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Abstract

Consider the following problem: given a metric space,
some of whose points are “clients,” select a set of
at most k facility locations to minimize the average
distance from the clients to their nearest facility. This
is just the well-studied k-median problem, for which
many approximation algorithms and hardness results
are known. Note that the objective function encourages
opening facilities in areas where there are many clients,
and given a solution, it is often possible to get a good
idea of where the clients are located. This raises the
following quandary: what if the locations of the clients
are sensitive information that we would like to keep
private? Is it even possible to design good algorithms for
this problem that preserve the privacy of the clients?

In this paper, we initiate a systematic study of algo-
rithms for discrete optimization problems in the frame-
work of differential privacy (which formalizes the idea
of protecting the privacy of individual input elements).
We show that many such problems indeed have good
approximation algorithms that preserve differential pri-
vacy; this is even in cases where it is impossible to pre-
serve cryptographic definitions of privacy while comput-
ing any non-trivial approximation to even the value of
an optimal solution, let alone the entire solution.

Apart from the k-median problem, we consider the
problems of vertex and set cover, min-cut, k-median,
facility location, and Steiner tree, and give approxi-
mation algorithms and lower bounds for these prob-
lems. We also consider the recently introduced sub-
modular maximization problem, “Combinatorial Public
Projects” (CPP), shown by Papadimitriou et al. [28]
to be inapproximable to subpolynomial multiplicative
factors by any efficient and truthful algorithm. We give
a differentially private (and hence approximately truth-
ful) algorithm that achieves a logarithmic additive ap-
proximation.

1 Introduction

Consider the following problems:
• Assign people using a social network to one of two

servers so that most pairs of friends are assigned to
the same server.

• Open some number of HIV treatment centers so
that the average commute time for patients is small.

• Open a small number of drop-off centers for un-
dercover agents so that each agent is able to visit
some site convenient to her (each providing a list
of acceptable sites).
The above problems can be modeled as instances

of well-known combinatorial optimization problems: re-
spectively the minimum cut problem, the k-median
problem, and the set cover problem. Good heuristics
have been designed for these problems, and hence they
may be considered well-studied and solved. However,
in the above scenarios and in many others, the input
data (friendship relations, medical history, agents’ lo-
cations) represent sensitive information about individu-
als. Data privacy is a crucial design goal, and it may be
vastly preferable to use a private algorithm that gives
somewhat suboptimal solutions to a non-private opti-
mal algorithm. This leads us to the following central
questions: Given that the most benign of actions pos-
sibly leaks sensitive information, how should we design
algorithms for the above problems? What are the funda-
mental trade-offs between the utility of these algorithms
and the privacy guarantees they give us?

The notion of privacy we consider in this paper
is that of differential privacy. Informally, differential
privacy guarantees that the distribution of outcomes
of the computation does not change significantly when
one individual changes her input data. This is a very
strong privacy guarantee: anything significant about
any individual that an adversary could learn from
the algorithm’s output, he could also learn were the
individual not participating in the database at all—and
this holds true no matter what auxiliary information
the adversary may have. This definition guarantees
privacy of an individual’s sensitive data, while allowing
the computation to respond when a large number of
individuals change their data, as any useful computation
must do.

1.1 Our Results In this paper we initiate a system-
atic study of designing algorithms for combinatorial op-
timization problems under the constraint of differential
privacy. Here is a short summary of some of the main
contributions of our work.



• While the exponential mechanism of [25] is an easy
way to obtain computationally inefficient private
approximation algorithms for some problems, the
approximation guarantees given by a direct appli-
cation of this can be far from optimal (e.g., see
our results on min-cut and weighted set cover). In
these cases, we have to use different techniques—
often more sophisticated applications of the expo-
nential mechanism—to get good (albeit computa-
tionally expensive) solutions.

• However, we want our algorithms to be computa-
tionally efficient and private at the same time: here
we cannot use the exponential mechanism directly,
and hence we develop new algorithmic ideas. We
give private algorithms for a wide variety of search
problems, where we must not only approximate the
value of the solution, but also produce a solution
that optimizes this value. See Table 1 for our re-
sults.

• For some problems, unfortunately, just outputting
an explicit solution might leak private information.
For example, if we output a vertex cover of some
graph explicitly, any pair of vertices not output
reveals that they do not share an edge —so any
private explicit vertex cover algorithm must output
n− 1 vertices. To overcome this hurdle, we instead
privately output an implicit representation of a
small vertex cover— we view vertex cover as a
location problem, and output an orientation of
the edges. Each edge can cover itself using the
end point that it points to. The orientation is
output privately, and the resulting vertex cover
approximates the optimal vertex cover well. We
deal with similar representational issues for other
problems like set cover as well.

• We also show lower bounds on the approximation
guarantees regardless of computational considera-
tions. For example, for vertex cover, we show that
any ε-differentially private algorithm must have an
approximation guarantee of Ω(1/ε). We show that
each of our lower bounds are tight: we give (com-
putationally inefficient) algorithms with matching
approximation guarantees.

• Our results have implications beyond privacy as
well: Papadimitriou et al. [28] introduce the Com-
binatorial Public Project problem, a special case of
submodular maximization, and show that the prob-
lem can be well approximated by either a truth-
ful mechanism or an efficient algorithm, but not
by both simultaneously. In contrast to this nega-
tive result, we show that under differential privacy
(which can be interpreted as an approximate but

robust alternative to truthfulness) we can achieve
the same approximation factor as the best non-
truthful algorithm, plus an additive logarithmic
loss.

• Finally, we develop a private amplification lemma:
we show how to take private algorithms that gives
bounds in expectation and efficiently convert them
(privately) into bounds with high probability. This
answers an open question in the paper of Feldman
et al. [15].

Table 1 summarizes the bounds we prove in this
paper. For each problem, it reports (in the first column)
the best known non-private approximation guarantees,
(in the second column) our best efficient ε-differentially
private algorithms, and in each (in the third column)
case matching upper and lower bounds for inefficient
ε-differentially private algorithms. For a few of the
efficient algorithms (marked with a †) the guarantees
are only for an approximate form of differential privacy,
incorporating a failure probability δ, and scaling the
effective value of ε up by ln(1/δ).

1.2 Related Work Differential privacy is a rela-
tively recent privacy definition (e.g., see [11, 8, 27, 6, 23,
15, 12], and see [9] for an excellent survey), that tries to
capture the intuition of individual privacy. Many algo-
rithms in this framework have focused on measurement,
statistics, and learning tasks applied to statistical data
sets, rather than on processing and producing combina-
torial objects. One exception to this is the Exponential
Mechanism of [25] which allows the selection from a set
of discrete alternatives.

Independently, Feldman et al. [15] also consider
the problem of privately approximating k-medians for
points in <d. Their model differs slightly from ours,
which makes the results largely incomparable: while
our results for general metrics translated to <d give
smaller additive errors than theirs, we only output a k-
median approximation whereas they output coresets for
the problem. Their lower bound argument for private
coresets is similar to ours.

Prior work on Secure Function Evaluation (SFE)
tells us that in fact the minimum cut in a graph can be
computed in a distributed fashion in such a way that
computations reveals nothing that cannot be learnt from
the output of the computation. While this is a strong
form of a privacy guarantee, it may be unsatisfying to
an individual whose private data can be inferred from
the privately computed output. Indeed, it is not hard
to come up with instances where an attacker with some
limited auxiliary information can infer the presence or
absence of specific edges from local information about
the minimum cut in the graph. By relaxing the whole
input privacy requirement of SFE, differential privacy



Non-private Efficient Algorithms Information Theoretic
Vertex Cover 2× OPT [29] (2 + 16/ε)× OPT Θ(1/ε)× OPT

Wtd. Vertex Cover 2× OPT [18] (16 + 16/ε)× OPT Θ(1/ε)× OPT
Set Cover lnn× OPT [21] O(lnn+ lnm/ε)× OPT † Θ(lnm/ε)× OPT

Wtd. Set Cover lnn× OPT [7] O(lnn(lnm+ ln lnn)/ε)× OPT † Θ(lnm/ε)× OPT
Min Cut OPT [16] OPT +O(lnn/ε) † OPT + Θ(lnn/ε)

CPPP (1− 1/e)× OPT [26] (1− 1/e)× OPT−O(k lnm/ε) † OPT−Θ(k ln(m/k)/ε)
k-Median (3 + γ)× OPT [1] 6× OPT +O(k2 ln2 n/ε) OPT + Θ(k ln(n/k)/ε)a

Table 1: Summary of Results. Results in the second and third columns are from this paper.

a[15] independently prove a similar lower bound.

is able to provide unconditional per element privacy,
which SFE need not provide if the output itself discloses
properties of input.

Feigenbaum et al. [14] extend the notion of SFE to
NP hard problems for which efficient algorithms must
output an approximation to the optimum, unless P=NP.
They defined as functional privacy the constraint that
two inputs with the same output value (e.g. the size
of an optimal vertex cover) must produce the same
value under the approximation algorithm. Under this
constraint, Halevi et al. [17] show that approximating
the value of vertex cover to within n1−ξ is as hard as
computing the value itself, for any constant ξ. These
hardness results were extended to search problems by
Beimel et al. [2], where the constraint is relaxed to only
equate those inputs whose sets of optimal solutions are
identical. These results were extended and strengthened
by Beimel et al. [3, 4].

Nonetheless, Feigenbaum et al. [14] and others
show a number of positive approximation results under
versions of the functional privacy model. Halevi et
al. [17] provide positive results in the function privacy
setting when the algorithm is permitted to leak few
bits (each equivalence class of input need not produce
identical output, but must be one of at most 2b possible
outcomes). Indyk and Woodruff also give some positive
results for the approximation of `2 distance and a
nearest neighbor problem [20]. However, as functional
privacy extends SFE, it does not protect sensitive data
that can be inferred from the output.

Nevertheless, SFE provides an implementation of
any function in a distributed setting such that nothing
other than the output of the function is revealed. One
can therefore run a differentially private algorithm is a
distributed manner using SFE (see e.g. [10, 5]), in the
absence of a trusted curator.

2 Definitions

Differential privacy is a privacy definition for compu-
tations run against sensitive input data sets. Its re-
quirement, informally, is that the computation behaves
nearly identically on two input data sets that are nearly

identical; the probability of any outcome must not in-
crease by more than a small constant factor when the
input set is altered by a single element. Formally,

Definition 2.1. ([11]) We say a randomized compu-
tation M has ε-differential privacy if for any two input
sets A and B with symmetric difference one, and for
any set of outcomes S ⊆ Range(M),

Pr[M(A) ∈ S] ≤ exp(ε)×Pr[M(B) ∈ S] .(2.1)

The definition has several appealing properties from a
privacy perspective. One that is most important for
us is that arbitrary sequences of differentially private
computations are also differentially private, with an
ε parameter equal to the sum of those comprising
the sequence. This is true even when subsequent
computations can depend on and incorporate the results
of prior differentially private computations [10], allowing
repetition of differentially private steps to improve
solutions.

2.1 Approximate Differential Privacy One re-
laxation of differential privacy [10] allows a small ad-
ditive term in the bound:

Definition 2.2. We say a randomized computation M
has δ-approximate ε-differential privacy if for any two
input sets A and B with symmetric difference one, and
for any set of outcomes S ⊆ Range(M),

Pr[M(A) ∈ S] ≤ exp(ε)×Pr[M(B) ∈ S] + δ .(2.2)

The flavor of guarantee is that although not all
events have their probabilities preserved, the alteration
is only for very low probability events, and is very
unlikely to happen. The δ is best thought of as
1/poly(n) for a data set containing some subset of n
candidate records. We note that there are stronger
notions of approximate differential privacy (c.f. [24]),
but in our settings, they are equivalent upto poly(n)
changes in δ. We therefore restrict ourselves to this
definition here.



