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1 Introduction

Many high stakes decisions that are now aided by machine learning can be
viewed as allocation problems. We will often have some good (such as a job or a
loan) or bad (such as incarceration) to distribute amongst a population. People
on at least one side of the problem will have preferences over the other side that
are based on qualities that are not directly observable (e.g. banks want to give
loans to the creditworthy; courts want to incarcerate the guilty or those likely to
repeat their offenses). The machine learning task is to make predictions about
those qualities from observable attributes. It is natural that when we make
high stakes decisions, we will be concerned about unfairness — the potential
for the system as a whole (of which a machine learning algorithm or statistical
model may play only a relatively small role) to disproportionately favor some
people over others, perhaps for reasons more related to their demographics than
features relevant for the task at hand. And we note at the outset that these
considerations are not hypothetical: statistical models are currently being used
to inform bail and parole decisions, hiring and compensation decisions, lending
decisions, and an increasingly extensive collection of high stakes tasks—and
there are now an enormous number of cases of systemic decision-making that
would be called sexist or racist—at least if the decisions had been made by a
human being.

But what should we make of such decision making when it is carried out
by an algorithm that was derived by optimizing a facially neutral objective
function, like classification error? The first thing we need to understand is
why we might expect machine learning to exacerbate unfair decision making in
the first place. After all, at its heart, machine learning usually corresponds to
simple, principled optimization. Typically, the process of machine learning will
start by gathering a dataset consisting of various measured features for each
person. For example, in the recidivism prediction problem that is often used to
inform whether prisoners should be released on parole, features might include
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basic demographics (e.g. age, sex), together with information about criminal
history, like the number of previous arrests and convictions for violent and non-
violent offences. It is also necessary to specify something that we wish to predict,
called the label — importantly, something that we can measure. For example,
in a recidivism prediction setting, the goal is to predict whether inmates will
commit a violent crime within (e.g.) 18 months of being released — but because
this isn’t directly observable, the label is often taken to be a proxy variable such
as whether the individual was arrested for a violent crime. And bias of the sort
we are trying to avoid can creep in to the final decision making rule via the
data, and via the optimization process itself in both obvious and non-obvious
ways.

First, lets consider the labels that we are trying to predict. In the criminal
recidivism application, are arrests an equally good proxy for crime in all popu-
lations? Perhaps not: if police are more likely to stop black people than white
people, all things being equal, then the effect of using arrest labels as proxies for
unmeasured criminality will be that black people in the dataset will in aggre-
gate appear to be a higher risk population than they would if we could measure
the actual variable of interest. And of course there is no reason to expect that
applying machine learning techniques will somehow remove these human biases
which have crept into the dataset via the labelling process: machine learning at
best replicates the patterns already in the data.

But the problem goes beyond that, and bias can creep into machine learning
even if the labels are correctly recorded in the data. It is enough that two dif-
ferent populations are statistically different in the sense that features correlate
differently with the label, depending on the population. Consider, for exam-
ple, a college admissions problem in which we seek to identify talented students
from their high school records. Suppose there are two populations, one of which
attends well resourced suburban high schools, and the other of which attends
poorly resourced city high schools. One feature that we may have available to
us in a college application is how many AP science courses a student has taken.
For students from the well resourced highschools, which offer many AP science
courses, this might be an informative predictor of student talent. But amongst
students from the poorly resourced high schools – that offer many fewer, or per-
haps even no AP courses, this feature is much less predictive (because ordinary
and talented students alike do not take AP courses, since none are available).
It may be that the distribution of talent is the same in both highschools —
and even that in isolation, talent is equally predictable within both populations
— but predictable using different models. Yet if we insist on selecting a single
model for both populations1, optimizing for overall error will result in finding
the model that better fits the majority population, simply because error on the
majority population contributes more to overall error by virtue of their num-
bers. In this case (because for the wealthy students, taking no AP classes is a
negative signal) this will result in penalizing students who have not taken AP

1As we must if we don’t want to explicitly use group membership as a feature in our decision
making process — something that is explicitly illegal in many settings such as lending and
insurance.
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classes, which will have the effect of reducing admission rate on the population
from under-resourced schools.

1.1 What is “Fairness” in Classification?

We have discussed informally how “unfairness” might creep in to statistical
models learned from data — but if we want to quantify it and think about how
to eliminate it, we need to be much more precise. So what should “fairness”
entail in a limited setting like binary classification? Here we will intentionally
start with a narrowly specified version of the problem, in which things like the
data distribution are taken as exogenously given properties of the world, and the
only object of study is the statistical model that we train from the data itself.
Later in the chapter we will expand the scope of our analysis to account for
the second order effects of the choices that we make in choosing a classification
technology. We will focus on the simplest possible setting, assuming away many
of the difficulties that arise in more realistic settings. For example, we will
assume that there are only two disjoint groups of interest, which we will denote
by g ∈ {0, 1}. This could denote any binary distinction made by e.g biological
sex, race, or class. This avoids (important) complications that arise when there
are many — potentially intersecting — groups for whom we care about fairness.
We will also implicitly assume that the labels recorded in the data are the true
labels — i.e. that our data is not contaminated with the sort of proxy label bias
we discussed above. We will find that even in this simplified setting, there are
already thorny issues to deal with.

