential game [8], and so the sinks of the better-
response graph correspond to the pure strategy Nash equilibria. We therefore have by
Corollary 2.11 that the stochastically stable states are a subset of the pure strategy Nash
equilibria of the game, and the price of stochastic anarchy is at most the price of anarchy.
We have noted that even in the two-person, two-machine load balancing game, the price
of anarchy is unbounded (even for pure strategy equilibria). Therefore, as a warmup, we
bound the price of stochastic anarchy of the two-player, two-machine case.

4.1 Two Players, Two Machines

Theorem 4.1. In the two-player, two-machine load balancing game on unrelated ma-
chines, the price of stochastic anarchy is 2.

Note that the two-player, two-machine load balancing game can have at most two
strict pure strategy Nash equilibria. (For brevity we consider the case of strict equilibria.
The argument for weak equilibria is similar). Note also that either there is a unique
Nash equilibrium at (M1,M1) or (M2,M2), or there are two at N1 = (M1,M2) and
N2 = (M2,M1).

An action profile N Pareto dominates N ′ if for each player i, CNi
(N) ≤ CN ′

i
(N ′).
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Lemma 4.2. If there are two Nash equilibria, and N1 Pareto dominates N2, then only
N1 is stochastically stable (and vice versa).

Proof. Note that if N1 Pareto dominates N2, then it also Pareto dominates (M1,M1)
and (M2,M2), since each is a unilateral deviation from a Nash equilibrium for both
players. Consider the monomorphic state (N2, . . . , N2). If both players make simulta-
neous mistakes at time t to N1, then by assumption, N1 will be the action profile in
ht+1 = (N2, . . . , N2, N1) with lowest cost for both players. Therefore, with positive
probability, both players will draw samples of their histories containing the action pro-
file N1, and therefore play it, until ht+z = (N1, . . . , N1). Therefore, there is an edge
in G from h = {N2, . . . , N2} to h′ = {N1, . . . , N1} of resistance 2. However, there is
no edge from h′ to any other state in G with resistance < σ. Recall our initial obser-
vation that in fact, N1 Pareto dominates all other action profiles. Therefore, no set of
mistakes will yield an action profile with higher payoff than N1 for either player, and so
to leave state h′ will require at least σ mistakes (so that some player may draw a sample
from their history that contains no instance of action profile h). Therefore, given any
minimum spanning tree of G rooted at h, we may add an edge (h, h′) of weight 2, and
remove the outgoing edge from h′, which we have shown must have cost ≥ σ. This is a
minimum spanning tree rooted at h′ with strictly lower cost. We have therefore shown
that h′ has strictly lower stochastic potential than h, and so by Theorem 2.7, h is not
stochastically stable. Since at least one Nash equilibrium must be stochastically stable,
h′ = (N1, . . . , N1) is the unique stochastically stable state. ut
Proof (of Theorem 4.1). If there is only one Nash equilibrium (M1,M1) or (M2,M2),
then it must be the only stochastically stable state (since in potential games these are a
nonempty subset of the pure strategy Nash equilibria), and must also be OPT. In this
case, the price of anarchy is equal to the price of stochastic anarchy, and is 1. Therefore,
we may assume that there are two Nash equilibria, N1 and N2. If N1 Pareto dominates
N2, then N1 must be OPT (since load balancing is a potential game), and by Lemma
4.2, N1 is the only stochastically stable state. In this case, the price of stochastic anarchy
is 1 (strictly less than the (possibly unbounded) price of anarchy). A similar argument
holds if N2 Pareto dominates N1. Therefore, we may assume that neither N1 nor N2

Pareto dominate the other.
Without loss of generality, assume that N1 is OPT, and that in N1 = (M1,M2),