2.2 The Exponential Mechanism One particu-
larly general tool that we will often use is the expo-
nential mechanism of [25]. This construction allows dif-
ferentially private computation over arbitrary domains
and ranges, parametrized by a query function q(A, r)
mapping a pair of input data set A (a multiset over
some domain) and candidate result r to a real valued
“score”. With q and a target privacy value ε, the mech-
anism selects an output with exponential bias in favor
of high scoring outputs:

Pr[Eεq(A) = r] ∝ exp(εq(A, r)) .(2.3)

If the query function q has the property that any
two adjacent data sets have score within ∆ of each
other, for all possible outputs r, the mechanism provides
2ε∆-differential privacy. Typically, we would normalize
q so that ∆ = 1. We will be using this mechanism
almost exclusively over discrete ranges, where we can
derive the following simple analogue of a theorem of
[25], that the probability of a highly suboptimal output
is exponentially low:

Theorem 2.1. The exponential mechanism, when used
to select an output r ∈ R gives 2ε∆-differential privacy,
letting ROPT be the subset of R achieving q(A, r) =
maxr q(A, r), ensures that

Pr[q(A, Eεq(A)) < max
r
q(A, r)− ln(|R|/|ROPT|)/ε− t/ε]

(2.4) ≤ exp(−t) .

The proof of the theorem is almost immediate:
any outcome with score less than maxr q(A, r) −
ln(|R|/|ROPT|)/ε − t/ε will have normalized probabil-
ity at most exp(−t)/|R|; each has weight at most
exp(OPT − t)|ROPT|/|R|, but is normalized by at least
|ROPT| exp(OPT) from the optimal outputs. As there
are at most |R| such outputs their cumulative probabil-
ity is at most exp(−t).
3 Private Min-Cut

Given a graph G = (V,E) the minimum cut problem
is to find a cut (S, Sc) so as to minimize E(S, Sc). In
absence of privacy constraints, this problem is efficiently
solvable exactly. However, outputting an exact solution
violates privacy, as we show in Section 3.1. Thus,
we give an algorithm to output a cut within additive
O(log n/ε) edges of optimal.

The algorithm has two stages: First, given a graph
G, we add edges to the graph to raise the cost of
the min cut to at least 4 lnn/ε, in a differentially
private manner. Second, we deploy the exponential
mechanism over all cuts in the graph, using a theorem
of Karger to show that for graphs with min cut at least
4 lnn/ε the number of cuts within additive t of OPT
increases no faster than exponentially with t. Although

the exponential mechanism takes time exponential in
n, we can construct a polynomial time version by
considering only the polynomially many cuts within
O(lnn/ε) of OPT. Below, let Cost(H, (S, Sc)) denote
the size EH(S, Sc) of the cut (S, Sc) in a graph H.

Algorithm 1 The Min-Cut Algorithm
1: Input: G = (V,E),ε.
2: Let H0 ⊂ H1, . . . ,⊂ H(n2) be arbitrary strictly

increasing sets of edges on V .
3: Choose index i ∈ [0,

(
n
2

)
] with probability propor-

tional to exp(−ε|OPT(G ∪Hi)− 8 lnn/ε|).
4: Choose a subset S ∈ 2V \ {∅, V } with probability

proportional to exp(−εCost(G ∪Hi, (S, Sc))).
5: Output the cut C = (S, Sc).

Our result relies on a result of Karger about the
number of near-minimum cuts in a graph [22]

Lemma 3.1. ([22]) For any graph G with min cut C,
there are at most n2α cuts of size at most αC.

By enlarging the size of the min cut in G ∪ Hi to
at least 4 lnn/ε, we ensure that the number of cuts of
value OPT(G∪Hi) + t is bounded by n2 exp(εt/2). The
downweighting of the exponential mechanism will be
able to counteract this growth in number and ensure
that we select a good cut.

Theorem 3.1. For any graph G, the expected cost of
ALG is at most OPT +O(lnn/ε).

Proof. First, we argue that the selected index i satisfies
4 lnn/ε < OPT(G ∪ Hi) < OPT(G) + 12 lnn/ε with
probability at least 1 − 1/n2. For OPT > 8 lnn/ε,
Equation 2.4 ensures that the probability of exceeding
the optimal choice (H0) by 4 lnn/ε is at most 1− 1/n2.
Likewise, for OPT < 8 lnn/ε, there is some optimal Hi

achieving min cut size 8 lnn/ε, and the probability we
end up farther away than 4 lnn/ε is at most 1− 1/n2.

Assuming now that OPT(G ∪ Hi) > 4 lnn/ε,
Karger’s lemma argues that the number ct of cuts
in G ∪ Hi of cost at most OPT(G ∪ Hi) + t is at
most n2 exp(εt/2). As we are assured a cut of size
OPT(G ∪Hi) exists, each cut of size OPT(G ∪Hi) + t
will receive probability at most exp(−εt). Put together,
the probability of a cut exceeding OPT(G ∪ Hi) + b is
at most

Pr[Cost(G ∪Hi, C) > OPT(G ∪Hi) + b]

≤
∑
t>b

exp(−εt)(ct − ct−1)

≤ (exp(ε)− 1)
∑
t>b

exp(−εt)ct

≤ (exp(ε)− 1)
∑
t>b

exp(−εt/2)n2



The sum telescopes to exp(−εb/2)n2/(exp(ε/2) − 1),
and the denominator is within a constant factor of the
leading factor of (exp(ε)−1), for ε < 1. For b = 8 lnn/ε,
this probability becomes at most 1/n2.

Theorem 3.2. The algorithm above preserves 2ε-
differential privacy.

Note that the first instance of the exponential
mechanism in our algorithm runs efficiently (since it
is selecting from only

(
n
2

)
objects), but the second

instance does not. We now describe how to achieve
(ε, δ)-differential privacy efficiently.

First recall that using Karger’s algorithm we can
efficiently (with high probability) generate all cuts of
size at most kOPT for any constant k. Indeed it is shown
in [22] that in a single run of his algorithm, any such cut
is output with probability at least n−2k so that n2k+1

runs of the algorithm will output all such cuts except
with an exponentially small probability.

Our efficient algorithm works as follows: in step 4
of Algorithm 1, instead of sampling amongst all possible
cuts, we restrict attention to the set of cuts generated in
n7 runs of Karger’s algorithm. We claim that the output
distribution of this algorithm has statistical distance
O(1/n2) from that of Algorithm 1, which would imply
that we get (ε,O( 1

n2 ))-differential privacy.
Consider a hypothetical algorithm that generates

the cut (S, Sc) as in Algorithm 1 but then outputs FAIL
whenever this cut is not in the set of cuts generated by
n7 runs of Karger’s. We first show that the probability
that this algorithm outputs FAIL is O( 1

n2 ). As shown
above, OPT(G ∪ Hi) is at least 4 lnn/ε except with
probability 1

n2 . Conditioned on this, the cut chosen
in Step 4 has cost at most 3OPT(G ∪ Hi) except with
probability 1

n2 . Since each such cut is in the sample
except with exponentially small probability, the claim
follows. Finally, note that this hypothetical algorithm
can be naturally coupled with both the algorithms so
that the outputs agree whenever the former doesn’t
output FAIL. This implies the claimed bound on the
statistical distance. We remark that we have not
attempted to optimize the running time here; both the
running time and the value of δ can be improved by
choosing a larger constant (instead of 8) in Step 3, at
the cost of increasing the additive error by an additional
constant. ,

3.1 Lower Bounds We next show that this addi-
tive error is unavoidable for any differentially private
algorithm. The lower bound is information-theoretic
and thus applies also to computationally inefficient al-
gorithms.

Theorem 3.3. Any ε-differentially private algorithm
for min-cut must incur an expected additive Ω(lnn/ε)
cost over OPT, for any ε ∈ (3 lnn/n, 1

12 ).

Proof. Consider a lnn/3ε-regular graph G = (V,E)
on n vertices such that the minimum cuts are exactly
those that isolate a single vertex, and any other cut has
size at least (lnn/2ε) (a simple probabilistic argument
establishes the existence of such a G; in fact a randomly
chosen lnn/3ε-regular graph has this property with high
probability).

Let M be an ε-differentially private algorithm for
the min-cut. Given the graph G, M outputs a partition
of V . Since there are n = |V | singleton cuts, there exists
a vertex v such that the mechanism M run on G outputs
the cut ({v}, V \ {v}) with probability at most 1/n, i.e.

Pr[M(V,E) = ({v}, V \ {v}) ≤ 1
n
.

Now consider the graphG′ = (V,E′), with the edges
incident on v removed from G, i.e. E′ = E \ {e : v ∈ e}.
Since M satisfies ε-differential privacy and E and E′

differ in at most lnn/3ε edges,

Pr[M(V,E′) = ({v}, V \ {v})] ≤ 1/n1/3.

Thus with probability (1 − 1

n
1
3

), M(G′) outputs a
cut other than the minimum cut ({v}, V \ {v}). But all
other cuts, even with these edges removed, cost at least
(lnn/6ε). Since OPTis zero for G′, the claim follows.

4 Private k-Median

We next consider a private version of the metric k-
median problem: There is a pre-specified set of points
V and a metric on them, d : V × V → R. There is
a (private) set of demand points D ⊆ V . We wish
to select a set of medians F ⊂ V with |F | = k to
minimize the quantity cost(F ) =

∑
v∈D d(v, F ) where

d(v, F ) = minf∈F d(v, f). Let ∆ = maxu,v∈V d(u, v) be
the diameter of the space.

As we show in Section 4.1, any privacy-preserving
algorithm for k-median must incur an additive loss of
Ω(∆ · k ln(n/k)/ε), regardless of computational con-
straints. We observe that running the exponential
mechanism to choose one of the

(
n
k

)
subsets of medians

gives an (computationally inefficient) additive guaran-
tee.

Theorem 4.1. Using the exponential mechanism to
pick a set of k facilities gives an O(

(
n
k

)
poly(n))-time

ε-differentially private algorithm that outputs a solution
with expected cost OPT +O(k∆ log n/ε).

We next give a polynomial-time algorithm that
gives a slightly worse approximation guarantee. Our
algorithm is based on the local search algorithm of
Arya et al. [1]. We start with an arbitrary set of k
medians, and use the exponential mechanism to look
for a (usually) improving swap. After running this local
search for a suitable number of steps, we select a good



solution from amongst the ones seen during the local
search. The following result shows that if the current
solution is far from optimal, then one can find improving
swaps.

Theorem 4.2. (Arya et al. [1]) For any set F ⊆
V with |F | = k, there exists a set of k swaps
(x1, y1), . . . , (xk, yk) such that

∑k
i=1(cost(F )− cost(F −

{xi}+ {yi})) ≥ cost(F )− 5OPT.

Corollary 4.1. For any set F ⊆ V with |F | = k,
there exists some swap (x, y) such that

cost(F )− cost(F − {xi}+ {yi}) ≥
cost(F )− 5OPT

k
.

Algorithm 2 The k-Median Algorithm
1: Input: V , Demand points D ⊆ V , k,ε.
2: let F1 ⊂ V arbitrarily with |F1| = k, ε′ ←
ε/(2∆(T + 1)).