Definition 1 (Data Distribution). We model individuals as being sampled from
data distributions Dg which may depend on their group g. The distributions
Dg have support over X ×{0, 1}, where X represents an abstract feature space,
and Y represents some binary outcome of interest.

In the above, we imagine that the feature space X is the same for both pop-
ulations and does not encode group membership g, which we handle separately
(because we wish to study the question of whether decision making should con-
dition on g or not). We write γ ∈ [0, 1] to represent the fraction of the overall
population that group 0 represents — and thus 1−γ is the fraction of the over-
all population that group 1 represents. We write D to denote the distribution
on the entire population of both groups, defined as follows. D is supported
on {0, 1} × X × {0, 1} corresponding to triples (g, x, y) of group membership,
features, and labels. To sample from D, we:

1. Let g = 0 with probability γ (otherwise g = 1)

2. Sample (x, y) ∼ Dg.

3. Output the triple (g, x, y).

The fact that the distributions D0 and D1 may differ allows us to model the
unavoidable fact that distinct populations will have different statistical proper-
ties (without modeling for now the source of those differences — such as e.g.
the difference in high school resources as discussed above).
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The prediction problem is to learn some rule h : {0, 1} × X → {0, 1} to
predict the unknown label y as a function of the observable features x — and
possibly the group label g.

Definition 2 (Unconstrained Error Minimization). The overall error rate of a
hypothesis h is:

error(h) = Pr
(g,x,y)∼D

[h(g, x) 6= y]

The error rate of a hypothesis h on a group g is:

errorg(h) = Pr
(x,y)∼Dg

[h(g, x) 6= y]

We denote by h∗ the Bayes optimal classifier — i.e. the classifier that martials
all available statistical information to optimally predict the label:

h∗(g, x) =

{
1, if Pr[y = 1|x, g] ≥ 1/2;
0, otherwise.

Observe that the Bayes optimal classifier is both error optimal overall, and on
each group in isolation:

error(h∗) ≤ error(h) errorg(h∗) ≤ errorg(h)

for all h and for all g.

Perhaps the most immediately obvious definition of fairness in classification
is that our deployed classifier h should not make explicit use of group member-
ship. This is a moral analogue of the goal of “anonymity” discussed as a fairness
objective in Chapter ??. Here we are not making decisions in a way that is in-
dependent of the individual entirely (since in our setting, individuals are not
identical—they are distinguished by their features). However, it is asking that
individuals who are identical with respect to their “relevant” features x should
be treated the same way, independently of their group membership g:

Definition 3 (Group Independence). A classifier h is group independent if it
does not make decisions as a function of group membership. In other words, if
for all x ∈ X:

h(0, x) = h(1, x)

This is an appealing requirement at first blush, but it is not obviously de-
sirable in isolation (although we will return to it in a dynamic model in Section
3). Consider the following toy example:

Example 4. We have a majority population g = 0 with proportion γ = 2/3
and a minority population g = 1. There is a single binary feature: X = {0, 1}.
D0 is uniform over {(0, 0), (1, 1)} (i.e. the label is perfectly correlated with
the feature) and D1 is uniform over {(0, 1), (1, 0)} (i.e. the label is perfectly
anti-correlated with the feature).
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The Bayes optimal classifier h∗ is group dependent and has error(h∗) = 0.
But the error optimal group independent classifier is h(x) = x — i.e. it fits the
majority population, and has error0(h) = 0, error1(h) = 1, and error(h) = 1 −
γ = 1/3. Here (in any setting in which higher error on a population corresponds
to harm), requiring group independence has harmed the minority population
without changing how the classifier behaves on the majority population, and
decreasing its overall performance.

As Example 4 demonstrates, attempting to enforce fairness by prohibiting a
classifier from using certain inputs (“fairness through blindness”) can backfire,
and a more promising way forward is to approach fairness by enunciating what
properties of the outputs are undesirable. Doing this correctly can be tricky,
and is context dependent. In the following, we go through the exercise of artic-
ulating the rationale for several popular formalizations of “statistical fairness”.
These differ in spirit from the notion of “envy freeness” introduced as a measure
of fairness in Chapter ?? in that we do not necessarily have the aim of giving
every individual what they want: instead, these measures are concerned with
how different measures of the mistakes made by the classifier are distributed
across populations. Notions like envy freeness are not appropriate when the
designer’s goal is explicitly to distribute some bad like incarceration: the incar-
cerated will always prefer not to be incarcerated, but committing ahead of time
to incarcerate nobody (or everybody — the only two deterministic envy free
solutions) is likely at odds with society’s objectives.