M2 is the maximally loaded machine. Suppose that M2 is also the maximally loaded
machine in N2. (The other case is similar.) Together with the fact that N1 does not
Pareto dominate N2, this gives us the following:

c1,1 ≤ c2,2

c2,1 ≤ c2,2

c1,2 ≥ c2,2

From the fact that both N1 and N2 are Nash equilibria, we get:

c1,1 + c2,1 ≥ c2,2

c1,1 + c2,1 ≥ c1,2

In this case, the price of anarchy among pure strategy Nash equilibria is:

c1,2

c2,2
≤ c1,1 + c2,1

c2,2
≤ c1,1 + c2,1

c1,1
= 1 +

c2,1

c1,1
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Similarly, we have:

c1,2

c2,2
≤ c1,1 + c2,1

c2,2
≤ c1,1 + c2,1

c2,1
= 1 +

c1,1

c2,1

Combining these two inequalities, we get that the price of Nash anarchy is at most
1 + min(c1,1/c2,1, c2,1/c1,1) ≤ 2. Since the price of stochastic anarchy is at most the
price of anarchy over pure strategies, this completes the proof. ut

4.2 General Case: n Players, m Machines

Theorem 4.3. The general load balancing game on unrelated machines has price of
stochastic anarchy bounded by a function Ψ depending only on n and m, and

Ψ(n, m) ≤ m · F(n)(nm + 1),

where F(n)(i) denotes the ith n-step Fibonacci number.4

To prove this upper bound, we show that any solution worse than our upper bound
cannot be stochastically stable. To show this impossibility, we take any arbitrary solu-
tion worse than our upper bound and show that there must always be a minimum cost
in-tree in G rooted at a different solution that has strictly less cost than the minimum
cost in-tree rooted at that solution. We then apply Proposition 2.8 and Theorem 2.7. The
proof proceeds by a series of lemmas.

Definition 4.4. For any monomorphic Nash state h = (S, . . . , S), let the Nash Graph
of h be a directed graph with vertex set M and directed edges (Mi,Mj) if there is some
player i with Si = Mi and OPTi = Mj . Let the closure M̄i of machine Mi, be the set
of states reachable from Mi by following 0 or more edges of the Nash graph.

Lemma 4.5. In any monomorphic Nash state h = (S, . . . , S), if there is a machine Mi

such that Ci(S) > m, then every machine Mj ∈ M̄i has cost Cj(S) > 1.

Proof. Suppose this were not the case, and there exists an Mj ∈ M̄i with Cj(S) ≤ 1.
Since Mj ∈ M̄i, there exists a simple path (Mi = M1,M2, . . . ,Mk = Mj) with
k ≤ m. Since S is a Nash equilibrium, it must be the case that Ck−1(S) ≤ 2 because
by the definition of the Nash graph, the directed edge from Mk−1 to Mk implies that
there is some player i with Si = Mk−1, but OPTi = Mk. Since 1 = γ(OPT) ≥
Ck(OPT) ≥ ci,k, if player i deviated from his action in Nash profile S to S′

i = Mk,
he would experience cost Ck(S) + ci,k ≤ 1 + 1 = 2. Since he cannot benefit from
deviating (by definition of Nash), it must be that his cost in S, Ck−1(S) ≤ 2. By the
same argument, it must be that Ck−2(S) ≤ 3, and by induction, C1(S) ≤ k ≤ m. ut

Lemma 4.6. For any monomorphic Nash state h = (S, . . . , S) ∈ G with γ(S) > m,
there is an edge from h to some g = (T, . . . , T ) where γ(T ) ≤ m with edge cost ≤ n
in G.

4 F(n)(i) =

(
1 if i ≤ n;Pi

j=i−n F(n)(j) otherwise.
F(n)(i) ∈ o(2i) for any fixed n.
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Proof. Let D = {Mj : Ci(S) ≥ m}, and define the closure of D, D̄ =
⋃