3: for i = 1 to T do
4: Select (x, y) ∈ Fi × (V \ Fi) with probability

proportional to exp(−ε′ × cost(Fi −{x}+ {y})).
5: let Fi+1 ← Fi − {x}+ {y}.
6: end for
7: Select j from {1, 2, . . . , T} with probability propor-

tional to exp(−ε′ × cost(Fj)).
8: output Fj .

Theorem 4.3. Setting T = 6k lnn and ε′ = ε/(2∆(T+
1)), the k-median algorithm provides ε-differential pri-
vacy and except with probability O(1/poly(n)) outputs a
solution of cost at most 6OPT +O(∆k2 log2 n/ε).

Proof. We first prove the privacy. Since the cost
function has sensitivity ∆, Step 4 of the algorithm
preserves 2ε′∆ differential privacy. Since Step 4 is
run at most T times and privacy composes additively,
outputting all of the T candidate solutions would give us
(2ε′∆T ) differential privacy. Picking out a good solution
from the T candidates costs us another 2ε′∆, leading to
the stated privacy guarantee.

We next show the approximation guarantee. By
Corollary 4.1, so long as cost(Fi) ≥ 6OPT, there exists a
swap (x, y) that reduces the cost by at least cost(Fi)/6k.
As there are only n2 possible swaps, the exponential
mechanism ensures through (2.4) that we are within
additive 4 lnn/ε′ with probability at least 1 − 1/n2.
When cost(Fi) ≥ 6OPT + 24k lnn/ε′, with probability
1− 1/n2 we have cost(Fi+1) ≤ (1− 1/6k)× cost(Fi).

This multiplicative decrease by (1 − 1/6k) applies
for as long as cost(Fi) ≥ 6OPT + 24k lnn/ε′. Since
cost(F0) ≤ n∆, and n∆(1 − 1/6k)T ≤ ∆ ≤ 24k lnn/ε′,
there must exist an i < T such that cost(Fi) ≤ 6OPT +
24k lnn/ε′, with probability at least (1− T/n2).

Finally, by applying the exponential mechanism
again in the final stage, we select from the Fi scor-
ing within an additive 4 lnn/ε′ of the optimal visited
Fi with probability at least 1 − 1/n2, again by (2.4).
Plugging in the value of ε′, we get the desired result.
Increasing the constants in the additive term can drive
the probability of failure to an arbitrarily small polyno-
mial.

4.1 k-Median Lower Bound

Theorem 4.4. Any ε-differentially private algorithm
for the k-median problem must incur cost OPT + Ω(∆ ·
k ln(n/k)/ε) on some inputs.

Proof. Consider a point set V = [n] × [L] of nL
points, with L = ln(n/k)/10ε, and a distance func-
tion d((i, j), (i′, j′)) = ∆ whenever i 6= i′ and
d((i, j), (i, j′)) = 0. Let M be a differentially private
algorithm that takes a subset D ⊆ V and outputs a set
of k locations, for some k < n

4 . Given the nature of the
metric space, we assume that M outputs a k-subset of
[n]. For a set A ⊆ [n], let DA = A × [L]. Let A be a
size-k subset of V chosen at random.

We claim that that EA,M [|M(DA) ∩ A|] ≤ k
2 for

any ε-differentially private algorithm M . Before we
prove this claim, note that it implies the expected cost
of M(DA) is k

2 × ∆L, which proves the claim since
OPT = 0.

Now to prove the claim: define φ := 1
kEA,M [|A ∩

M(DA)|]. We can rewrite

k · φ = EA,M [|A ∩M(DA)|]
= k · Ei∈[n]EA\{i},M [1i∈M(DA)]

Now changing A to A′ := A\{i}+{i′} for some random
i′ requires altering at most 2L elements in DA′ , which
by the differential privacy guarantee should change the
probability of the output by at most e2εL = (n/k)1/5.
Hence

Ei∈[n]EA′,M [1i∈M(DA′ )
] ≥ φ · (k/n)1/5.

But the expression on the left is just k/n, since there at
at most k medians. Hence φ ≤ (k/n)4/5 ≤ 1/2, which
proves the claim.

Corollary 4.2. Any 1-differentially private algorithm
for uniform facility location that outputs the set of
chosen facilities must have approximation ratio Ω(

√
n).

Proof. We consider instances defined on the uniform
metric on n points, with d(u, v) = 1 for all u, v, and
facility opening cost f = 1√

n
. Consider a 1-differentially

private mechanism M when run on a randomly chosen
subset A of size k =

√
n. Since OPT is kf = 1 for

these instances, any o(
√
n)-approximation must select



at least k
2 locations from A in expectation. By an

argument analogous to the above theorem, it follows
that any differentially private M must output n/20 of
the locations in expectation. This leads to a facility
opening cost of Ω(

√
n).

4.2 Euclidean Setting Feldman et al. [15] study
private coresets for the k-median problem when the in-
put points are in <d. For P points in the unit ball
in <d, they give coresets with (1 + ε) multiplicative
error, and additive errors about O(k2d2 log2 P ) and
O(16kd)2dd3/2 logP log dk) respectively for their ineffi-
cient and efficient algorithms. Since Euclidean k-median
has a PTAS, this leads to k-median approximations with
the same guarantees. We can translate our results to
their setting by looking at a (1/P )-net of the unit ball
as the candidate set of n-points, of which some may ap-
pear. This would lead to an inefficient algorithm with
additive error O(kd logP ), and an efficient algorithm
with additive error O(k2d2 log2 P ). The latter has a
multiplicative error of 6 and hence our efficient algo-
rithms are incomparable. Note that coresets are more
general objects than just the k-median solution.

5 Vertex Cover

We now turn to the problem of (unweighted) vertex
cover, where we want to pick a set S of vertices of
minimal size so that every edge in the graph is incident
to at least one vertex in S. In the privacy-preserving
version of the problem, the private information we wish
to conceal is the presence of absence of each edge.

Approximating the Vertex Cover Size. As mentioned
earlier, even approximating the vertex cover size was
shown to be polynomially inapproximable under the
constraint of functional privacy [17, 2]. On the other
hand, it is easy to approximate the size of the optimal
vertex cover under differential privacy: twice the size
of a maximum matching is a 2-approximation to the
optimal vertex cover, and this value only changes by
at most two with the presence or absence of a single
edge. Hence, this value plus Laplace(2/ε) noise provides
ε-differential privacy [11]. (Here it is important that
we use maximum rather than just maximal matchings,
since the size of the latter is not uniquely determined by
the graph, and the presence or absence of an edge may
dramatically alter the size of the solution.) Interestingly
enough, for weighted vertex cover with maximum weight
wmax (which we study in Section 5.2), we have to add
in Lap(wmax/ε) noise to privately estimate the weight
of the optimal solution, which can be much larger than
OPT itself. The mechanism in Section 5.2 avoids this
barrier by outputting an implicit representation of the
vertex cover, and hence gives us a O(1/ε) multiplicative
approximation with ε-differential privacy.

The Vertex Cover Search Problem. If we want to

find a vertex cover (and not just estimate its size),
how can we do this privately? In covering problems,
the (private) data imposes hard constraints on the a
solution, making them quite different from, say, min-
cut. Indeed, while the private data only influences
the objective function in the min-cut problem, the data
determines the constraints defining feasible solutions in
the case of the vertex cover problem. This hard covering
constraint make it impossible to actually output a small
vertex cover privately: as noted in the introduction,
any differentially private algorithm for vertex cover that
outputs an explicit vertex cover (a subset of the n
vertices) must output a cover of size at least n− 1 with
probability 1 on any input, an essentially useless result.

In order to address this challenge, we require our al-
gorithms to output an implicit representation of a cover:
we privately output an orientation of the edges. Now for
each edge, if we pick the endpoint that it points to, we
clearly get a vertex cover. Our analysis ensures that this
vertex cover has size not much larger than the size of
the optimal vertex cover for the instance. Hence, such
an orientation may be viewed as a privacy-preserving
set of instructions that allows for the construction of a
good vertex cover in a distributed manner: in the case
of the undercover agents mentioned in the introduction,
the complete set of active dropoff sites (nodes) is not
revealed to the agents, but an orientation on the edges
tells each agent which dropoff site to use, if she is indeed
an active agent. Our algorithms in fact output a per-
mutation of all the vertices of the graph. Each edge can
be considered oriented towards the endpoint appearing
earlier in the permutation. Our lower bounds apply to
the more general setting where we are allowed to output
any orientation (and hence are stronger).

5.1 The Algorithm for Unweighted Vertex
Cover Our (randomized) algorithm will output a per-
mutation, and the vertex cover will be defined by pick-
ing, for each edge, whichever of its endpoints appears
first in the permutation. We show that this vertex cover
will be (2+O(1/ε))-approximate and ε-differentially pri-
vate. Our algorithm is based on a simple (non-private)
2-approximation to vertex cover [29] that repeatedly se-
lects an uncovered edge uniformly at random, and in-
cludes a random endpoint of the edge. We can view the
process, equivalently, as selecting a vertex at random
with probability proportional to its uncovered degree.
We will take this formulation and mix in a uniform dis-
tribution over the vertices, using a weight that will grow
as the number of remaining vertices decreases.

Let us start from G1 = G, and let Gi be the graph
with n− i + 1 vertices remaining. We will write dv(G)
for the degree of vertex v in graph G. The algorithm
ALG in step i chooses from the n − i + 1 vertices of
Gi with probability proportional to dv(Gi) +wi, for an



appropriate sequence 〈wi〉. Taking wi = (4/ε)×(n/(n−
i+1))1/2 provides ε-differential privacy and a (2+16/ε)
approximation factor, the proof of which will follow from
the forthcoming Theorem 5.1 and Theorem 5.2.

As stated the algorithm outputs a sequence of
vertices, one per iteration. As remarked above, this
permutation defines a vertex cover by picking the earlier
occurring end point of each edge.

Algorithm 3 Unweighted Vertex Cover
1: let n← |V |, V1 ← V,E1 ← E.
2: for i = 1, 2, . . . , n do
3: let wi ← (4/ε)×

√
n/(n− i+ 1).

4: pick a vertex v ∈ Vi with probability proportional
to dEi(v) + wi.

5: output v. let Vi+1 ← Vi \ {v}, Ei+1 ← Ei \
({v} × Vi).

6: end for

Theorem 5.1. (Privacy) ALG satisfies ε-differential
privacy for the settings of wi above.

Proof. For any two sets of edges A and B, and any
permutation π, let di be the degree of the ith vertex in
the permutation π and let mi be the remaining edges,
both ignoring edges incident to the first i−1 vertices in
π.

Pr[ALG(A) = π]
Pr[ALG(B) = π]

=
n∏
i=1

(wi + di(A))/((n− i+ 1)wi + 2mi(A))
(wi + di(B))/((n− i+ 1)wi + 2mi(B))

.

When A and B differ in exactly one edge, di(A) = di(B)
for all i except the first endpoint incident to the edge in
the difference. Until this term mi(A) and mi(B) differ
by exactly one, and after this term mi(A) = mi(B).
The number of nodes is always equal, of course. Letting
j be the index in π of the first endpoint of the edge in
difference, we can cancel all terms after j and rewrite

Pr[ALG(A) = π]
Pr[ALG(B) = π]

=
wj + dj(A)
wj + dj(B)

×
∏
i≤j

(n− i+ 1)wi + 2mi(B)
(n− i+ 1)wi + 2mi(A)

.

