
Aaron Roth

Learning in Games (and
Games in Learning)
INCOMPLETE WORKING DRAFT

Contents

1 Basics of Sequential Decision Making 1
1.1 Basic Definitions . 1
1.2 Warmup: The Halving Algorithm 2
1.3 The General Case: Multiplicative Weights 4
1.4 Large Action Spaces: Online Linear Optimization 7
1.5 Follow the Regularized Leader and Online Gradient Descent 13
1.6 Online Convex Optimization 16

2 Zero Sum Games and the Minimax Theorem 21
2.1 Zero Sum Games . 21
2.2 From Sequential Decision Making to The Minimax Theorem 22
2.3 Computing Minimax Strategies 26
2.4 From the Minimax Theorem to Sequential Decision Making . 29

3 Multi-Objective Sequential Learning 37
3.1 Motivating Example: Convergence to Correlated Equilibria . 38
3.2 A General Framework for Multiobjective Sequential Learning 40
3.3 Controlling Regret on Multiple Subsequences 46

3.3.1 Action Independent Subsequences 49
3.3.1.1 Adaptive Regret 51
3.3.1.2 Group-wise Regret 52

3.3.2 General Subsequences 53
3.3.2.1 Swap Regret 56
3.3.2.2 Mixing and Matching Guarantees 57

4 Making Unbiased Predictions and Calibration 59
4.1 Modeling Decision Makers 60
4.2 Predicting for No-Regret Play 61
4.3 A Model for Unbiased Prediction 65

4.3.1 Conditionally Unbiased Prediction 68
4.4 Calibration . 71
4.5 Efficiently Making Unbiased Predictions 74

4.5.1 One Dimensional (Multi)Calibration 75
4.5.2 The General Case . 80

4.6 Predicting for No-Swap-Regret Play 84

vii

viii Contents

4.7 Obtaining No-Subsequence-Regret in Online Combinatorial
Optimization . 87

4.8 Predicting Label Probabilities with “Transparent Coverage” 91

Bibliography 95

1

Basics of Sequential Decision Making

CONTENTS

1.1 Basic Definitions . 1
1.2 Warmup: The Halving Algorithm . 2
1.3 The General Case: Multiplicative Weights . 4
1.4 Large Action Spaces: Online Linear Optimization 7
1.5 Follow the Regularized Leader and Online Gradient Descent . . . 12
1.6 Online Convex Optimization . 16

Bibliographic Notes and Further Reading . 19

The foundational algorithmic ideas underlying this course allow a sequential
decision maker to make choices such that their performance, in hindsight, can
be related to (and shown to be superior to) benchmark policies of various
sorts. This turns out to be closely related to optimal play in zero sum games,
and in particular, the fundamental “minimax theorem”, which we will both
prove using sequential decision making techniques, and use to derive sequential
decision making techniques. In this chapter, we’ll derive some of these basic
algorithms from first principles.

1.1 Basic Definitions

The simplest setting we will consider involves a sequential decision maker
who must choose amongst a set of k actions A = {1, . . . , k} each day t. After
making their choice, the decision maker learns a cost cti ∈ [0, 1] for each action
i, and experiences the cost of the action that they chose. Their goal will be
to select actions that result in small cumulative cost. This setting is often
called the “Learning from Expert Advice”, which is terminology that comes
from imagining that the actions correspond to “experts” whose advice the
algorithm must choose between. Formally:

Definition 1 (Learning from Expert Advice) The learner has an action
set A = {1, . . . , k}. In rounds t = 1, . . . T :

1

2Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

1. With knowledge of c1, . . . , ct−1, The Learner chooses a distribu-
tion over actions pt ∈ ∆A.

2. With knowledge of p1, . . . , pt, the Adversary chooses a vector of
costs ct ∈ [0, 1]k.

3. The Learner experiences (expected) cost ctL = Ei∼pt
[cti]

We let πt = {(ps, cs)}ts=1 denote the record of interaction after t rounds.
After T rounds of interaction, the cumulative (expected) cost of the learner is

CT
L =

∑T
t=1 c

t
L. The cumulative cost of each action i is CT

i =
∑T

t=1 c
t
i.