1.1.1 Thinking about Fairness Constraints

Any statistical estimation procedure will inevitably make errors, and depending
on the setting, those errors can cause personal harms. For example, in a criminal
justice application in which we are making decisions about incarceration, we
may judge that the individuals who are harmed the most are those who should
not have been incarcerated (say, because they are innocent) but are mistakenly
incarcerated. These kinds of errors can be cast as false positives. In contrast, in
settings in which we are allocating a good — say when making a hiring decision
or admitting students to college — we may judge that the individuals who are
most harmed are those who should have received the good (because they were
qualified for the job, e.g.) but were mistakenly denied it. These kinds of errors
can be cast as false negatives. A sensible and popular approach to fairness
questions is to ask that the harms caused by the mistakes of a classifier not
be disproportionately borne by one population. This approach motivates error
rate balance constraints:

Definition 5 (Error Rate Balance). A hypothesis h satisfies false positive rate
balance if:

Pr
(x,y)∼D0

[h(x) = 1|y = 0] = Pr
(x,y)∼D1

[h(x) = 1|y = 0]
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It satisfies false negative rate balance if:

Pr
(x,y)∼D0

[h(x) = 0|y = 1] = Pr
(x,y)∼D1

[h(x) = 0|y = 1]

If h satisfies both conditions we say that it satisfies error rate balance. These
definitions have natural approximate relaxations — rather than requiring exact
equality, we can require that the difference in false positive or false negative
rates across populations not exceed some threshold ε.

Of course, not all statistical estimators are directly used to take action: a
(currently) more common use case is that statistical estimators are used to
inform some downstream decision — often made by a human being — that
will involve many sources of information. In such cases, we cannot directly
attribute harms that result from the eventual decisions to mistakes made by the
classification technology, and so it is difficult to ask that the “harms” due to the
mistakes in classification be equally borne by all populations. For these mid-
stream statistical estimators, we might instead ask that the predictions they
make be equally informative for both populations. In other words, the meaning
of the inference that we can draw about the true label from the prediction should
be the same for both populations.

Definition 6 (Informational Balance). A hypothesis h satisfies positive infor-
mational balance if:

Pr
(x,y)∼D0

[y = 1|h(x) = 1] = Pr
(x,y)∼D1

[y = 1|h(x) = 1]

It satisfies negative informational balance if:

Pr
(x,y)∼D0

[y = 1|h(x) = 0] = Pr
(x,y)∼D1

[y = 1|h(x) = 0]

If h satisfies both conditions, we say that it satisfies informational balance.
Just as with error rate balance, we can easily define an approximate relaxation
parameterized by an error tolerance ε.

We could continue and come up with additional fairness desiderata, but this
will be plenty for this chapter.

2 The Need to Choose

We have enunciated two distinct — and reasonable — notions of balance: error
rate balance and informational balance. Which of these (if any) should we
impose on our statistical models? Or perhaps there is no need to choose —
both conditions are reasonable, so why not ask for both?

It turns out that doing so is simply impossible, under generic conditions on
the prediction problem. An important parameter for understanding this issue
will be the base rate in each population g, which is simply the proportion of the
population that has a label of 1:
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Definition 7 (Base Rate). The base rate of population g is:

Bg = Pr
(x,y)∼Dg

[y = 1]

The next observation we can make is that the statistical quantities used
to define error rate balance and informational balance are both conditional
probabilities that are Bayes duals of one another — that is, they are directly
related to each other via Bayes’ rule:

Claim 8 (Bayes’ Rule).

Pr
(x,y)∼Dg

[y = 1|h(x) = 0] =
Pr(x,y)∼Dg

[h(x) = 0|y = 1] · Pr(x,y)∼Dg
[y = 1]

Pr(x,y)∼Dg
[h(x) = 0]

Let’s give some short hand for false positive and false negative rates, the
quantities that will be of interest to us:

FPg(h) = Pr
(x,y)∼Dg

[h(x) = 1|y = 0] FNg(h) = Pr
(x,y)∼Dg

[h(x) = 0|y = 1]

Note that the quantity appearing in the denominator, Pr(x,y)∼Dg
[h(x) = 0],

can be expanded out by observing that there are two ways in which a classifier
h(x) can predict 0. Either the true label is 1, and the classifier makes an error
(a false negative), or the true label is 0, and the classifier is correct — i.e. it
did not make a false positive error. In other words:

Pr
(x,y)∼Dg

[h(x) = 0] = Bg · FNg(h) + (1−Bg)(1− FPg(h))

We can now rewrite the right hand side of Bayes rule as follows:

Pr
(x,y)∼Dg

[y = 1|h(x) = 0] = Bg ·
(

FNg(h)

Bg · FNg(h) + (1−Bg)(1− FPg(h))

)
(1)

Observe that if h satisfies informational balance, the left hand side of the equa-
tion is equal across groups, and therefore the right hand side must be as well:

B0·
(

FN0(h)

B0 · FN0(h) + (1−B0)(1− FP0(h))

)
= B1·

(
FN1(h)

B1 · FN1(h) + (1−B1)(1− FP1(h))

)
Now suppose h also satisfies error rate balance (i.e. FP0(h) = FP1(h) and
FN0(h) = FN1(h)). When can it be the case that the above equality holds? By
inspection, there are only two ways. It could be that the base rates are equal:
B0 = B1. In this case, the left hand side is identical to the right hand side.
Or, it could be that the classifier is perfect. Then, the two sides are equal even
if the base rate is not, because FNg(h) = 0, and so both sides evaluate to 0.
But these are the only two cases. These observations combine to give a basic
impossibility result.
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Theorem 9. For any two groups on which the base rates are unequal (B0 6=
B1), then any hypothesis h that simultaneously achieves error rate balance and
informational balance must be perfect — i.e. must be such that error(h) = 0.