An edge may have arrived in A, in which case mi(A) =
mi(B) + 1 for all i ≤ j, and each term in the product
is at most one; moreover, dj(A) = dj(B) + 1, and hence
the leading term is at most 1+1/wj < exp(1/w1), which
is bounded by exp(ε/2).

Alternately, an edge may have departed from A,
in which case the lead term is no more than one, but
each term in the product exceeds one and their product

must now be bounded. Note that mi(A) + 1 = mi(B)
for all relevant i, and that by ignoring all other edges
we only make the product larger. Simplifying, and using
1 + x ≤ exp(x), we see∏

i≤j

(n− i+ 1)wi + 2mi(B)
(n− i+ 1)wi + 2mi(A)

≤
∏
i≤j

(n− i+ 1)wi + 2
(n− i+ 1)wi + 0

=
∏
i≤j

(
1 +

2
(n− i+ 1)wi

)

≤ exp

∑
i≤j

2
(n− i+ 1)wi

 .

The wi are chosen so that
∑
i 2/(n − i + 1)wi =

(ε/
√
n)
∑
i 1/2
√
i is at most ε.

Theorem 5.2. (Accuracy) For all G,
E[ALG(G)] ≤ (2 + 2 avgi≤n wi) × |OPT (G)| ≤
(2 + 16/ε)|OPT(G)|.

Proof. Let OPT (G) denote an arbitrary optimal solu-
tion to the vertex cover problem on G. The proof is
inductive, on the size n of G. For G with |OPT (G)| >
n/2, the theorem holds. For G with |OPT (G)| ≤ n/2,
the expected cost of the algorithm is the probability
that the chosen vertex v is incident to an edge, plus the
expected cost of ALG(G \ v).

E[ALG(G)] = Pr[v incident on edge]
+Ev[E[ALG(G \ v)]] .

We will bound the second term using the inductive
hypothesis. To bound the first term, the probabil-
ity that v is chosen incident to an edge is at most
(2mwn + 2m)/(nwn + 2m), as there are at most 2m
vertices incident to edges. On the other hand, the prob-
ability that we pick a vertex in OPT (G) is at least
(|OPT (G)|wn + m)/(nwn + 2m). Since |OPT (G)| is
non-negative, we conclude that

Pr[v incident on edge] ≤ (2 + 2wn)(m/(nwn + 2m))
≤ (2 + 2wn)Pr[v ∈ OPT (G)]

Since 1[v ∈ OPT (G)] ≤ |OPT (G)|− |OPT (G \ v)|, and
using the inductive hypothesis, we get

E[ALG(G)]
≤ (2 + 2wn)× (|OPT (G)| − Ev[|OPT (G \ v)|])

+(2 + 2 avg
i<n

wi)× Ev[|OPT (G \ v)|]

= (2 + 2wn)× |OPT (G)|
+(2 avg

i<n
wi − 2wn)× Ev[|OPT (G \ v)|]



The probability that v is from an optimal vertex cover
is at least (|OPT (G)|wi+m)/(nwi+2m), as mentioned
above, and (using (a + b)/(c + d) ≥ min{a/c, b/d}) is
at least min{|OPT (G)|/n, 1/2} = |OPT (G)|/n, since
|OPT (G)| < n/2 by assumption. Thus E[|OPT (G\v)|]
is bounded above by (1− 1/n)× |OPT (G)|, giving

E[ALG(G)]
≤ (2 + 2wn)× |OPT (G)|

+(2 avg
i<n

wi − 2wn)× (1− 1/n)× |OPT (G)| .

Simplification yields the claimed results, and instanti-
ating wi completes the proof.

Hallucinated Edges. Here is a slightly different
way to implement the intuition behind the above algo-
rithm: imagine adding O(1/ε) “hallucinated” edges to
each vertex (the other endpoints of these hallucinated
edges being fresh “hallucinated” vertices), and then
sampling vertices without replacement proportional to
these altered degrees. However, once (say) n/2 vertices
have been sampled, output the remaining vertices in
random order. This view will be useful to keep in mind
for the weighted vertex cover proof. (A formal analysis
of this algorithm appears in the full version.)

5.2 Weighted Vertex Cover In the weighted ver-
tex cover problem, each vertex V is assigned a weight
w(v), and the cost of any vertex cover is the sum of the
weights of the participating vertices. One can extend
the unweighted 2-approximation that draws vertices at
random with probability proportional to their uncov-
ered degree to a weighted 2-approximation by drawing
vertices with probability proportional to their uncovered
degree divided by their weight. The differentially pri-
vate analog of this algorithm essentially draws vertices
with probability proportional to 1/ε plus their degree,
all divided by the weight of the vertex; the algorithm
we present here is based on this idea.

Define the score of a vertex to be s(v) = 1/w(v).
Our algorithm involves hallucinating edges: to each
vertex, we add in 1/ε hallucinated edges, the other
endpoints of which are imaginary vertices, whose weight
is considered to be ∞ (and hence has zero score). The
score of an edge e = (u, v) is defined to be s(e) =
s(u)+s(v); hence the score of a fake edge f incident on u
is s(f) = s(u), since its other (imaginary) endpoint has
infinite weight and zero score. We will draw edges with
probability proportional to their score, and then select
an endpoint to output with probability proportional to
its score. In addition, once a substantial number of
vertices of at least a particular weight have been output,
we will output the rest of those vertices.

Assume the minimum vertex weight is 1 and the
maximum is 2J . For simplicity, we round the weight

of each vertex up to a power of 2, at a potential loss
of a factor of two in the approximation. Define the jth

weight class Vj to be the set of vertices of weight 2j .
In addition, we will assume that |Vj | = |Vj+1| for all
weight classes. In order to achieve this, we hallucinate
additional fake vertices. We will never actually output
a hallucinated vertex. Let Nj denote |Vj |.

Algorithm 4 Weighted Vertex Cover
1: while not all vertices have been output do
2: pick an uncovered (real or hallucinated) edge

e = (u, v) with probability proportional to s(e).
3: output endpoint u ∈ e with probability propor-

tional to s(u).
4: while there exists some weight class Vj such that

the number of nodes of class j or higher that we’ve
output is at least Nj/2 = |Vj |/2 do

5: pick the smallest such value of j
6: output (“dump”) all remaining vertices in Vj

in random order.
7: end while
8: end while

We imagine the ith iteration of the outer loop of the
algorithm as happening at time i; note that one vertex
is output in Step 3, whereas multiple vertices might be
output in Step 6. Let ñi be the sum of the scores of
all real vertices not output before time i, and m̃i be the
sum of the scores of all real edges not covered before
time i.

5.2.1 Privacy Analysis

Theorem 5.3. The weighted vertex cover algorithm
preserves O(ε) differential privacy.

Proof. Consider some potential output π of the private
vertex cover algorithm, and two weighted vertex cover
instances A and B that are identical except for one edge
e = (p, q). Let p appear before q in the permutation π;
since the vertex sets are the same, if the outputs of both
A and B are π, then p will be output at the same time t
in both executions. Let vt be the vertex output in Step 3
at time t in such an execution; note that either p = vt,
or p is output in Step 6 after vt is output.

The probability that (conditioned on the history) a
surviving vertex v is output in Step 3 of the algorithm
at time i is:∑

edges e Pr[pick e] ·Pr[output v | pick e]

=
∑
e3v

s(e)
m̃i + ñi/ε

· s(v)
s(e)

=
(d(v) + 1/ε) · s(v)

m̃i + ñi/ε
.

Since we compare the runs of the algorithm on A and B
which differ only in edge e, these will be identical after



time t when e is covered, and hence

Pr[M(A)=π]
Pr[M(B)=π] = (dA(vt)+1/ε)s(vt)

(dB(vt)+1/ε)s(vt)

∏
i≤t

( emBi +eni/εemAi +eni/ε
)
.

Note that if the extra edge e ∈ A \ B then
dA(vt) ≤ dB(vt) + 1 and m̃B

i ≤ m̃A
i , so the ratio of

the probabilities is at most 1 + ε < exp(ε). Otherwise,
the leading term is less than 1 and m̃B

i = m̃A
i + s(e),

and we get

Pr[M(A)=π]
Pr[M(B)=π] ≤

∏
i≤t

(
1 + s(e)eni/ε

)
≤ exp

(
s(e) · ε ·

∑
i≤t

1eni
)
.

Let Tj be the time steps i ≤ t where vertices in Vj
are output in π. Letting 2j

∗
be the weight of the lighter

endpoint of edge e, we can break the sum
∑
i≤t

1eni into
two pieces and analyze each separately:∑

i≤t
1eni =

∑
j≤j∗

∑
i∈Tj

1eni +
∑
j>j∗

∑
i∈Tj

1eni ,
For the first partial sum, for some j ≤ j∗, let∑

i∈Tj
1eni = 1eni0 + 1eni1 + . . . + 1eniλ such that i0 > i1 >

. . . > iλ. We claim that ñi0 ≥ 2−j
∗
Nj∗/2. Indeed, since

e has not yet been covered, we must have output fewer
than Nj∗/2 vertices from levels j∗ or higher, and hence
at least Nj∗/2 remaining vertices from Vj∗ contribute
to ñi0 .

In each time step in Tj , at least one vertex of score
2−j is output, so we have that ñi` ≥ 2−j

∗
Nj∗/2+` ·2−j .

Hence∑
i∈Tj

1eni ≤ 1
2−j∗Nj∗/2

+
1

2−j∗Nj∗/2 + 2−j
+ . . .

+
1

2−j∗Nj∗/2 +Nj 2−j
.

Defining θ = 2−j
∗+j · Nj∗/2, the expression above

simplifies to

2j
(

1
θ + 1

θ+1 + . . .+ 1
θ+Nj

)
≤ 2j ln

(
θ +Nj
θ

)
= 2j ln

(
1 +

Nj
θ

)
.

Now using the assumption on the size of the weight
classes, we have Nj ≤ Nj∗ =⇒ Nj/θ ≤ 2j

∗−j+1, and
hence

∑
i∈Tj

1eni ≤ (j∗−j+2)2j , for any j ≤ j∗. Finally,∑
j≤j∗

∑
i∈Tj

1eni ≤∑j≤j∗(j
∗ − j + 2)2j = O(2j

∗
).

We now consider the other partial sum
∑
j>j∗

∑
i∈Tj

1eni .
For any such value of i, we know that ñi ≥ 2−j

∗
Nj∗/2.

Moreover, there are at most Nj∗/2 times when we
output a vertex from some weight class j ≥ j∗ before we
output all of Vj∗ ; hence there are at most Nj∗/2 terms
in the sum, each of which is at most 1

2−j∗ Nj∗/2
, giving

a bound of 2j
∗

on the second partial sum. Putting the
two together, we get that

Pr[M(A) = π]
Pr[M(B) = π]

≤ exp(s(e) · ε ·O(2j
∗
)) = exp(O(ε)),

using the fact that s(e) ≤ 2 · 2−j∗ , since the lighter
endpoint of e had weight 2j

∗
.

5.2.2 Utility Analysis Call a vertex v interesting
if it is incident on a real uncovered edge when it is
picked. Consider the weight class Vj : let I1

j ⊆ Vj be
the set of interesting vertices output due to Steps 3, and
I2
j ⊆ Vj be the set of interesting vertices of class j output

due to Step 6. The cost incurred by the algorithm is∑
j 2j(|I1

j |+ |I2
j |).