Observe that in this setting there is an adversary, who may choose costs
in arbitrary ways, rather than a distribution over costs that the algorithm
could have some hope of learning. As a result, it is not immediately clear
how we should evaluate algorithms for the learner in this scenario — there
is no fixed “optimal action” or “optimal policy” to learn. Instead, we will
compare the accumulated cost of the learner to the accumulated cost that
various benchmark policies would have obtained for the same sequence of
chosen costs. To the extent that the algorithm has higher cost than one of the
benchmark policies, we will say that the algorithm regrets not having played
that benchmark; our goal will be to design algorithms that do not have regret
to any benchmark in some fixed class. The simplest class of benchmark policies
is the set of constant policies, that always play the same fixed action.

Definition 2 (Regret to the Best Fixed Action) The learner’s regret to
action i ∈ A after T rounds is:

Reg(πT , i) = CT
L − CT

i =

T∑
t=1

(ctL − cti)

We say that the learner has regret to the best fixed action bounded by α if:

max
i∈A

Reg(πT , i) ≤ α

1.2 Warmup: The Halving Algorithm

To convince ourselves that obtaining diminishing regret to the best action
in hindsight is possible (and maybe even easy!) we’ll start by working out a
special case in which the solution is especially simple: the case in which there
is a single action i∗ (unbeknownst to the learner) that is guaranteed to have
0 cost at every round: cti∗ = 0 for all t. In this case, all the learner has to
do is identify which action is the hidden “perfect” action. The solution (a
variant of what is called the Halving algorithm) is to always play at round

Basics of Sequential Decision Making 3

t the uniform distribution pt over actions that have never yet had positive
cost, up through round t. The key to the analysis is to relate the cost of
the algorithm at each round to the decrease in the number of actions that
have never yet been observed to have positive cost, so that intuitively, at
any round on which we experience significant cost, we also make significant
progress towards identifying the perfect action. In this way, we set up a win-
win situation for ourselves: we must either make progress towards learning or
else experience low cost.

Algorithm 1 The Halving Algorithm

For each action i ∈ A, set w1
i = 1. Let W 1 =

∑
i w

1
i .

for t = 1 to T do
Play the distribution pt defined as:

pti =
wt

i

W t

Observe costs ct and update weights such that for each i ∈ A:

wt+1
i = wt

i(1− 1[cti > 0]) W t+1 =
∑
i

wt+1
i

Theorem 1 For any sequence of costs such that there exists a perfect action
i∗ such that cti∗ = 0 for all t, the Halving Algorithm has regret to the best fixed
action that is at most:

max
i∈A

Reg(πT , i) = Reg(πT , i∗) ≤ ln(k)

Proof 1 In this special case, we have that CT
i∗ = 0, and so we must show

that CT
L ≤ log(k). At round t, let Ct = {i ∈ A : cti > 0} be the set of

actions that have positive cost at round t, and let W (Ct) =
∑

i∈Ct wt
i be their

cumulative weight. Since costs are upper bounded by 1, we have that the loss
of our algorithm at round t is at most:

ctL ≤ W (Ct)

W t

We also have that:
W t+1 = W t −W (Ct)

and so in particular we can write:

ctL ≤ W t −W t+1

W t
= 1− W t+1

W t

We know that W 1 = k and WT+1 ≥ 1 (since there is some expert that never

4Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

experiences positive cost). So we have:

1 ≤ WT+1

= k ·
T∏

t=1

W t+1

W t

≤ k

T∏
t=1

(1− ctL)

≤ k

T∏
t=1

exp(−ctL)

= k exp

(
−

T∑
t=1

ctL

)
= k exp(−CT

L)

Solving for CT
L , we find:

CT
L ≤ ln(k)

1.3 The General Case: Multiplicative Weights

The Halving algorithm gets a terrific regret bound (that doesn’t grow at all
with T), but makes important use of the fact that we have assumed that there
is one perfect action. In particular, it zeros out the weight of any action that
has ever been observed to have positive cost. If there is no perfect action,
then we will quickly end up in a situation in which the Halving algorithm has
zeroed out the weight of all experts, and it will no longer have a well defined
distribution to play!