Mi∈D M̄i.
Consider the successor state h′ of h that results when every player i such that St

i ∈ D̄
makes a mistake and plays on their OPT machine St+1

i = OPTi, and all other players
do not make a mistake and continue to play St+1

i = St
i . Note that by the definition of

D̄, for Mj ∈ D̄, for all players i playing machine j in S, OPTi ∈ D̄. Let T = St+1.
Then for all j such that Mj ∈ D̄, Cj(T ) ≤ 1, since Cj(T ) ≤ Cj(OPT) ≤ 1. To see
this, note that for every player i such that St

i = Mj ∈ D̄, St+1
i = Mj if and only if

OPTi = Mj . Similarly, for every player i such that St+1
i = Mj ∈ D̄ but St

i 6= Mj ,
OPTi = Mj , and so for each machine Mj ∈ D̄, the agents playing on Mj in T are
a subset of those playing on Mj at OPT. Note that by Lemma 4.5, for all Mj ∈ D̄,
Cj(S) > 1. Therefore, for every agent i with St

i ∈ D̄, πi(T ) > πi(S), and so for
h′′ = (S, . . . , S, T, T ) a successor of h′, r(h′, h′′) = 0. Reasoning in this way, there
is a path of zero resistance from h′ to g = (T, . . . , T ). We have therefore exhibited
a path between h and g that involves only |{i : St

i ∈ D̄}| ≤ n mistakes. Finally,
we observe that if Mj ∈ D̄ then Cj(T ) ≤ 1, and by construction, if Mj 6∈ D̄, then
Cj(T ) = Cj(S) < m, since as noted above Mj 6∈ D̄ implies that the players playing
Mj in S are the same set playing Mj in T . Thus, we have γ(T ) ≤ m, which completes
the proof. ut
Lemma 4.7. Let h = (S, . . . , S) ∈ G be any monomorphic state with γ(S) ≤ m.
Any path in G from h to a monomorphic state h′ = (S′, . . . , S′) ∈ G where γ(h′) >
m · F(n)(mn + 1) must contain an edge with cost ≥ σ, where F(n)(i) denotes the ith

n-step Fibonacci number.

Proof. Suppose there were some directed path P in G (h = h1, h2, . . . , hl = h′)
such that all edge costs were less than σ. We will imagine assigning costs to players
on machines adversarially: for a player i on machine Mj , we will consider ci,j to be
undefined until play reaches a monomorphic state hk in which he occupies machine
j, at which point we will assign ci,j to be the highest value consistent with his path
from hk−1 to hk. Note that since initially γ(S) ≤ m, we must have for all i ∈ N ,
ci,Si ≤ m = mF(n)(n).

There are mn costs ci,j that we may assign, and we have observed that our first n
assignments have taken values ≤ mF(n)(n) = mF(n)(1). We will assume inductively
that our kth assignment takes value at most mF(n)(k). Let hk = (T, . . . , T ) be the
last monomorphic state in P such that only k cost assignments have been made, and
hk+1 = (T ′, . . . , T ′) be the monomorphic state at which the k + 1st cost assignment
is made for some player i on machine Mj . Since by assumption, fewer than σ mistakes
are made in the transition hk → hk+1, it must be that ci,j ≤ CTi(T ); that is, ci,j can be
no more than player i’s experienced cost in state T . If this were not so, player i would
not have continued playing on machine j in T ′ without additional mistakes, since with
fewer than σ mistakes, any sample of size σ would have contained an instance of T
which would have yielded higher payoff than playing on machine j. Note however that
the cost of any machine Mj in T is at most:

Cj(T ) ≤
∑

i:ci,j 6= undefined

ci,j ≤
n−1∑
i=0

mF(n)(k − i) = mF(n)(k + 1)

where the inequality follows by our inductive assumption. We have therefore shown
that the kth cost assigned is at most mF(n)(k), and so the claim follows since there are
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at most nm costs ci,j that may be assigned, and the cost on any machine in S′ is at most
the sum of the n highest costs. ut

Proof (of Theorem 4.3). Given any state h = (S, . . . , S) ∈ G where γ(S) > m ·
F(n)(mn+1), we can exhibit a state f = (U,U, . . . , U) with lower stochastic potential
than h such that γ(U) ≤ m · F(n)(nm + 1) as follows.