Lemma 5.1. E[
∑
j 2j |I1

j |] ≤
4(1+ε)
ε OPT

Proof. Every interesting vertex that our algorithm picks
in Steps 3 has at least one real edge incident on it, and
at most 1

ε hallucinated edges. Conditioned on selecting
an interesting vertex v, the selection is due to a real
edge with probability at least 1/(1 + 1

ε ). One can show
that the (non-private) algorithm A that selects only real
edges is a 2-approximation [29]. On the other hand
each vertex in I1

j can be coupled to a step of A with
probability ε/(1 + ε). Since we rounded up the costs by
at most a factor of two, the claim follows.

Lemma 5.2. E[|I2
j |] ≤ 6 E[

∑
j′≥j |I1

j′ |]

Proof. Let tj denote the time that class j is dumped.
Recall that by (5.2.1), we pick a surviving vertex v
with probability ∝ (d(v) + 1

ε ) · s(v) at each step. This
expression summed over all uninteresting vertices is
∪j′≥jVj′ is at most (1/ε)

∑
j′≥j 2−j

′
Nj′ ≤ 2−j+1Nj/ε.

On the other hand, at each step before time tj , all the
interesting vertices in I2

j are available and the same
expression summed over them is at least 2−j |I2

j |/ε.
Thus for any t ≤ tj , conditioned on outputting a vertex
vt ∈ ∪j′≥jVj′ in Step 3, the probability that it is

interesting is at least |I2j |2
−j/ε

(|I2j |2−j+21−jNj)/ε
≥ |I2j |

3Nj
(using

|I2
j | ≤ Nj). Now since we output Nj/2 vertices from
∪j′≥jVj′ in Step 3 before time tj , we conclude that

E
[∑

j′≥j |I1
j′ |

∣∣ |I2
j |
]
≥ Nj

2 ×
|I2j |
3Nj

= |I2j |
6 . Taking

expectations completes the proof.



We can now compute the total cost of all the
interesting vertices dumped in Steps 6 of the algorithm.

E[cost(
⋃
j I

2
j )] =

∑
j 2j E[|I2

j |]

≤ 6
∑
j

2j
∑
j′≥j

E[|I1
j′ |]

≤ 6
∑
j′

E[|I1
j′ |] 2j

′+1

≤ 12 · E[cost(
⋃
j

I1
j )].

Finally, combining this calculation with Lemma 5.1, we
conclude that our algorithm gives an O( 1

ε ) approxima-
tion to the weighted vertex cover problem.

5.3 Vertex Cover Lower Bounds

Theorem 5.4. Any algorithm for the vertex cover
problem that prescribes edge-orientations with ε-
differential privacy must have an Ω(1/ε) approximation
guarantee, for any ε ∈ ( 1

n , 1].

Proof. Let V = {1, 2, . . . , d 1
2εe}, and let M be an ε-

differentially private algorithm that takes as input a
private set E of edges, and outputs an orientation
ME : V × V → V , with ME(u, v) ∈ {u, v} indicating
to the edge which endpoint to use. Picking two distinct
vertices u 6= v uniformly at random (and equating (u, v)
with (v, u)), we have by symmetry:

Pru,v[M∅((u, v)) 6= u] = 1
2 .

Let ?u = (V, {u} × (V \ {u})) be the star graph rooted
at u. Since ?u and ∅ differ in at most 1

2ε − 1 < 1
ε edges

and M satisfies ε-differential privacy, we conclude that

Pru,v[M?u((u, v)) 6= u] ≥ 1
2e .

Thus the expected cost of M when input a uniformly
random ?u is at least 1

2e ×d
1
2εe, while OPT(?u) is 1. We

can repeat this pattern arbitrarily, picking a random
star from each group of 1/ε vertices; this results in
graphs with arbitrarily large vertex covers where M
incurs cost 1/ε times the cost.

6 Set Cover

We now turn our attention to private approximations
for the Set Cover Problem; here the set system (U,S)
is public, but the actual set of elements to be covered
R ⊆ U is the private information. As for vertex cover,
we cannot explicitly output a set cover that is good
and private at the same time. Hence, we again output
a permutation over all the sets in the set system; this
implicitly defines a set cover for R by picking, for each
element R, the first set in this permutation that contains
it. Our algorithms for set cover give the slightly weaker
(ε, δ)-privacy guarantees.

6.1 Unweighted Set Cover We are given a set
system (U,S) and must cover a private subset R ⊂ U .
Let the cardinality of the set system be |S| = m, and let
|U | = n. We first observe a computationally inefficient
algorithm.

Theorem 6.1. The exponential mechanism, when used
to pick a permutation of sets, runs in time O(m!poly(n))
and gives an O(log(em/OPT)/ε)-approximation.

Proof. A random permutation, with probability at least(
m

OPT

)−1 has all the sets in OPT before any set in OPTc.
Thus the additive error is O(log

(
m

OPT

)
/ε).

The rest of the section gives a computationally efficient
algorithm with slightly worse guarantees: this is a
modified version of the greedy algorithm, using the
exponential mechanism to bias towards picking large
sets.

Algorithm 5 Unweighted Set Cover
1: Input: Set system (U,S), private R ⊂ U of

elements to cover, ε,δ.
2: let i← 1, Ri = R, Si ← S. ε′ ← ε/2 ln( eδ ).
3: for i = 1, 2, . . . ,m do
4: pick a set S from Si with probability proportional

to exp(ε′|S ∩Ri|).
5: output set S.
6: Ri+1 ← Ri \ S, Si+1 ← Si − {S}.
7: end for

6.1.1 Utility Analysis At the beginning of itera-
tion i, say there are mi = m − i + 1 remaining sets
and ni = |Ri| remaining elements, and define Li =
maxS∈S |S ∩ Ri|, the largest number of uncovered ele-
ments covered by any set in S. By a standard argument,
any algorithm that always picks sets of size Li/2 is an
O(lnn) approximation algorithm.

Theorem 6.2. The above algorithm achieves an ex-
pected approximation ratio of O(lnn+ lnm

ε′ ) = O(lnn+
lnm ln(e/δ)

ε ).

Proof. As there is at least one set containing Li ele-
ments, our use of the exponential mechanism to select
sets combined with Equation 2.4 ensures that the prob-
ability we select a set covering fewer than Li − 3 lnm/ε
elements is at most 1/m2. While Li > 6 lnm/ε, with
probability at least (1−1/m) we always select sets that
cover at least Li/2 elements, and can therefore use no
more than O(OPT lnn) sets. Once Li drops below this
bound, we observe that the number of remaining ele-
ments |Ri| is at most OPT ·Li. Any permutation there-
fore costs at most an additional O(OPT lnm/ε′).



6.1.2 Privacy

Theorem 6.3. The unweighted set cover algorithm
preserves (ε, δ) differential privacy for any ε ∈ (0, 1),
and δ < 1/e.

Proof. LetA andB be two set cover instances that differ
in some element I. Say that SI is the collection of sets
containing I. Fix an output permutation π, and write
si,j(A) to denote the size of set Sj after the first i − 1
sets in π have been added to the cover.

Pr[M(A) = π]
Pr[M(B) = π]

=
n∏
i=1

(
exp(ε′ · si,πi(A))/(

∑
j exp(ε′ · si,j(A)))

exp(ε′ · si,πi(B))/(
∑
j exp(ε′ · si,j(B)))

)

=
exp(ε′ · st,πt(A))
exp(ε′ · st,πt(B))

·
t∏
i=1

(∑
j exp(ε′ · si,j(B))∑
j exp(ε′ · si,j(A))

)

where t is such that Sπt is the first set containing I to fall
in the permutation π. After t, the remaining elements in
A and B are identical, and all subsequent terms cancel.
Moreover, except for the tth term, the numerators of
both the top and bottom expression cancel, since all
the relevant set sizes are equal. If A contains I and B
does not the first term is exp(ε′) and the each term in
the product is at most 1.

Now suppose that B contains I and A does not . In
this case, the first term is exp(−ε′) < 1. Moreover, in
instance B, every set in SI is larger by 1 than in A, and
all others remain the same size. Therefore, we have:

Pr[M(A)=π]
Pr[M(B)=π]

≤
∏t
i=1

(
(exp(ε′)−1)·

P
j∈SI exp(ε′·si,j(A))+

P
j exp(ε′·si,j(A))P

j exp(ε′·si,j(A))

)
=
∏t
i=1 (1 + (exp(ε′)− 1) · pi(A))

where pi(A) is the probability that a set containing I
is chosen at step i of the algorithm running on instance
A, conditioned on picking the sets Sπ1 , . . . , Sπi−1 in the
previous steps.

For an instance A and an element I ∈ A, we say that
an output σ is q-bad if

∑
i pi(A)1(I uncovered at step i)

(strictly) exceeds q, where pi(A) is as defined above. We
call a permutation q-good otherwise. We first consider
the case when the output π is (ln δ−1)-good. By the
definition of t, we have

t−1∑
i=1

pi(A) ≤ ln δ−1.

Continuing the analysis from above,

Pr[M(A) = π]
Pr[M(B) = π]

≤
t∏
i=1

exp((exp(ε′)− 1)pi(A)) ≤ exp(2ε′
t∑
i=1

pi(A))

≤ exp(2ε′(ln(
1
δ

) + pt(A))) ≤ exp(2ε′(ln(
1
δ

) + 1)).

Thus, for any (ln δ−1)-good output π, we have
Pr[M(A)=π]
Pr[M(B)=π] ≤ exp(ε). We can then invoke the following
lemma, proved in appendix A

Lemma 6.1. For any set system (U,S), any instance A
and any I ∈ A, the probability that the output π of the
algorithm above is q-bad is bounded by exp(−q).

Thus for any set P of outcomes, we have

Pr[M(A) ∈ P]

=
∑
π∈P

Pr[M(A) = π]

=
∑

π∈P:π is (ln δ−1)-good
Pr[M(A) = π]

+
∑

π∈P:π is (ln δ−1)-bad
Pr[M(A) = π]

≤
∑

π∈P:π is (ln δ−1)-good
exp(ε)Pr[M(B) = π] + δ

≤ exp(ε)Pr[M(B) ∈ P] + δ.

Corollary 6.1. For ε < 1 and δ = 1/poly(n), there
is an O( lnn lnm

ε )-approximation algorithm for the un-
weighted set cover problem preserving (ε, δ)-differential
privacy.

6.2 Weighted Set Cover We are given a set system
(U,S) and a cost function C : S → R. We must cover
a private subset R ⊂ U . W.l.o.g., let minS∈S C(S) = 1,
and denote maxS∈S C(S) = W . Let the cardinality of
the set system be |S| = m, and let |U | = n.



Algorithm 6 Weighted Set Cover
1: let i ← 1, Ri = R, Si ← S, ri ← n, ε′ = ε

2 ln(e/δ) ,

T = Θ
( logm+log log(nW )

ε′

)
2: while ri ≥ 1/W do
3: pick a set S from Si with probability proportional

to exp
(
ε′
(
|S ∩Ri| − ri · C(S)

))
or halve with probability proportional to

exp(−ε′T )
4: if halve then
5: let ri+1 ← ri/2, Ri+1 ← Ri, Si+1 ← Si,

i← i+ 1
6: else
7: output set S
8: let Ri+1 ← Ri \S, Si+1 ← Si−{S}, ri+1 ← ri,

i← i+ 1
9: end if

10: end while
11: output all remaining sets in Si in random order

Let us first analyze the utility of the algorithm. If
R = ∅, the algorithm has cost zero and there is nothing
to prove. So we can assume that OPT ≥ 1. We first
show that (whp) ri ' Ri/OPT.

Lemma 6.2. Except with probability 1/ poly(m), we
have ri ≥ |Ri|

2OPT for all iterations i.