The solution to this problem is simple: we will simply be more restrained
when reducing the weight of actions that have high cost. We will reduce the
weight of each action in proportion to its cost at each round, but will make
sure never to zero out the weight of any action, in case past performance turns
out not to be predictive of future performance. The new algorithm works in
nearly the same way, but has a parameter η that controls how aggressively we
downweight high cost actions.

Basics of Sequential Decision Making 5

Algorithm 2 The Multiplicative Weights Algorithm

For each action i ∈ A, set w1
i = 1. Let W 1 =

∑
i w

1
i .

for t = 1 to T do
Play the distribution pt defined as:

pti =
wt

i

W t

Observe costs ct and update weights such that for each i ∈ A:

wt+1
i = wt

i(1− ηcti) W t+1 =
∑
i

wt+1
i

Theorem 2 Fix η ≤ 1
2 . For every sequence of costs and for every action

i ∈ A, the multiplicative weights algorithm obtains regret to action i:

Reg(πT , i) = CT
L − CT

i ≤ ln k

η
+ ηCT

i

Remark 1.3.1 If we know that maxi C
T
i ≤ B, we can set η =

√
ln k
B and

Theorem 2 gives us a regret bound of:

max
i∈A

Reg(πT , i) ≤ 2
√

B · ln(k)

When B = 4 ln k, this recovers (up to a factor of 4) the bound we proved
from the Halving algorithm under less restrictive assumptions. Since costs
cti ∈ [0, 1], we always know that maxi C

T
i ≤ T , and so we have a worst-case

regret bound of:
max
i∈A

Reg(πT , i) ≤ 2
√

T · ln(k)

for every sequence of costs, without assumptions. This bound grows sublinearly
with T , which means that the algorithm promises that its average per-round

cost approaches that of the best action in hindsight at a rate of O

(√
ln k
T

)
.

Proof 2 We want to replicate the argument we used to analyze the halving
algorithm. The key once more will be to relate the cost ctL that the learner
experiences at each round to the decrease in weight. From the weight update
rule, we have that:

W t+1 = W t − η
∑
i

wt
ic

t
i = W t(1− ηctL)

The last equality in this chain follows from the fact that:

ctL =
∑
i

ptic
t
i =

∑
i

wt
i

W t
cti =

1

W t

∑
i

wt
ic

t
i

6Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

This gives us a way to express how much the cumulative weight W t de-
creases at each round. We still have that W 1 = k. When we analyzed the
halving algorithm, we also knew that WT+1 ≥ 1, since there was at least one
action that never had its weight reduced. That is no longer true — but we can
still lower bound WT+1 in terms of the final weight wT+1

i of any action i,
which we can itself bound by the cumulative cost CT+1

i of action i:

WT+1 ≥ wT+1
i =

T∏
t=1

(1− ηcti) ≥
T∏

t=1

(1− η)c
t
i = (1− η)C

T
i

Here we used the fact that for c ∈ [0, 1], (1 − η)c ≤ (1 − ηc). Now mirroring
our analysis of the Halving algorithm, we can calculate:

(1− η)C
T
i ≤ WT+1

= k

T∏
t=1

(1− ηctL)

≤ k

T∏
t=1

exp(−ηctL)

= k exp

(
−η

T∑
t=1

ctL

)
= k exp(−ηCT

L)

Taking the log of both sides and solving for CT
L we have that:

CT
L ≤ 1

η

(
ln(k) + CT

i ln

(
1

1− η

))
For η ≤ 1

2 , ln
(

1
1−η

)
≤ η + η2. Therefore we have:

CT
L ≤ ln k

η
+ (1 + η)CT

i

and so:

Reg(πT , i) = CT
L − CT

i ≤ ln k

η
+ ηCT

i

Remark 1.3.2 (Rescaling the Costs) We have analyzed Multiplicative
Weights for costs cti ∈ [0, 1]. What if the costs fall into a different range?
What if they can be negative? We make two observations: First, consistently
translating the cost vector by adding a fixed constant to each coordinate does
not change the regret of a sequence of actions: so if costs are in the range
[−C1, C2], we can always translate them so that they fall into the range [0, C]
for C = C1 +C2. Next, we can rescale costs by dividing them all by C, which