This is an impossibility result because:

1. The first hypothesis of the theorem — that base rates are unequal — is
true in almost every interesting problem, and

2. The conclusion of the theorem — that prediction is perfect — is unob-
tainable in almost every interesting problem.

The correct interpretation is therefore that we must almost always settle for
a hypothesis that either fails to satisfy error rate balance or fails to satisfy
informational balance — in other words, we are forced to choose amongst the
fairness desiderata that we discussed in Section 1.1.1.

This basic fact is quite intuitive if we reflect on what Equation 1 is telling
us. To compute the conditional probability Pr(x,y)∼Dg

[y = 1|h(x) = 0], we first
start with our prior belief that y = 1, before we see the output of the classifier.
But this is just the base rate Bg. Then, after we see the output of the classifier,
we must update our prior belief to form our posterior belief, based on the
strength of the evidence that we have observed. Equation 1 shows us that
the proper way to do this is to multiply our prior belief by the Bayes factor:(

FNg(h)
Bg·FNg(h)+(1−Bg)(1−FPg(h))

)
. But the Bayes factor — i.e. the strength of the

evidence — is determined by the false positive and negative rates of our classifier!
Thus, the impossibility result is telling us no more than the following: If we have
two groups, and we start with different prior beliefs about their labels (because
the base rates differ), then if we are to have identical posterior beliefs about their
labels after we see a given classifier output, it must be that the classifier provides
evidence of different strength for both groups. Or, equivalently, if we have a
classifier that provides evidence of the same strength for both groups, then if
we started out with different prior beliefs about the groups, we will continue to
have different posterior beliefs about the group after seeing the output of the
classifier. This is why informational balance is necessarily at odds with error
rate balance.

But don’t panic — this is ok! Remember that our normative justification
for error rate balance applied in settings in which the classification algorithm
was actually making decisions itself, whereas our normative justification for
informational balance applied in settings in which the algorithm was informing
downstream decision making. But it does mean that we must be thoughtful
when we design algorithms with a desire for “fairness” about how the algorithm
is going to be used; different use cases call for different notions of fairness, and
the safe approach of having every algorithm satisfy them all is impossible.
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3 Fairness in a Dynamic Model

How should we proceed after observing the impossibility result from Section 2?
The message seemed to be that we should be thoughtful and choose amongst
different fairness constraints in different settings, but how precisely should we
go about choosing? In this section we go through a case study of one reasonable
method:

1. Model the upstream and downstream effects of choices made by selecting
a particular classification technology,

2. Enunciate a societal goal that you can evaluate within this larger system,
and

3. Study which constraints on the classification technology are helpful or
harmful in achieving that goal.

3.1 A Toy Criminal Justice Model

We derive a simple model using the language of criminal justice, in part because
this is the setting in which the conflict between of error rate balance and infor-
mational balance has been most fiercely debated. In this model, our “societal
goal” will be to minimize overall crime. But the reader can map our simple
model onto a lending or college admissions setting, in which the corresponding
societal goal will correspond to minimizing default or maximizing preparation.
We stress at the outset that this is a toy model that plainly fails to capture
many important aspects of criminal justice. The point is to set up the simplest
possible mathematical scenario that:

1. Allows us to consider all of the kinds of classification technologies that we
have discussed so far (Bayes optimal classifiers, group independence, error
rate balance, and informational balance), in a setting in which they are in
tension because of Theorem 9, and

2. Allows us to shed light on the incentives engendered by imposing different
fairness constraints, and how those interact with system wide goals.

With these aims in mind, we proceed.
The impossibility result in Theorem 9 begins with the premise that different

populations have different base rates — i.e. different proportions of positive
labels. But when data points correspond to people, as they do when deploy-
ing classification technologies in criminal justice settings, base rates are just
aggregates over lots of individual decisions. To model how these individual de-
cisions are made, we will think of individuals as rational decision makers, who
make a binary decision (crime vs. no crime) by weighing their expected utility
conditioned on both choices, and making the decision that corresponds to the
higher expected utility. In this sense, we model people as being identical to
one another. However, they differ in the opportunities available to them: we
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model individuals as having some outside option value (or legal employment op-
portunity) that is drawn from a distribution that may be specific to their group
g, thereby modelling the fact that different populations may have different le-
gal opportunities available to them (eventually making crime relatively more
appealing to some people than others).

Definition 10 (Outside Option Distributions). Each individual from group g
has an outside option value v drawn independently from a real valued distribu-
tion v ∼ Dg, which may differ by group.