Proof. Clearly r1 = n ≥ |R1|/2OPT. For ri to fall
below |Ri|/2, it must be in ( |Ri|2OPT ,

|Ri|
OPT ] and be halved

in Step 6 of some iteration i. We’ll show that this
is unlikely: if at some iteration i, |Ri|

2OPT ≤ ri ≤ |Ri|
OPT ,

then we argue that with high probability, the algorithm
will not output halve and thus not halve ri. Since all
remaining elements Ri can be covered at cost at most
OPT, there must exist a set S such that |S∩Ri|C(S) ≥

|Ri|
OPT ,

and hence |S ∩Ri| ≥ C(S) · |Ri|OPT ≥ C(S) · ri.
Hence ui(S) := |S ∩ Ri| − ri · C(S) ≥ 0 in

this case, and the algorithm will output S with prob-
ability at least proportional to 1, whereas it out-
puts halve with probability proportional to exp(−ε′T ).
Thus, Pr[ algorithm returns halve ] < exp(−ε′T ) =
1/ poly(m log nW ). Since there are m sets in total,
and r ranges from n to 1/W , there are at most m +
O(log nW ) iterations, and the proof follows by a union
bound.

Let us define a score function ui(S) := |S ∩ Ri| −
ri · C(S), and ui(halve) := −T : note that in Step 4 of
our algorithm, we output either halve or a set S, with
probabilities proportional to exp(ε′ui(·)). The following
lemma states that with high probability, none of the sets
output by our algorithm have very low scores (since we
are much more likely to output halve than a low-scoring
set).

Lemma 6.3. Except with probability at most
1/poly(m), Step 4 only returns sets S with
ui(S) ≥ −2T .

Proof. There are at most |Si| ≤ m sets S with score
ui(S) ≤ −2T , and so one is output with probability
at most proportional to m exp(−2Tε). We will denote
this bad event by B. On the other hand, halve
is output with probability proportional to exp(−Tε).
Hence, Pr[halve]/Pr[B] ≥ exp(Tε)/m, and so Pr[B] ≤
m/ exp(Tε) ≤ 1/poly(m log nW ). Again there are at
most m+O(log nW ) iterations, and the lemma follows
by a trivial union bound.

We now analyze the cost incurred by the algorithm
in each stage. Let us divide the algorithm’s execution
into stages: stage j consists of all iterations i where
|Ri| ∈ ( n2j ,

n
2j−1 ]. Call a set S interesting if it is incident

on an uncovered element when it is picked. Let Ij be
the set of interesting sets selected in stage j, and C(Ij)
be the total cost incurred on these sets.

Lemma 6.4. Consider stages 1, . . . , j of the algorithm.
Except with probability 1/ poly(m), we can bound the
cost of the interesting sets in stage 1, . . . , j by:∑

j′≤j

C(Ij′) ≤ 4jOPT · (1 + 2T ).

Proof. By Lemma 6.3 all the output sets have ui(Si) ≥
−2T whp. Rewriting, each Si selected in a round j′ ≤ j
satisfies

C(Si) ≤
|Si ∩Ri|+ 2T

ri
≤ 2j

′+1 OPT

n
(|Si ∩Ri|+ 2T ),

where the second inequality is whp, and uses
Lemma 6.2. Now summing over all rounds j′ ≤ j, we
get ∑

j′≤j

C(Ij′)(6.5)

≤
∑
j′≤j

2j
′+1 OPT

n

( ∑
i s.t. Si∈Ij′

(
|Si ∩Ri|+ 2T

))
.(6.6)

Consider the inner sum for any particular value of j′: let
the first iteration in stage j′ be iteration i0—naturally
Ri ⊆ Ri0 for any iteration i in this stage. Now, since
Si ∩Ri ⊆ Ri0 and Si ∩Ri is disjoint from Si′ ∩Ri′ , the
sum over |Si ∩ Ri| is at most |Ri0 |, which is at most
n

2j′−1 by definition of stage j′. Moreover, since we are
only concerned with bounding the cost of interesting
sets, each |Si ∩ Ri| ≥ 1, and so |Si ∩ Ri| + 2T ≤
|Si ∩Ri|(1 + 2T ). Putting this together, (6.5) implies∑

j′≤j

C(Ij′) ≤
∑
j′≤j

2j
′+1 OPT

n
× n

2j′−1
(1 + 2T )

= 4j OPT (1 + 2T ),



which proves the lemma.

Theorem 6.4. (Utility) The weighted set cover algo-
rithm incurs a cost of O(T log nOPT) except with prob-
ability 1/ poly(m).

Proof. Since the number of uncovered elements halves
in each stage by definition, there are at most 1 + log n
stages, which by Lemma 6.4 incur a total cost of at
most O(log n OPT · (1 + 2T )). The sets that remain
and are output at the very end of the algorithm incur
cost at most W for each remaining uncovered element;
since ri < 1/W at the end, Lemma 6.2 implies that
|Ri| < 2OPT/W (whp), giving an additional cost of at
most 2 OPT.

We can adapt the above argument to bound the
expected cost by O(T log n OPT). (Proof in the full
version.)

Theorem 6.5. (Privacy) For any δ > 0, the weighted
set cover algorithm preserves (ε, δ) differential privacy.

Proof. We imagine that the algorithm outputs a set
named “HALVE” when Step 4 of the algorithm returns
halve, and show that even this output is privacy
preserving. Let A and B be two set cover instances that
differ in some element I. Say that SI is the collection of
sets containing I. Fix an output π, and write ui,j(A) to
denote the score of πj (recall this may be halve) after
the first i− 1 sets in π have been selected.

Pr[M(A) = π]
Pr[M(B) = π]

=
n∏
i=1

(
exp(ε′ · ui,πi(A))/(

∑
j exp(ε′ · ui,j(A)))

exp(ε′ · ui,πi(B))/(
∑
j exp(ε′ · ui,j(B)))

)

=
exp(ε′ · ut,πt(A))
exp(ε′ · ut,πt(B))

·
t∏
i=1

(∑
j exp(ε′ · ui,j(B))∑
j exp(ε′ · ui,j(A))

)

where t is such that Sπt is the first set containing I
to fall in the permutation π. After t, the remaining
elements in A and B are identical, and all subsequent
terms cancel. Moreover, except for the tth term, the
numerators of both the top and bottom expression
cancel, since all the relevant set sizes are equal. If A
contains I and B does not the first term is exp(ε′) and
the each term in the product is at most 1. Since ε′ ≤ ε,
we conclude that in this case, for any set P of outputs,
Pr[M(A) ∈ P] ≤ exp(ε)Pr[M(B) ∈ P].

Now suppose that B contains I and A does not . In
this case, the first term is exp(−ε′) < 1. Moreover, in
instance B, every set in SI is larger by 1 than in A, and

all others remain the same size. Therefore, we have:

Pr[M(A)=π]
Pr[M(B)=π]

≤
∏t
i=1

(
(exp(ε′)−1)·

P
j∈SI exp(ε′·ui,j(A))+

P
j exp(ε′·ui,j(A))P

j exp(ε′·ui,j(A))

)
=
∏t
i=1

(
1 + (eε

′ − 1) · pi(A)
)

where pi(A) is the probability that a set containing I
is chosen at step i of the algorithm running on instance
A, conditioned on picking the sets Sπ1 , . . . , Sπi−1 in the
previous steps.

For an instance A and an element I ∈ A, we say that
an output σ is q-bad if

∑
i pi(A)1(I uncovered at step i)

(strictly) exceeds q, where pi(A) is as defined above. We
call a permutation q-good otherwise. We first consider
the case when the output π is (ln δ−1)-good. By the
definition of t, we have

t−1∑
i=1

pi(A) ≤ ln δ−1.

Continuing the analysis from above,

Pr[M(A) = π]
Pr[M(B) = π]

≤
t∏
i=1

exp((exp(ε′)− 1)pi(A))

≤ exp

(
2ε′

t∑
i=1

pi(A)

)
≤ exp

(
2ε′
(
ln δ−1 + pt(A)

))
≤ exp

(
2ε′
(
ln δ−1 + 1

))
.

Thus, for any (ln δ−1)-good output π, we have
Pr[M(A)=π]
Pr[M(B)=π] ≤ exp(ε).

Finally, as in the proof of Theorem 6.3, we can use
lemma 6.1 to complete the proof.

6.3 Removing the Dependence on W We can
remove the dependence of the algorithm on W with a
simple idea. For an instance I = (U,S), let Sj = {S ∈
S | C(S) ∈ (nj , nj+1] }. Let U j be the set of elements
such that the cheapest set containing them is in Sj .
Suppose that for each j and each S ∈ Sj , we remove all
elements that can be covered by a set of cost at most
nj−1, and hence define S′ to be S ∩ (U j ∪ U j−1). This
would change the cost of the optimal solution only by a
factor of 2, since if we were earlier using S in the optimal
solution, we can pick S′ and at most n sets of cost at
most nj−1 to cover the elements covered by S \S′. Call
this instance I ′ = (U,S ′).

Now we partition this instance into two instances
I1 and I2, where I1 = (∪j evenU

j ,S ′), and where



I2 = (∪j oddU
j ,S ′). Since we have just partitioned the

universe, the optimal solution on both these instances
costs at most 2 OPT(I). But both these instances I1, I2

are themselves collections of disjoint instances, with
each of these instances having wmax/wmin ≤ n2; this
immediately allows us to remove the dependence on W .
Note that this transformation is based only on the set
system (U,S), and not on the private subset R.

Theorem 6.6. For any ε ∈ (0, 1), δ = 1/ poly(n),
there is an O(logn(logm + log log n)/ε)-approximation
for the weighted set cover problem that preserves (ε, δ)-
differential privacy.

6.4 Lower bounds

Theorem 6.7. Any ε-differentially private algorithm
that maps elements to sets must have approximation fac-
tor Ω(logm/ε), for a set cover instance with m sets and
((logm)/ε)O(1) elements, for any ε ∈ (2 logm/m

1
20 , 1).

Proof. We consider a set system with |U | = N and
S a uniformly random selection of m size-k subsets of
U . We will consider problem instances Si consisting
of one of these m subsets, so OPT(Si) = 1. Let M
be an ε-differentially private algorithm that on input
T ⊆ U , outputs an assignment f mapping each element
in U to some set in S that covers it. The number of
possible assignments is at most mN . The cost on input
T under an assignment f is the cardinality of the set
f(T ) = ∪e∈T f(e).

We say assignment f is good for a subset T ⊆ U if
its cost |f(T )| is at most l = k

2 . We first show that any
fixed assignment f : U → [m], such that |f−1(j)| ≤ k
for all j, is unlikely to be good for a randomly picked
size-k subset T of U . The number of ways to choose l
sets from among those with non-empty f−1(·) is at most(
N
l

)
. Thus the probability that f is good for a random

size-k subset is at most
(
N
l

) (
lk
N

)k
. Setting k = N1/10,

and l = k
2 , this is at most(
Ne

l

)l(
lk

N

)k
=
(
ek3

2N

)k/2
≤ 2−k logN/4.

Let m = 22εk. The probability that f is good for at
least t of our m randomly picked sets is bounded by(

m

t

)(
2−k logN/4

)t
≤ 22εkt2−tk logN/4 ≤ 2−tk log k/8.