Basics of Sequential Decision Making 7

scales them back into the range [0, 1], at which point we can apply the Mul-
tiplicative Weights Theorem 2. Of course, scaling the costs down by C cor-
respondingly scales the regret down by C, and so the final regret bound will
be C times larger than that stated in Theorem 2. The result is that we can
guarantee a regret bound of 2(C1 + C2)

√
T · ln(k) when the costs lie in the

range [−C1, C2] for any C1, C2 ∈ R≥0.

1.4 Large Action Spaces: Online Linear Optimization

The multiplicative weights algorithm lets us get diminishing regret to the
best fixed action in some comparison class A: the regret guarantee grows only
logarithmically with k = |A|, and so in principle, we get very strong guarantees
even for enormous action spaces. However, the running time of the algorithm
grows linearly with k, and so we might struggle to run the algorithm if A is
truly enormous. What can we do in settings in which A is exponentially large
in some natural dimension of our problem, or even continuously large?

A useful running example to keep in mind is the online shortest paths
problem, which is defined on a graph G = (V,E), with two distinguished ver-
tices, the source s and the sink t. The action space for the learner corresponds
to the set of all s → t paths P , which can be exponentially large in the number
of vertices d in the graph. Every round, a cost (congestion) ce is realized for
each edge e ∈ E in the graph, and the cost of a path is the sum of the costs
of the edges it contains: cP =

∑
e∈P ce. The goal is to select paths so that the

learner’s regret to the best fixed action (path) is tending to 0. We could run
the multiplicative weights algorithm with one action per path to solve this
problem with O(

√
dT) regret bounds, but with running time exponential in

d. Can we get similar guarantees with running time polynomial in d? We’ll
show how to solve this problem as a special case of the more general online
linear optimization problem.

Definition 3 (Online Linear Optimization) In the online linear opti-
mization problem:

1. The Learner has an action space A ⊆ Rd, and

2. The Adversary has an action space C ⊆ Rd.

3. At each round t, the learner chooses an action at ∈ ∆A and the
adversary chooses an action ct ∈ C. The learner experiences cost
ctL = ⟨at, ct⟩

Remark 1.4.1 The online linear optimization setting generalizes the no-
regret setting we have already studied, in which there are d actions, A cor-
responds to the set of standard basis vectors (each indicating playing one of

8Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

the d actions), and ∆A is the set of probability distributions over the individual
actions.

It also allows us to represent the online shortest path problem: Here the
dimension d = |E|, with one coordinate for each edge e ∈ E. The set of actions
A corresponds to the set of s → t paths in the graph, with each path P ∈ A
represented as its indicator vector, in which Pe = 1 for each edge e in the path
and Pe = 0 otherwise. ∆A here represents the set of probability distributions
over paths.

In general, ∆A represents the convex hull of A, which corresponds to the
set of probability distributions over elements of A if A is not already a convex
set. If A is already a convex set then ∆A = A, and the learner can choose an
element of A at every round.

Since the action space A can have arbitrary, in general finding the best
action even for a fixed cost vector c (a strictly easier problem) might be
computationally hard. Thus we will assume that we have an oracle to solve
static linear optimization problems over A.

Definition 4 A (static) linear optimization oracle for A allows us to solve
the following optimization problem for any vector c ∈ R:

a∗(c) ∈ argmin
a∈A

⟨a, c⟩

How can we make use of a static linear optimization oracle to solve the
online linear optimization problem? A natural first attempt is to simply opti-
mize at every round t to play the action at ∈ A that has done best so far. We
might call this approach “Follow the Leader”.