Individuals will take an action a ∈ {C,N} ((C)rime and (N)o Crime). If
they decide not to commit a crime, they obtain their outside option value. If
they decide to commit a crime, they obtain value I. (We could equally well
have I be drawn from a group dependent distribution, but for simplicity we
let it be a fixed value here). They will also experience some penalty P if they
are incarcerated, which will occur with some probability that depends on their
decision and on the classification technology that society ends up deploying,
which we will elaborate on shortly. As a function of their action a, we obtain a
“signal” i.e. some noisy information about what action they took. We can view
this as an abstraction of the “evidence” that a crime was committed: allowing
the evidence to be noisy takes into account both that criminals can go free for
lack of evidence, and that innocent people can end up being jailed because of
misleading evidence. As we shall see, it is also from this noise that the risk of
stereotyping based on group membership g arises.

Definition 11 (Signal Distributions). An individual who takes action a gener-
ates a signal s drawn independently from a real valued distribution s ∼ Qa.

For the sake of intuition, it is helpful to imagine that larger signals corre-
spond to stronger evidence of guilt and vice versa. This would be the case if
e.g. QC first order stochastically dominates QD — but we won’t actually need
to make this assumption. Note however that we are making a crucial assump-
tion here: namely, that signals depend only on the action that an individual
takes, and in particular are conditionally independent of their group given their
action. This assumption need not hold in practice, if e.g. evidence is gathered
by a method that itself encodes bias.

There will be some classification technology (an extremely reduced form
representation of the criminal justice system generally) that for each individual,
takes as input the signal s that they generated, and then makes an incarceration
decision — possibly as a function of their group membership g.

Definition 12 (Incarceration Rule). An incarceration rule h : R × {0, 1} →
{0, 1} takes as input a signal s and a group membership g and outputs an
incarceration decision h(s, g), where h(s, g) = 1 corresponds to incarceration.

Note that an incarceration rule fixes a false positive rate and false negative
rate across the two populations. For each group g:

FPg(h) = Pr
s∼QN

[h(s, g) = 1] FNg(h) = Pr
s∼QC

[h(s, g) = 0]
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Once an incarceration rule h is fixed, we can speak about the expected payoff
of an agent’s actions, who has outside option value v and is a member of group
g. Such an agent’s payoff for choosing a = C is:

u(g, v, h, C) = I − P · Pr
s∼QC

[h(s, g) = 1] = I − P · (1− FNg(h))

In other words, they immediately get payoff I for choosing to commit a crime,
but then receive penalty P in the event that they are incarcerated, which occurs
exactly when they are not a false negative.

Similarly, the agent’s payoff for choosing a = N is:

u(g, v, h,N) = v − P · Pr
s∼QN

[h(s, g) = 1] = v − P · FPg(h)

In other words, they immediately get payoff equal to their outside option value
v when they do not commit a crime, and receive a penalty P in the event that
they are incarcerated, which occurs exactly when they are a false positive.

Thus, in our model, an individual will commit a crime when u(g, v, h, C) ≥
u(g, v, h,N), which by rearranging the expressions occurs exactly when:

v ≤ I + P (FPg(h) + FNg(h)− 1)

Finally, this allows us to bring the model full circle and compute the base
rates Bg(h) in each population, which in our model are a function of the deployed
classification technology h. We have that the base rate in population g is:

Bg(h) = Pr
v∼Dg

[v ≤ I + P (FPg(h) + FNg(h)− 1)]

which is just the CDF of the outside option distribution Dg evaluated at I +
P (FPg(h) + FNg(h)− 1).

We pause here to make a couple of observations.

1. First, because the outside option distributions D0 and D1 are not equal,
in general, the base rates B0(h) and B1(h) will also not be equal. Thus we
are in a setting in which the impossibility result from Theorem 9 applies.

2. Because signal distributions are conditionally independent of group mem-
bership conditional on actions, we can equalize false positive and false
negative rates across groups simply by selecting an incarceration rule that
ignores group membership — i.e. an h such that for all s, h(s, 0) = h(s, 1).

3. On the other hand, from Bayes rule, we know that:

Pr[a = C|s, g] = Bg(h) ·
(

PrQC
[s]

Bg(h) · PrQC
[s] + (1−Bg(h)) · PrQN

[s]

)
which depends on g, exactly because base rates will differ across groups.
In other words, when base rates differ, group membership really is statisti-
cally informative information about whether an individual has committed
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a crime or not, because it affects prior beliefs and therefore posterior
beliefs. Therefore, the incarceration rule h that minimizes overall clas-
sification error — i.e. that is most likely to incarcerate the guilty and
release the innocent — will not be independent of group membership, and
therefore will not equalize false positive and negative rates.

This is all to say that we have established a model in which the selection of a
classifier feeds back into the decisions of individuals, which in turn affects base
rates, which in turn affects what an informative classifier must do — but we
have found ourselves where we started, in which attempts to equalize harm will
lead to decisions that are differently informative across populations and vice
versa.