Thus, with probability at most 2−Nk log k/8, a fixed
assignment is good for more than N of m randomly
chosen size-k sets. Taking a union bound over mN =
22εkN possible assignments, the probability that any
feasible assignment f is good for more than N sets is
at most 2−Nk log k/16. Thus there exists a selection of

size-k sets S1, . . . , Sm such that no feasible assignment
f is good for more than N of the Si’s.

Let pM(∅)(Si) be the probability that an assignment
drawn from the distribution defined by running M on
the the empty set as input is good for Si. Since any
fixed assignment is good for at most N of the m sets,
the average value of pM(∅) is at most N/m. Thus there
exists a set, say S1 such that pM(∅)(S1) ≤ N/m. Since
|Si| = k and M is ε-differentially private, pM(S1)(S1) ≤
exp(εk)pM(∅)(S1) < 1

2 . Thus with probability at least
half, the assignment M picks on S1 is not good for S1.
Since OPT(S1) = 1, the expected approximation ratio
of M is at least l/2 = logm

4ε .
Additionally, one can take s distinct instances of

the above problem, leading to a new instance on s · N
elements and s ·m sets. OPT is now s, while it is easy
to check that any private algorithm must cost Ω(s · l)
in expectation. Thus the lower bound in fact rules out
additive approximations.

It is natural to ask if this lower bound is tight for
the weighted case. Unlike the unweighted case, a di-
rect application of the exponential mechanism does not
lead to a good approximation guarantee. In the full ver-
sion of the paper, we give an (inefficient) differentially
private algorithm for weighted set cover matching the
lower bound above.

7 Facility Location

Consider the metric facility location problem: we are
given a metric space (V, d), a facility cost f and a (pri-
vate) set of demand points D ⊆ V . We want to select a
set of facilities F ⊆ V to minimize

∑
v∈D d(v, F )+f ·|F |.

(Note that we assume “uniform” facility costs here in-
stead of different costs fi for different i ∈ V .) Assume
that distances are at least 1, and let ∆ = maxu,v d(u, v)
denote the diameter of the space.

We use the result of Fakcharoenphol et al. [13] that
any metric space on n points can be approximated
by a distribution over dominating trees with expected
stretch O(log n); moreover all the trees in the support
of the distribution are rooted 2-HSTs—they have L =
O(log ∆) levels, with the leaves (at level 0) being exactly
= V , the internal nodes being all Steiner nodes, the root
having level L, and all edges between levels (i+1) and i
having length 2i. Given such a tree T and node v at
level i, let Tv denote the (vertices in) the subtree rooted
at v.

By Corollary 4.2, it is clear that we cannot output
the actual set of facilities, so we will instead output
instructions in the form of an HST T = (VT , ET ) and
a set of facilities F ⊆ VT : each demand x ∈ D then
gets assigned to its ancestor facility at the lowest level
in the tree. (We guarantee that the root is always in F ,
hence this is well-defined.) Now we are charged for the



connection costs, and for the facilities that have at least
one demand assigned to them.

Algorithm 7 The Facility Location Algorithm
1: Input: Metric (V, d), facility cost f , demands D ⊆
V ,ε.

2: Pick a random distance-preserving FRT tree T ;
recall this is a 2-HST with L = O(log ∆) levels.

3: let F ← root r.
4: for i = 1 to L do
5: for all vertices v at level i do
6: let Nv = |D ∩ Tv| and Ñv = Nv + Lap(L/ε).
7: if Ñv · 2i > f then F ← F ∪ v.
8: end for
9: end for

10: output (T, F ): each demand x ∈ D is assigned to
the ancestor facility at lowest level in T .

Theorem 7.1. The above algorithm preserves ε-
differential privacy and outputs a solution of cost OPT ·
O(log n log ∆) · log ∆

ε log
(
n log2 ∆

ε

)
.

For the privacy analysis, instead of outputting the
set F we could imagine outputting the tree T and
all the counts Ñv; this information clearly determines
F . Note that the tree is completely oblivious of the
demand set. Since adding or removing any particular
demand vertex can only change L counts, and the noise
added in Step 6 gives us ε/L-differential privacy, the
fact that differential privacy composes linearly gives us
the privacy claim.

For the utility analysis, consider the “noiseless”
version of the algorithm which opens a facility at v when
Nv · 2i ≥ f . It can be shown that this ideal algorithm
incurs cost at most f+O(log n log ∆)·OPT (see, e.g., [19,
Theorem 3]). We now have two additional sources of
error due to the noise:
• Consider the case when Nv ·2i ≥ f > Ñv ·2i, which

increases the connection cost of some demands in
D. However, the noise is symmetric, and so we
overshoot the mark with probability at most 1/2—
and when this happens the 2-HST property ensures
that the connection cost for any demand x increases
by at most a factor of 2. Since there are at most
L = O(log ∆) levels, the expected connection cost
increases by at most a factor of L.

• Consider the other case when Nv · 2i < f ≤ Ñv · 2i,
which increases the facility cost. Note that if
Nv · 2i ≥ f/2, then opening a facility at v can be
charged again in the same way as for the noiseless
algorithm (up to a factor of 2). Hence suppose
that Ñv − Nv ≥ 1

2 (f/2i), and hence we need

to consider the probability pi of the event that
Lap(L/ε) > 1

2 (f/2i), which is just L
ε exp(− f

2i+1
ε
L ).

Note that if for some value of i, f ≥ L 2i+1

ε log L2n
ε ,

the above probability pi is at most 1/Ln, and
hence the expected cost of opening up spurious
facilities at nodes with such values of i is at most
(1/Ln) · Ln · f = f . (There are L levels, and at
most n nodes at each level.)

For the values of i which are higher; i.e., for which
f < L 2i+1

ε log L2n
ε , we pay for this facility only if

there is a demand x ∈ D in the subtree below v
that actually uses this facility. Hence this demand
x must have used a facility above v in the noiseless
solution, and we can charge the cost f of opening
this facility to length of the edge 2i+1 above v.
Thus the total cost of spurious facilities we pay for
is the cost of the noiseless solution times a factor
L
ε log L2n

ε .
Thus the expected cost of the solution is at most

OPT ·O(log n log ∆) · log ∆
ε

log
(
n log2 ∆

ε

)
.(7.7)

8 Combinatorial Public Projects (Submodular
Maximization)

Recently Papadimitriou et al.[28] introduced the Com-
binatorial Public Projects Problem (CPP Problem) and
showed that there is a succinctly representable version of
the problem for which, although there exists a constant
factor approximation algorithm, no efficient truthful al-
gorithm can guarantee an approximation ratio better
than m

1
2−ε, unless NP ⊆ BPP . Here we adapt our set

cover algorithm to give a privacy preserving approxima-
tion to the CPP problem within logarithmic (additive)
factors.

In the CPP problem, we have n agents and m
resources publicly known. Each agent submits a private
non-decreasing and submodular valuation function fi
over subsets of resources, and our goal is to select a
size-k subset S of the resources to maximize

∑n
i=1 fi(S).

We assume that we have oracle access to the functions
fi. Note that since each fi is submodular, so is∑n
i=1 fi(S), and our goal is to produce a algorithm for

submodular maximization that preserves the privacy of
the individual agent valuation functions. Without loss
of generality, we will scale the valuation functions such
that they take maximum value 1: maxi,S fi(S) = 1.

Once again, we have an easy computationally inef-
ficient algorithm.

Theorem 8.1. The exponential mechanism when used
to choose k sets runs in time O(

(
m
k

)
poly(n)) and has

expected quality at least (1− 1/e)OPT −O(log
(
m
k

)
/ε).



We next give a computationally efficient algorithm
with slightly worse guarantees. We adapt our un-
weighted set cover algorithm, simply selecting k items
greedily:

Algorithm 8 CPP Problem
1: Input: A set of M of m resources, private functions
f1, . . . , fn, a number of resources k, ε, δ.

2: let M1 ← M , F (x) :=
∑m
i=1 fi(x), S1 ← ∅,

ε′ ← ε
e ln(e/δ) .

3: for i = 1 to k do
4: pick a resource r from Mi with probability pro-

portional to exp(ε′(F (Si + {r})− F (Si))).
5: let Mi+1 ←Mi − {r}, Si+1 ← Si + {r}.
6: end for
7: Output Sk+1.

8.1 Utility Analysis

Theorem 8.2. Except with probability O(1/poly(n)),
the algorithm for the CPP problem returns a solution
with quality at least (1− 1/e)OPT−O(k logm/ε′).

Proof. Since F is submodular and there exists a set
S∗ with |S| = k and F (S) = OPT, there always
exists a resource r such that F (Si + {r}) − F (Si) ≥
(OPT− F (Si))/k. If we always selected the optimizing
resource, the distance to OPT would decrease by a
factor of 1 − 1/k each round, and we would achieve
an approximation factor of 1 − 1/e. Instead, we use
the exponential mechanism which, by (2.4), selects a
resource within 4 lnm/ε′ of the optimizing resource with
probability at least 1− 1/m3. With probability at least
1−k/m3 each of the k selections decreases OPT−F (Si)
by a factor of (1−1/k), while increasing it by at most an
additive 4 lnm/ε′, giving (1− 1/e)OPT +O(k lnm/ε′).

8.2 Privacy Analysis

Theorem 8.3. For any δ ≤ 1/2, the CPP problem al-
gorithm preserves (ε′(e − 1) ln(e/δ), δ)-differential pri-
vacy.

Proof. Let A and B be two CPP instances that differ in
a single agent I with utility function fI . We show that
the output set of resources, even revealing the order in
which the resources were chosen, is privacy preserving.
Fix some ordered set of k resources, π1, . . . , πk write
Si =

⋃i−1
j=1{π(j)} to denote the first i − 1 elements,

and write si,j(A) = FA(Si + {j}) − FA(Si) to denote
the marginal utility of item j at time i in instance A.
Define si,j(B) similarly for instance B. We consider
the relative probability of our mechanism outputting

ordering π when given inputs A and B:

Pr[M(A) = π]
Pr[M(B) = π]

=
k∏
i=1

(
exp(ε′ · si,πi(A))/(

∑
j exp(ε′ · si,j(A)))

exp(ε′ · si,πi(B))/(
∑
j exp(ε′ · si,j(B)))

)
,

where the sum over j is over all remaining unselected
resources. We can separate this into two products

k∏
i=1

(
exp(ε′ · si,πi(A))
exp(ε′ · si,πi(B))

)
·
k∏
i=1

(∑
j exp(ε′ · si,j(B))∑
j exp(ε′ · si,j(A))

)
.

If A contains agent I but B does not, the sec-
ond product is at most 1, and the first is at most
exp(ε′

∑k
i=1(FI(Si) − FI(Si−1))) ≤ exp(ε′). If B con-

tains agent I, and A does not, the first product is at
most 1, and in the remainder of the proof, we focus on
this case. We will write βi,j = si,j(B) − si,j(A) to be
the additional marginal utility of item j at time i in
instance B over instance A, due to agent I. Thus

Pr[M(A) = π]
Pr[M(B) = π]

≤
k∏
i=1

(∑
j exp(ε′ · si,j(B))∑
j exp(ε′ · si,j(A))

)

=
k∏
i=1

(∑
j exp(ε′βi,j) · exp(ε′ · si,j(A))∑

j exp(ε′ · si,j(A))

)

=
k∏
i=1

Ei[exp(ε′βi)],

where βi is the marginal utility actually achieved at
time i by agent I, and the expectation is taken over
the probability distribution over resources selected at
time i in instance A. For all x ≤ 1, ex ≤ 1 + (e− 1) · x.
Therefore, for all ε′ ≤ 1, we have:

k∏
i=1

Ei[exp(ε′βi)] ≤
k∏
i=1

Ei[1 + (e− 1)ε′βi]

≤ exp((e− 1)ε′
k∑
i=1

Ei[βi]).