Algorithm 3 Follow the Leader

for t = 1 to T do
Let:

c<t =

t−1∑
s=1

cs

Be the cumulative cost observed so far.
Select the action:

at = argmin
a∈A

⟨a, c<t⟩

Although this is a natural algorithm, it can behave quite poorly. Here is
an example, in which A = {(1, 0), (0, 1)}, and the sequence of costs is:

c1 = (1/2, 0) c2 = (0, 1) c3 = (1, 0) c4 = (0, 1) c5 = (1, 0), c6 = (0, 1), . . .

Follow the leader chooses the sequence of actions

a1 = (1, 0), a2 = (0, 1) a3 = (1, 0), a4 = (0, 1), a5 = (1, 0), a6 = (0, 1), . . .

Basics of Sequential Decision Making 9

which is the worst possible sequence of actions, and incurs cost T − 1/2 after
T rounds. On the other hand, the best fixed action in hindsight accumulates
cost only T/2. So we need a new idea if we want to be able to bound our
regret to the best fixed action by something that grows sublinearly with T .

The fix turns out to be simple, however: essentially the only thing we need
to do is avoid the oscilattory behavior of the bad example we just saw. The
way to do this is to add random noise to the cumulative observed costs before
invoking the linear optimization oracle to select the next action. The final
algorithm is called follow the perturbed leader.

Algorithm 4 Follow the Perturbed Leader

for t = 1 to T do
Let:

c<t =

t−1∑
s=1

cs

Be the cumulative cost observed so far.
Let N t ∼ U [0, 1/ϵ]d be a uniformly random noise vector.
Select the action:

at = argmin
a∈A

⟨a, c<t +N t⟩

Theorem 3 The expected regret of Follow the Perturbed Leader to each action
a ∈ A can be bounded as:

T∑
t=1

(
E[⟨at, ct⟩]− ⟨a, ct⟩

)
≤ A

ϵ
+ 2CRTϵ

where: A = maxa,a′∈A ||a − a′||1, C = maxc∈C ||c||1 and R =
maxa∈A,c∈C |⟨a, c⟩|

Remark 1.4.2 If we set ϵ =
√

A
2CRT then we get that Follow the Perturbed

Leader has a regret bound of:

min
a∈A

T∑
t=1

(
E[⟨at, ct⟩]− ⟨a, ct⟩

)
≤

√
8CART

Proof 3 (Proof of Theorem 3) To analyze follow the perturbed leader, we
will analyze a sequence of hypothetical algorithms, ending with follow the per-
turbed leader, and relate their regret bounds to each other.

The first algorithm we will consider is called “be the leader”, and selects
action ât at each round where:

ât = argmin
a∈A

⟨a, c<t+1⟩

10Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Note that “be the leader” selects its action by optimizing for the cumulative loss
up through and including round t: c<t+1. In other words, it is playing “follow
the leader”, but shifted one step forward in time. So it is not an implementable
algorithm (because it requires seeing one step into the future), but we can still
analyze its behavior.

Lemma 1.4.1 Be the leader has non-positive regret to every action a ∈ A:

T∑
t=1

⟨ât, ct⟩ ≤
T∑

t=1

⟨a, ct⟩

Proof 4 We prove this by induction on T . The base case of T = 1 follows
from the definition of â1 = argmina∈A⟨a, c1⟩. We now assume that the claim
holds for T = k, and show that it holds for T = k + 1 as well:

k+1∑
t=1

⟨ât, ct⟩ =

k∑
t=1

⟨ât, ct⟩+ ⟨âk+1, ck+1⟩

≤
k∑

t=1

⟨âk+1, ct⟩+ ⟨âk+1, ck+1⟩

= ⟨âk+1,

k+1∑
t=1

ct⟩

≤ ⟨a,
k+1∑
t=1

ct⟩

Here the first inequality follows from the induction hypothesis, and the last
inequality follows from the fact that âk+1 is selected to be the minimizer of
⟨a,
∑k+1

t=1 ct⟩ = ⟨a, c<k+1⟩

The next algorithm we will consider on our journey towards Follow the
Perturbed Leader is called “Be the Perturbed Leader” and selects action ãt at
each round where:

ãt = argmin
a∈A

⟨a, c<t+1 +N t⟩

In other words, the algorithm uses the same uniform perturbations as Follow
the Perturbed Leader, but perturbs the one-step-lookahead cumulative costs of
Be the Leader. The next step of the argument is to show that perturbations
don’t hurt the performance of Be the Perturbed Leader too much:

Lemma 1.4.2 For every sequence of cost vectors, Be the Perturbed Leader
has expected regret to every action a ∈ A bounded as:

E
N

[
T∑

t=1

⟨ãt, ct⟩

]
−

T∑
t=1

⟨a, ct⟩ ≤ A

ϵ

Where A = maxa,a′∈A ||a− a′||1

Basics of Sequential Decision Making 11

Proof 5 Since we are bounding the expected cost of Be the Perturbed Leader,
we can imagine that the perturbations are coupled such that N1 = N2 = . . . =
NT = N (with each still marginally distributed as N ∼ U [0, 1/ϵ]d) — this
does not effect the expected cost of the algorithm. With this observation, we
can view “Be the Perturbed Leader” as actually playing “Be the Leader” in
which there is an imagined “round 0” with costs c0 = N — this is equivalent,
since the chosen action:

ãt = argmin
a∈A

⟨a,
t∑

s=1

ct +N t⟩ = argmin
a∈A

⟨a,
t∑

s=0

ct⟩

Thus we can apply the guarantee of Be the Leader from Lemma 1.4.1 to con-
clude that:

T∑
t=0

⟨ãt, ct⟩ −
T∑

t=0

⟨a, ct⟩ ≤ 0

To translate this into a regret bound for Be the Perturbed Leader, we need to
isolate the imagined “round 0” terms:

T∑
t=1

⟨ãt, ct⟩ −
T∑

t=1

⟨a, ct⟩ ≤ ⟨a, c0⟩ − ⟨ã0, c0⟩ = ⟨a− ã0, c0⟩ ≤ A

ϵ

Here the last inequality follows from the fact that for any a, a′ ∈ A:

⟨a− a′, c0⟩ ≤ ||a− a′||1 · ||c0||∞ ≤ A · 1
ϵ

since c0 is a vector with coordinates bounded by 1/ϵ.

All that remains is to relate the expected regret of Be the Perturbed Leader
with that of Follow the Perturbed Leader. Be the Perturbed Leader and Follow
the Perturbed Leader choose actions by optimizing for a cumulative loss vector
that differ only in a single round (Be the Perturbed Leader aggregates over one
additional round); the idea is that the noise added drowns out this difference,
and so the two must have similar regret. Since we know that the regret of Be
the Perturbed Leader is small, so must be the loss of Follow the Perturbed
Leader.

N t, Ñ t ∼ U [0, 1/ϵ]. Fix a round t, and let pt = c<t + N t be the noisy
accumulated vector of costs that Follow the Perturbed Leader optimizes for,
and let p̃t = c<t+1 + Ñ t be the noisy accumulated vector of costs that Be the
Perturbed Leader optimizes for. Observe that pt is uniformly distributed in
c<t+[0, 1/ϵ]d and that p̃t is uniformly distributed in c<t+1+[0, 1/ϵ]d. We will
first observe that these two regions have large overlap:

Lemma 1.4.3 Let Ot = {c<t + [0, 1/ϵ]d} ∩ {c<t+1 + [0, 1/ϵ]d}. Then:

Pr[pt ̸∈ Ot] ≤ Cϵ Pr[p̃t ̸∈ Ot] ≤ Cϵ

Where C = maxc∈C ||c||1

12Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 6 We can calculate:

Pr[pt ̸∈ Ot] = Pr[(c<t +N t) ̸∈ {c<t+1 + [0, 1/ϵ]d}]
= Pr[N t ̸∈ {ct + [0, 1/ϵ]d}]

≤
d∑

i=1

Pr[N t
i ̸∈ [cti, 1/ϵ+ cti]]

≤
d∑

i=1

|cti|ϵ

= ||ct||1ϵ
≤ Cϵ

The claim for p̃t follows identically.