Consider the minimum weight spanning in-tree Th of G rooted at h. We will use
it to construct a spanning in-tree Tf rooted at a state f as follows: We add an edge of
cost at most n from h to some state g = (T, . . . , T ) such that γ(T ) ≤ m (such an
edge is guaranteed to exist by Lemma 4.6). This induces a cycle through h and g. To
correct this, we remove an edge on the path from g to h in Th of cost ≥ σ (such an
edge is guaranteed to exist by Lemma 4.7). Since this breaks the newly induced cycle,
we now have a spanning in-tree Tf with root f = (U,U, . . . , U) such that γ(U) ≤
m · F(n)(mn + 1). Since the added edge has lower cost than the removed edge, Tf has
lower cost than Th, and so f has lower stochastic potential than h.

Since the stochastically stable states are those with minimum stochastic potential by
Theorem 2.7 and Proposition 2.8, we have proven that h is not stochastically stable. ut

5 Lower Bound on Price of Stochastic Anarchy

In this section, we show that the price of stochastic anarchy for load balancing is at least
m, the price of strong anarchy. We show this by exhibiting an instance for which the
worst stochastically stable solution costs m times the optimal solution. Our proof that
this bad solution is stochastically stable uses the following lemma to show that the min
cost in-tree rooted at that solution in G has cost as low as the min cost in-tree rooted at
any other solution. We then simply apply Theorem 2.7 and Proposition 2.8.

Lemma 5.1. For two monomorphic states h and h′ corresponding to play profiles S
and S′, if S′ is a unilateral better response deviation from S by some player i, then the
resistance r(h, h′) = 1.

Proof. Suppose player i makes the mistake of playing S′
i instead of Si. Since this is a

better-response move, he experiences lower cost, and so long as he samples an instance
of S′, he will continue to play S′

i. No other player will deviate without a mistake, and
so play will reach monomorphic state h′ after z turns. ut

M1 M2 M3 M4

1 1 1− δ ∞ ∞
2 2− 2δ 1 2− 3δ ∞
3 3− 4δ ∞ 1 3− 5δ
4 4− 6δ ∞ ∞ 1

Fig. 1. A load-balancing game with price of stochastic anarchy m for m = 4. The entry corre-
sponding to player i and machine Mj represents the cost ci,j . The δs represent some sufficiently
small positive value and the ∞s can be any sufficiently large value. The optimal solution is
(M1, M2, M3, M4) and costs 1, but (M2, M3, M4, M1) is also stochastically stable and costs
4− 6δ. This example can be easily generalized to arbitrary m.

11



Theorem 5.2. The price of stochastic anarchy of the load balancing game on unrelated
machines is at least m.

Proof. To aid in the illustration of this proof, refer to the instance of the load balanc-
ing game pictured in Fig. 1. Consider the instance of the load balancing game on m
unrelated machines where n = m and the costs are as follows. For each player i from
1 to n, let ci,i = 1. For each player i from 2 to n, let ci,1 = i − 2(i − 1)δ, where δ
is a diminishingly small positive integer. Finally, for each player i from 1 to n − 1, let
ci,i+1 = i−(2i−1)δ. Let all other costs be∞ or some sufficiently large positive value.

Note that in this instance the optimal solution is achieved when each player i plays
on machine Mi and thus γ(OPT) = 1. Also note that the only pure-strategy Nash
states in this instance are the profiles N1 = (M1,M2, . . . ,Mm),
N2 = (M2,M1,M3,M4, . . . ,Mm), N3 = (M2,M3,M1,M4, . . . ,Mm), . . . , Nm−1 =
(M2,M3,M4, . . . ,Mm−1,M1,Mm), Nm = (M2,M3,M4, . . . ,Mm,M1). We ob-
serve that γ(Nm) = m − 2(m − 1)δ ≈ m, and the monomorphic state corresponding
to Nm is stochastically stable:

Note that for the monomorphic state corresponding to each Nash profile Ni, there is
an edge of resistance 2 to any monomorphic state (Si, . . . , Si) where Si is on a better-
response path to Nash profile Ni+1. This transition can occur with two simultaneous
mistakes as follows: At the same time step t, player i plays on machine Mi+1, and
player i + 1 plays on machine Mi. Since for this turn, player i plays on machine Mi+1

alone, he experiences cost that is δ less than his best previous cost. Player i + 1 expe-
riences higher cost. Therefore, player i + 1 returns to machine Mi+1 and continues to
play it (since Ni continues to be the play profile in his history for which he experienced
lowest cost). Player i continues to sample the play profile from time step t for the next σ
rounds, and so continues to play on Mi+1 without further mistakes (even though player
i+1 has now returned). In this way, play proceeds in z timesteps to a new monomorphic
state Si without any further mistakes. Note that in Si, players i and i + 1 both occupy
machine Mi+1, and so Si is one better-response move, and hence one mistake, away
from Ni+1 (by moving to machine M1, player i + 1 can experience δ less cost).

Finally, we construct a minimum spanning in-tree TNm
from the graph G rooted at

Nm. For the monomorphic state corresponding to the Nash profile Ni, 1 ≤ i ≤ m− 1,
we include the resistance 2 edge to Si. All other monomorphic states correspond to
non-Nash profiles, and so are on better-response paths to some Nash state (since this is
a potential game). When a state is on a better-response path to two Nash states Ni and
Nj , we consider only the state Ni such that i > j. For each non-Nash monomorphic
state, we insert the edge corresponding to the first step in the better-response path to
Ni, which by Lemma 5.1 has cost 1. Since non-Nash monomorphic states are part of
shortest-path in-trees to Nash monomorphic states, which have edges to Nash states of
higher index, this process produces no cycles, and so forms a spanning in-tree rooted
at Nm. Moreover, no spanning tree of G can have lower cost, since every edge in TNm

is of minimal cost: the only edges in TNm that have cost > 1 are those leaving strict
Nash states, but any edge leaving a strict Nash state must have cost ≥ 2. Therefore, by
definition of stochastic potential, Theorem 2.7, and Proposition 2.8, the monomorphic
state corresponding to Nm is stochastically stable. ut

Remark 5.3. More complicated examples than the one we provide here show that the
price of stochastic anarchy is greater than m, and so our lower bound is not tight. For
an example, see Figure 2.
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M1 M2 M3 M4

1 1 1 ∞ 4− 3δ
2 2− δ 1 2− δ ∞
3 3− 2δ 3− 2δ 1 3− 2δ
4 4− 3δ 5− 4δ ∞ 1

Fig. 2. The optimal solution here is (M1, M2, M3, M4) and costs 1, but by similar reasoning as
in the proof of Theorem 5.2, (M4, M3, M1, M2) is also stochastically stable and costs 5 − 4δ.
This example can be easily generalized to arbitrary values of m.

We note the exponential separation between our upper and lower bounds. We conjec-
ture, however, that the true value of the price of stochastic anarchy falls closer to our
lower bound:

Conjecture 5.4. The price of stochastic anarchy in the load balancing game with unre-
lated machines is O(m).

If this conjecture is correct, then the O(m) bound from the strong price of anarchy [1]
can be achieved without coordination.

6 Conclusion and Open Questions

In this paper, we propose the evolutionary game theory solution concept of stochastic
stability as a tool for quantifying the relative stability of equilibria. We show that in
the load balancing game on unrelated machines, for which the price of Nash anarchy
is unbounded, the “bad” Nash equilibria are not stochastically stable, and so the price
of stochastic anarchy is bounded. We conjecture that the upper bound given in this
paper is not tight and the cost of stochastic stability for load balancing is O(m). If this
conjecture is correct, it implies that the fragility of the “bad” equilibria in this game is
attributable to their instability, not only in the face of player coordination, but also to
minor uncoordinated perturbations in play. We expect that the techniques used in this
paper will also be useful in understanding the relative stability of Nash equilibria in
other games for which the worst equilibria are brittle. This promise is evidenced by the
fact that the worst Nash in the worst-case instances in many games (for example, the
Roughgarden and Tardos [22] lower bound showing an unbounded price of anarchy for
routing unsplittable flow) are not stochastically stable.
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