In this model, however, we can enunciate different goals compared to what
we could ask for in a static model. For example, because base rates now depend
dynamically on our choice of incarceration rule h, we can ask what properties
h should have if we wish to minimize crime rates. For example, we might
ambitiously hope that some incarceration rule h∗ would result in simultaneously
minimizing crime rates across both populations, i.e.:

h∗ ∈ arg min
h
B0(h) h∗ ∈ arg min

h
B1(h)

So how should we do this? And is it even possible to simultaneously minimize
base rates across two different populations, with different outside option distri-
butions? First, recall that the base rate Bg(h) for population g is simply the
CDF of the distribution Dg evaluated at I + P (FPg(h) + FNg(h)− 1). We can
therefore think about how to minimize the crime rate within each population
without needing to understand much about the particulars of the distributions
Dg, because cumulative distribution functions are monotone. Therefore to min-
imize the base rate, we wish to minimize I + P (FPg(h) + FNg(h) − 1), and in
this expression, only two of the parameters are under our control, and neither
of them depends on Dg. Therefore we can find h∗ that minimizes the crime rate
Bg(h) on population g by solving for:

h∗(·, 0) = arg min
h(·,0)

FP0(h) + FN0(h) h∗(·, 1) = arg min
h(·,1)

FP1(h) + FN1(h)

Note that this is not the same thing as minimizing overall error, because we are
not weighting false positive and false negative rates by base rates.

Because signal distributions depend only on the action a taken by an indi-
vidual, and not (directly) on group membership, the two minimization problems
above must have exactly the same solution. The result is that the optimal in-
carceration rule h∗ must be group independent — i.e. it must be that for all
s, h∗(s, 0) = h∗(s, 1). Recall that this also implies that the optimal solution
equalizes false positive and false negative rates across populations. Thus we
have obtained the following theorem:

Theorem 13. For any set of outside option distributions D0,D1 and for any
set of signal distributions QC ,QN , there is a classifier h∗ that simultaneously
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minimizes crime rates across both groups:

h∗ ∈ arg min
h
B0(h) h∗ ∈ arg min

h
B1(h)

and h∗ has the following properties:

1. h∗ is independent of group membership g (even though g is statistically
informative). In other words, for every s:

h∗(s, 0) = h∗(s, 1)

2. h∗ equalizes false positive and false negative rates across groups:

FP0(h∗) = FP1(h∗) FN0(h∗) = FN1(h∗)

in other words it satisfies error rate balance.

3.2 Interpreting Theorem 13

As we have already observed, when base rates differ across groups (as they
do in this setting), Bayes rule tells us that the best classifier, from the point
of view of minimizing the number of mistaken predictions we will make, will
make decisions as a function of group membership. Thus, the classifier h∗ in
our model that is best from the perspective of minimizing crime rates, is doing
something that seems odd at first blush: it is intentionally committing not to
make decisions as a function of an informative variable g, and is instead only
making decisions as a function of s. How come?

The answer sheds some light on why we view stereotyping — i.e. using
group membership to inform our decision making — as unfair in the first place.
Although g is a statistically informative variable, it is immutable and not under
the control of the individual. On the other hand, the signal s is under the
control of the individual, via their choice of action. Hence, by basing our de-
cisions on g, we are distorting individual incentives — essentially reducing the
disincentive that individuals from populations with higher base rates have to
not commit crimes in the first place. If we used the classifier optimized purely
for predictive performance, we would convict individuals from the population
with reduced access to legal opportunities based on evidence that we would
view as insufficiently strong to convict individuals from the higher opportunity
population. This in turn would increase the crime rate in the lower opportunity
population by increasing the false positive rate, thereby distorting the incen-
tives of the criminal justice system. In our model, minimizing crime rates is all
about correctly setting the incentives of the criminal justice system — and the
way to provide equal incentives to both populations is to commit to ignoring
immutable individual characteristics. In other words, stereotyping or racial pro-
filing (i.e. doing statistical inference based on immutable group characteristics)
can be statistically justified in a static model, but in a dynamic model serves to
distort incentives in a way that has pernicious effects in equilibrium.
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We have also confirmed our intuition (within this model, of course) that it is
error rate balance that matters when our classifier is being used to make utility
relevant decisions for people. On the other hand, if our statistical model is being
used merely to inform future decisions, then we likely want something more
like informational balance. Here, the signal s plays the role of the statistical
instrument used to inform future decisions. Theorem 13 crucially relied on the
fact that the signal distributions QC ,QN were equally informative about agent
actions, independently of the group g to which the agent belonged. This is what
allowed equal treatment of signals to correctly incentivize agents across groups;
if the signal distributions had not been equally informative for members of both
groups, then the downstream conclusion would also have failed to hold. This
suggests that if we find ourselves in the position of designing a statistical model
that serves the role of the signal, that we should strive for (some analogue of)
informational balance.