The key observation is that because pt and p̃t are uniformly distributed in their
respective ranges, conditionally on lying in Ot, they are uniformly distributed
within Ot. Since the corresponding actions at and ãt taken by Be the Perturbed
Leader and Follow the Perturbed Leader are deterministic post-processings of
p̃t and pt respectively, this means that the expected loss of at and ãt are iden-
tical conditional on pt ∈ Ot and p̃t ∈ Ot.

Lemma 1.4.4 At each round t:

E[⟨at, ct⟩] ≤ E[⟨ãt, ct] + 2CRϵ

Where C = maxc∈C ||c||1 and R = maxa∈A,c∈C |⟨a, c⟩|

Proof 7 Fix any round t. We can calculate:

E[⟨at, ct⟩] = Pr[pt ∈ Ot]E[⟨at, ct⟩|pt ∈ Ot] + Pr[pt ̸∈ Ot]E[⟨at, ct⟩|pt ̸∈ Ot]

≤ Pr[pt ∈ Ot]E[⟨at, ct⟩|pt ∈ Ot] + Cϵ max
a∈A,c∈C

⟨a, c⟩

= Pr[pt ∈ Ot]E[⟨ãt, ct⟩|p̃t ∈ Ot] + CRϵ

≤ E[⟨ãt, ct⟩|p̃t ∈ Ot] + CRϵ

≤ E[⟨ãt, ct⟩] + 2CRϵ

Here we have used Lemma 1.4.3 twice.

We are now ready to complete the proof by chaining together our Lemmas.
We have that the regret of Follow the Perturbed Leader to any action a is
bounded by:

T∑
t=1

(
E[⟨at, ct⟩]− ⟨a, ct⟩

)
≤

T∑
t=1

(
E[⟨ãt, ct⟩]− ⟨a, ct⟩

)
+ 2CRTϵ

≤ A

ϵ
+ 2CRTϵ

Here the first inequality follows from Lemma 1.4.4 and the second inequality
follows from Lemma 1.4.2.

Basics of Sequential Decision Making 13

1.5 Follow the Regularized Leader and Online Gradient
Descent

In this section we take another perspective on “Follow the Leader” style al-
gorithms, and derive another online linear optimization algorithm that will
sometimes be useful. We’ll start by directly proving a regret bound for “Fol-
low the Leader” (Algorithm 3). Recall that we have already seen a sequence
on which Follow the Leader accumulates linear regret, so the bound that we
prove cannot possibly guarantee sublinear regret for all sequences — but can
give us insight into what kinds of sequences cause Follow the Leader to have
large regret, and how to avoid it.

Theorem 4 On any sequence of costs, the regret of Follow the Leader to any
fixed action a ∈ A can be bounded as:

T∑
t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
≤

T∑
t=1

(
⟨at, ct⟩ − ⟨at+1, ct⟩

)
Remark 1.5.1 A couple of things about Theorem 4 are worth noting. First,
the right hand side can be bounded as a function of the number of rounds
the leader changes — i.e. the number of rounds t such that at ̸= at+1. So
if the “leader” is relatively stable, then Follow the Leader in fact already will
have low regret. This is consistent with the bad example we say for Follow the
Leader in Section 1.4 — in that example, the leader changed at every round,
which can make the above bound grow linearly with T .

Observe also that at+1, the action that Follow the Leader plays at round
t+1, is also the action that the hypothetical algorithm “Be the Leader” (which
has one round-lookahead) considered in Section 1.4 plays at round t.

Proof 8 (Proof of Theorem 4) We’ve actually already proven this theo-

rem! By subtracting off
∑T

t=1⟨at, ct⟩ from both sides, we see that the statement
we want to prove is that:

T∑
t=1

⟨at+1, ct⟩ ≤
T∑

t=1

⟨a, ct⟩

But this is what we proved in Lemma 1.4.1 — that the one-lookahead-algorithm
“Be the Leader” has non-positive regret.

Theorem 4 gives us an idea of how to modify Follow the Leader to give
it a worst-case regret bound: “regularize” it so that it can’t change actions
too dramatically. This is morally quite similar to our solution in Follow the
Perturbed Leader —- the added perturbations in FTPL make sure that at

and at+1 are distributed similarly — here we will instead make sure that

14Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

they are close in distance. Follow the Regularized Leader will be defined by a
regularization function Ψ : A → R.