As in the set-cover proof, we split the set of possible
outputs into two sets. We call an output sequence q-
good for an agent I in instance A if this sum

∑k
i=1Ei[βi]

is bounded above by q, and call it q-bad otherwise. For
a (ln(eδ−1))-good output π, we can then write

Pr[M(A) = π]
Pr[M(B) = π]

≤ exp((e− 1)ε′ · ln(eδ−1).

Moreover, note that since the total realized utility of
any agent is at most 1, if agent I has realized utility
ui−1 before the ith set is chosen, then βi is distributed



in [0, 1 − ui−1]. Moreover, ui = ui−1 + βi. Lemma A.2
then implies that the probability that the algorithms
outputs a (ln(eδ−1))-bad permutation is at most δ. The
theorem follows.

Remark 1. By choosing ε′ = ε/k, we immediately
get ε-differential privacy and expected utility at least
(1 − 1/e)OPT − O(k2 lnm/ε). This may give better
guarantees for some values of k and δ.

We remark that the k-coverage problem is a special
case of the CPP problem. Therefore:

Corollary 8.1. The CPP algorithm (with sets as re-
sources) is an (ε, δ)-differential privacy preserving algo-
rithm for the k-coverage problem achieving approxima-
tion factor at least (1−1/e)OPT−O(k logm log(2/δ)/ε).

8.3 Truthfulness The CPP problem can be viewed
as a mechanism design problem when each agent i
has a choice of whether to submit his actual valuation
function fi, or to lie and submit a different valuation
function f ′i if such a misrepresentation yields a better
outcome for agent i. A mechanism is truthful if for every
valuation function of agents j 6= i, and every valuation
function fi of agent i, there is never a function f ′i 6= fi
such that agent i can benefit by misrepresenting his
valuation function as f ′i . Intuitively, a mechanism is
approximately truthful if no agent can make more than
a slight gain by not truthfully reporting.

Definition 8.1. A mechanism for the CPP problem is
γ-truthful if for every agent i, for every set of player
valuations fj for j 6= i, and for every valuation function
f ′i 6= fi:

E[fi(M(f1, . . . , fi, . . . , fn))]
≥ E[fi(M(f1, . . . , f

′
i , . . . , fn))]− γ

Note that 0-truthfulness corresponds to the usual notion
of (exact) truthfulness.

(ε, δ)-differential privacy in our setting immediately
implies (2ε+ δ)-approximate truthfulness.We note that
Papadimitriou et al. [28] showed that the CPP problem
is inapproximable to an m

1
2−ε multiplicative factor by

any polynomial time 0-truthful mechanism. Our result
shows that relaxing that to γ-truthfulness allows us to
give a constant approximation to the utility whenever
OPT ≥ 2k logm log(1/γ)/γ for any γ.

8.4 Lower Bounds

Theorem 8.4. No ε-differentially private algorithm for
the maximum coverage problem can guarantee profit
larger than OPT− (k log(m/k)/20ε).

The proof is almost identical to that of the lower bound
Theorem 4.4 for k-median, and hence is omitted.

9 Steiner Forest

Consider the Steiner network problem, where we are
given a metric space M = (V, d) on n points, and a
(private) subset R ⊆ V × V of source-sink (terminal)
pairs. The goal is to buy a minimum-cost set of edges
E(R) ⊂

(
V
2

)
such that these edges connect up each

terminal pair in R. As in previous cases, we give
instructions in the form of a tree T = (V,ET ); each
terminal pair (u, v) ∈ R takes the unique path PT (u, v)
in this tree T between themselves, and the (implicit)
solution is the set of edges E(R) =

⋃
(u,v)∈R PT (u, v).

The tree T is given by the randomized construction
of Fakcharoenphol et al. [13], which guarantees that
E[cost(E(R))] ≤ O(log n) · OPT; moreover, since the
construction is oblivious to the set R, it preserves the
privacy of the terminal pairs perfectly (i.e., ε = 0). The
same idea can be used for a variety of network design
problem (such as the “buy-at-bulk” problem) which can
be solved by reducing it to a tree instance.

10 Private Amplification Theorem

In this section, we show that differentially private
mechanisms that give good guarantees in expectation
can be repeated privately to amplify the probability of
a good outcome. First note that if we simply repeat a
private algorithm T times, and select the best outcome,
we can get the following result:

Theorem 10.1. Let M : D → R be an ε-differentially
private mechanism such that for a query function q, and
a parameter Q, Pr[q(A,M(A)) ≥ Q] ≥ 1

2 . Then for
any δ > 0, ε′ ∈ (0, 1

2 ), there is a mechanism M ′ which
satisfies the following properties:
• Utility: Pr[q(A,M(A)) ≥ Q] ≥ (1− 2−T ).
• Efficiency: M ′ makes T calls to M .
• Privacy: M ′ satisfies (εT )-differential privacy.

Note that the privacy parameter degrades linearly
with T . Thus to bring down the failure probability to
inverse polynomial, one will have to make T logarithmic.
To get ε′-differential privacy, one would then take ε to
be ε′/T . If Q was inversely proportional to ε, as is
the case in many of our algorithms, this leads to an
additional logarithmic loss. The next theorem shows
a more sophisticated amplification technique that does
better.

Theorem 10.2. (Private Amplification Theorem)
Let M : D → R be an ε-differentially private mecha-
nism such that for a query function q with sensitivity 1,
and a parameter Q, Pr[q(A,M(A)) ≥ Q] ≥ p for
some p ∈ (0, 1). Then for any δ > 0, ε′ ∈ (0, 1

2 ),
there is a mechanism M ′ which satisfies the following
properties:
• Pr[q(A,M(A)) ≥ Q− 4

ε′ log( 1
ε′δp )] ≥ (1− δ).

• M ′ makes O(( 1
ε′δp )2 log( 1

ε′δp )) calls to M .



• M ′ satisfies (ε+ 8ε′)-differential privacy.

The proof of the result appears in the full version
of the paper.
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A Missing Proofs

In this section, we prove Lemma 6.1. The lemma is a
consequence of the following more general inequality.

Consider the following n round probabilistic pro-
cess. In each round, an adversary chooses a pi ∈ [0, 1]
possibly based on the first (i − 1) rounds and a coin
is tossed with heads probability pi. Let Zi be the in-
dicator for the the event that no coin comes up heads
in the first i steps. Let Yj denote the random variable∑n
i=j piZi and let Y = Y1.

Lemma A.1. Let Y be defined as above. Then for any
q, Pr[Y > q] ≤ exp(−q).

Proof. We claim that for any j and any q, Pr[Yj >
q] ≤ exp(−q), which implies the lemma. The proof
is by reverse induction on j. For j = n, Yn is 0 if
the nth coin or any coin before it comes up heads and
pn otherwise. Thus for q ≥ pn, the left hand side is
zero. For q ∈ [0, pn), the left hand side is at most
(1 − pn) ≤ exp(−pn) ≤ exp(−q). Finally, for q < 0
the right hand side exceeds 1.

Now suppose that for any adversary’s strategy and
for all q, Pr[Yj+1 > q] ≤ exp(−q). We will show the
claim for Yj . Once again, for q ≤ 0, the claim is
trivial. In round j, if the adversary chooses pj , there
is a probability pj that the coin comes up heads so
that Yj = 0. Thus for any q ≥ 0, Pr[Yj > q] =
Pr[pjZj +Yj+1 > q] = (1−pj)Pr[Yj+1 > q−pj ]. Using
the inequality (1 − x) ≤ exp(−x) and the inductive
hypothesis, the claim follows for Yj .

To map the randomized algorithm to the setting
of lemma A.1, we consider running the randomized
weighted set cover algorithm as follows. When choosing
a set S in step i, the algorithm first tosses a coin
whose heads probability is pi(A) to decide whether
to pick a set covering I or not. Then it uses a
second source of randomness to determine the set S
itself, sampling from {S : I ∈ S} or {S : I 6∈ S}
with the appropriate conditional probabilities based
on the outcome of the coin. Clearly this is a valid
implementation of the weighted set cover algorithm.
Note that the probabilities pi(A) may depend on the
actual sets chosen in the first (i− 1) steps if none of the
first (i − 1) coins come up heads. Since lemma A.1
applies even when pi(A)’s are chosen adversarially,
lemma 6.1 follows.

We also prove a more general version of Lemma A.1
that applies to non-Bernoulli distributions. This lemma
will be needed to prove the privacy of our algorithm
for submodular minimization in Section 8. We now

consider a different n round probabilistic process. In
each round, an adversary chooses a distribution Di over
[0, 1], possibly based on the first (i − 1) rounds and a
sample Ri is drawn from the distribution Di. Let Z0 = 1
and let Zi+1 = Zi − RiZi. Let Yj denote the random
variable

∑n
j=1 ZiE[Ri] and let Y denote Y1.

Lemma A.2. Let Y be defined as above. Then for any
q, Pr[Y > q] ≤ e exp(−q).

Proof. We prove a stronger claim. We show that for
Pr[Yj ≥ qZj ] ≤ e exp(−q). The proof is by reverse
induction on j. For j = n, Yn = E[Rn]Zn ≤ Zn since
Dn is supported on [0, 1] and hence has expectation at
most 1. Thus the claim is trivial for any q ≥ 1. For q ≤
1, the right hand side is at least 1 and there is nothing
to prove. Supppose that for any q and any strategy of
the adversary, Pr[Yj+1 ≥ qZj+1] ≤ e exp(−q). We show
the claim for Yj . Once again the case q ≤ 1 is trivial,
so we assume q ≥ 1. Let µj denote E[Rj ]. Note that
Yj = Zjµj +Yj+1. Moreover, Zj+1 = (1−Rj)Zj . Thus,

Pr[Yj ≥ qZj ] = ERj∈Dj [Pr[Yj+1 ≥ qZj − µjZj ]]

= ERj∈Dj [Pr[Yj+1 ≥
q − µj
1−Rj

Zj+1]]

≤ ERj∈Dj [e exp(− q − µj
1−Rj

)].

We show that for any distribution D, the last term is
bounded by e exp(−q), which will complete the proof.
Re-arranging, it suffices to show that for any distribu-
tion D on [0, 1],

ER∈D[exp(
µ− qR
1−R

)] ≤ 1.

Since µ−qR
1−R is positive when R ≤ µ/q and negative

otherwise, one can verify that for any R, exp(µ−qR1−R ) ≤
exp(µ−qR1−µq

). Moreover, since exp(·) is convex, the
function lies below the chord and we can conclude that
exp(µ−qR1−µq

) ≤ exp( µ
1−µq

) + R(exp( µ−q1−µq
) − exp( µ

1−µq
)).

Thus it suffices to prove that

exp(
µ

1− µ
q

) + µ(exp(
µ− q
1− µ

q

)− exp(
µ

1− µ
q

)) ≤ 1,

or equivalently

1 + µ(exp(
−q

1− µ
q

)− 1 ≤ exp(
−µ

1− µ
q

).

This rearranges to

1− exp(− µ

1− µ
q

) ≤ µ(1− exp(− q

1− µ
q

)).

Consider the function f(x) = 1 − exp(− x
1−µq

). f

is convex with f(0) = 0 and f(1) ≤ f(q) = (1 −
exp(− q

1−µq
)). Thus f(µ) ≤ µf(1) ≤ µf(q), for q ≥ 1.

The claim follows.
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