4 Preserving Information Before Decisions

In Section 1.1.1 we have argued on normative grounds that when we are taking
actions in consequential domains in which our errors lead to personal harms,
that we might want to deploy decision rules that optimize error subject to error
rate balance constraints; in Section 3 we rigorously justified this in a particular
dynamic model. But currently, most deployed statistical models are not used to
directly take action themselves, but rather to inform some downstream decision
making task. This is the case, e.g. with the criminal recidivism prediction tools
that have obtained scrutiny within the algorithmic fairness literature: they are
used to inform bail and parole decisions, but those decisions are ultimately
made by a human judge with access to other information as well. When this
is the case, we might perhaps be better served by asking that our statistical
models preserve enough information about each group g so that it is possible to
implement the error optimal decision rule, subject to some fairness constraint
like error rate balance, downstream at the actual decision making process. What
information is needed?

As we already observed, a sufficient statistic for computing the error optimal
classifier (i.e. the “Bayes Optimal Classifier”) on any distribution over points is
the conditional label expectation: f(x, g) = EDg

[y|x]. Here we briefly observe
that this is also a sufficient statistic for computing the error optimal classifier
subject to error rate balance constraints. Observe that we can write the error
rate of a binary classifier as:

error(h) = E[h(x) · (1− E[y|x]) + (1− h(x)) · E[y|x]]

Note that minimizing error(h) is equivalent to minimizing E[h(x) ·(1−2E[y|x])].
Thus we can describe the error optimal classifier subject to error rate balance
constraints as the solution to:

Minimizeh E[h(x) · (1− 2E[y|x])]
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Such that:

ED0
[h(x)|y = 0] = ED1

[h(x)|y = 0] (λ1)

ED0
[1− h(x)|y = 1] = ED1

[1− h(x)|y = 1] (λ2)

This is a linear program over the set of distributions over hypotheses h. Let
λ1 and λ2 be the optimal dual solution to this linear program. By Lagrangian
duality, we have that the error optimal classifier subject to error rate balance
constraints is a minimizer of:

E
[
h(x) ·

(
(1− 2E[y|x]) + λ1(1− E[y|x])(1[g = 0]− 1[g = 1])

+λ2(E[y|x](1[g = 1]− 1[g = 0]))
)]

In other words, the optimal such classifier h∗ must satisfy:

h∗(x, g) =


1, If g = 0 and (2 + λ1 + λ2)ED0

[y|x] > 1 + λ1;
0, If g = 0 and (2 + λ1 + λ2)ED0

[y|x] < 1 + λ1;
1, If g = 1 and (2− λ1 − λ2)ED1

[y|x] > 1− λ1;
0, If g = 1 and (2− λ1 − λ2)ED1 [y|x] < 1− λ1.

(If none of these conditions are satisfied, the optimal classifier may need to ran-
domize). From this we learn that the optimal classifier h∗ remains a thresholding
on the conditional label expectation, even under error rate balance constraints.
Therefore, to allow a downstream decision maker to deploy an optimal classifier
subject to error rate balance, it continues to suffice that our statistical estimator
f correctly encode the conditional label expectations: f(x, g) = EDg

[y|x].
On the other hand, it is not hard to see that if we must learn a binary model

h (e.g. by thresholding EDg [y|x] or via any other method), then in most cases we
will have destroyed the information needed to implement the optimal classifier
h∗ satisfying error rate balance downstream. Similarly, modifying the statistical
estimator f(x, g) such that it deviates from f(x, g) = EDg

[y|x] will generically
preclude us from being able to implement the optimal classifier h∗ subject to
error rate balance downstream. This suggests a general rule of thumb:

Constraints like error rate balance should be applied at the very end
of decision making pipelines, at the moment that actions are taken
that have the potential to harm people. At intermediate stages
of decision making pipelines, we should strive to capture as accu-
rate statistical information about the population as possible (ideally
EDg

[y|x]) — because failing to do this harms not only accuracy, but
also our ability to usefully impose fairness constraints downstream.

But how should we think about realizing this rule of thumb? In general, we
cannot hope to learn EDg

[y|x] from data, because if X is a large feature space,
then we will see each particular feature vector x only infrequently, and so we
will have few to no samples of the conditional label distributions, conditional on
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x. At best we can hope to learn some “good” proxy f̄(x, g). But what makes a
good proxy? In the following for simplicity, we will assume that g is encoded in
the feature vector x so that we may write simply f(x) and E[y|x].

Suppose we are given a function f̄ that purports to represent conditional
label distributions: f̄(x) = E[y|x]. How can we attempt to falsify this assertion?
Here is one family of tests. Consider any subset S ⊆ X of the feature space. If
f̄(x) = E[y|x], then we will have:

E[y|x ∈ S] = E[f̄(x)|x ∈ S].

If f̄ fails to satisfy this condition on any set S, then this certifies that f does
not correctly represent the conditional label distribution. Moreover, this is a
condition that we can easily test (approximately) from data, because for any
set S with sufficiently large probability in the underlying distribution D, we can
estimate conditional expectations accurately from sample quantities. Suppose
we have some very large collection G of such sets S: G ⊆ 2X . This would
parameterize a suite of statistical tests aimed at falsifying the conjecture that f̄
correctly encoded the conditional label distribution, and we could ask that we
produce estimators f̄ that pass every statistical test in this suite — i.e. that
satisfy E[y|x ∈ S] = E[f̄(x)|x ∈ S] simultaneously for every S ∈ G. At the very
least we can check from data if our classifiers satisfy these conditions. Can we
find classifiers that satisfy them as well? We can phrase this as an optimization
problem:

min
f̄

max
S∈G

∣∣E[y|x ∈ S]− E[f̄(x)|x ∈ S]
∣∣

There is a solution f̄ that obtains optimal objective value 0 — i.e. the true
conditional label distribution — and so the only question is whether we can
efficiently find some f̄ that does well according to this objective.

Remarkably, it turns out that we can — although the details of how are
beyond the scope of this chapter (but see the references for further reading).
We call ε approximate solutions to this problem ε-multiaccurate estimators f̄
with respect to the collection of groups G:

Definition 14. A statistical estimator f̄ : X → R is ε-multiaccurate with
respect to a collection of groups G ∈ 2X if for every S ∈ G:∣∣E[y|x ∈ S]− E[f̄(x)|x ∈ S]

∣∣ ≤ ε
There are efficient algorithms that learn approximately multiaccurate esti-

mators for any collection of sets G with sufficiently large measure, from datasets
that have size only polynomial in 1/ε and log |G|. The logarithmic dependence
on |G| means that we can learn estimators that pass an exponentially large
number of “sanity check” statistical tests — one for each of the groups S ∈ G.

Multiaccuracy is one of a family of “informational balance” constraints that
are sensible to ask mid-stream statistical estimators to satisfy. This family of
constraints can be generalized by enlarging the set of statistical tests that we
insist that our estimator f̄ satisfy, each aimed at falsifying the conjecture that
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f̄ correctly encodes the conditional label expectations. In addition to enlarging
the collection of sets G that define our tests, we can ask that f̄ pass similar
statistical tests over sets S that are defined not just by the features x, but also
by our predictions f̄(x) — this leads to a notion of statistical balance called
multi-calibration. We can also ask for statistical tests based not just on the
expectations of label distributions, but based on variances and other higher
moments. Or we can ask that our statistical estimators be indistinguishable
from the true conditional label distribution with respect to the actions taken by
some well defined set of downstream decision makers who are informed by our
predictions. All of these measures can not just be checked, but also guaranteed
by learning procedures that have only small amounts of data — logarithmic
in |G|, which allows us to ask for consistency with respect to an exponentially
large collection of sets G. If we consider the sets in G as themselves representing
demographic groups g that we wish to protect, multiaccuracy give us a way to
think about enforcing statistical fairness constraints over large collections of
finely defined and potentially overlapping groups, which can save us from the
need to anticipate ahead of time every group g for which we might desire (e.g.)
error rate balance in some downstream classification task.

References and Further Reading

The importance of error rate balance and informational balance were dramati-
cally brought to the public consciousness in a 2016 Propublica article (Angwin
et al., 2016) investigating bias in the COMPAS recidivism prediction tool that
was used to inform bail and parole decisions in a number of US jurisdictions.
The impossibility result that we derive in Section 2 was originally proven in
Chouldechova (2017). A similar result for real valued predictors was proven
by Kleinberg et al. (2017). The dynamic model from Section 3 corresponds
to the “baseline model” from Jung et al. (2020). In (Jung et al., 2020), the
model is generalized in various ways, including to cover the case in which signal
distributions do depend on group membership, and the case in which observa-
tion of signal distributions is mediated by a third party with its own incentives
(e.g. the police). That the conditional label distribution is a sufficient statis-
tic to the optimal classifier subject to error rate balance constraints has been
observed by several authors, including Hardt et al. (2016) and Corbett-Davies
et al. (2017). The idea of multiaccuracy and multicalibration was proposed by
Hébert-Johnson et al. (2018). Jung et al. (2021) generalize the notion of mul-
ticalibration from means to variances and other higher moments of the label
distribution. Gupta et al. (2021) further generalize this idea and define “mul-
tivalid” statistical estimators of different sorts, including multivalid prediction
intervals which can obtain tight 95% coverage intervals over large numbers of
intersecting demographic groups. Zhao et al. (2021) define a multicalibration
like notion of consistency that is defined with respect to a class of downstream
decision makers. It is also possible to define analogues of error rate balance with
respect to large collections of overlapping groups G, just as multiaccuracy and
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multicalibration provide analogues of informational balance in this setting —
see Kearns et al. (2018). For a fuller popular treatment of the issues discussed
in this Chapter, see Kearns and Roth (2019). In this chapter, we have focused
on statistical estimation problems — although these sometimes are related to
allocation problems, we have ignored capacity or supply constraints. We refer
the reader to Elzayn et al. (2019); Donahue and Kleinberg (2020); Sinclair et al.
(2020); Finocchiaro et al. (2021) for discussion of fairness in allocation prob-
lems with capacity constraints. There are also other papers that study related
fairness desiderata in game theoretic settings: we refer the reader to Kannan
et al. (2017); Hu and Chen (2018); Milli et al. (2019); Hu et al. (2019); Liu et al.
(2020); Kannan et al. (2021) for other work in this style.
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