Algorithm 5 Follow the Regularized Leader

for t = 1 to T do
Select the action:

at = argmin
a∈A

(
t−1∑
s=1

⟨a, cs⟩+Ψ(a)

)

Theorem 5 For any sequence of costs and any non-negative regularizer Ψ,
the regret of Follow the Regularized Leader to any fixed action a ∈ A can be
bounded as:

T∑
t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
≤

T∑
t=1

(
⟨at, ct⟩ − ⟨at+1, ct⟩

)
+ (Ψ(a)−Ψ(a1))

Proof 9 We can view Follow the Regularized Leader as Follow the Leader in
which there is a round 0 in which the cost for playing each action a is Ψ(a).
We can therefore apply Theorem 4 (whose proof did not require that the losses
be linear) including round 0, which gives:

(Ψ(a0)−Ψ(a))+

T∑
t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
≤

T∑
t=1

(
⟨at, ct⟩ − ⟨at+1, ct⟩

)
+(Ψ(a0)−Ψ(a1))

which gives the theorem after rearranging.

Remark 1.5.2 Noting that a1 ∈ argmina Ψ(a), this implies a bound of:

T∑
t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
≤

T∑
t=1

(
⟨at, ct⟩ − ⟨at+1, ct⟩

)
+ (max

a′
Ψ(a′)−min

a′
Ψ(a′))

Therefore the goal is to find a regularizer Φ that doesn’t take values that
are too large, but also constrains at to be close to at+1. There are different
interesting regularizers you could pick, but we’ll investigate what happens
when Φ(a) = 1

η ||a||
2
2, the (scaled) squared Euclidean norm of a. In this case,

when A is unconstrained, we can compute a closed form expression for at:

Lemma 1.5.1 When A = Rd and Φ(a) = 1
η ||a||

2
2, then:

at = −η

2

t−1∑
s=1

cs

Basics of Sequential Decision Making 15

Proof 10 By definition:

at = argmin
a

(
t−1∑
s=1

⟨a, cs⟩+ 1

η
||a||22

)

at is minimizing a strictly convex function, and so to find the unique minimizer
of this function, we can take the gradient and set it to zero. Doing so we find
that at must solve:

2

η
at = −

t−1∑
s=1

cs

or in other words:

at = −η

2

t−1∑
s=1

cs

Remark 1.5.3 Observe that the form of the action at derived in Lemma 1.5.1
has a simple update rule: at+1 = at− η

2 c
t. In other words, the algorithm simply

takes a step in the direction away from the gradient of the most recent loss
function. As a result, we can call this algorithm “online gradient descent”.

Algorithm 6 Online Gradient Descent

Let a1 = 0
for t = 1 to T do
Select the action at.
Observe ct and let:

at+1 = at − η

2
ct

Theorem 6 For any sequence of costs c1, . . . , cT with ||ct||2 ≤ C for all t,
and for any a ∈ Rd with ||a||2 ≤ A, Online Gradient Descent obtains regret:

T∑
t=1

⟨at, ct⟩ ≤
T∑

t=1

⟨a, ct⟩+ T
C2η

2
+

A2

η

Remark 1.5.4 Setting η = A
C

√
2
T we get a regret bound of:

T∑
t=1

⟨at, ct⟩ ≤
T∑

t=1

⟨a, ct⟩+AC
√
2T

Observe that this bound is independent of the dimension of the actions and
costs d, and depends only on their norm.

16Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 11 (Proof of Theorem 6) We know from Lemma 1.5.1 that Online
Gradient Descent is an instantiation of Follow the Regularized Leader with
Ψ(a) = 1

η ||a||
2
2. Thus we can apply Theorem 5 to conclude that:

T∑
t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
≤

T∑
t=1

(
⟨at, ct⟩ − ⟨at+1, ct⟩

)
+

1

η
||a||22

We have that at − at+1 = η
2 c

t, and so

||at − at+1||2 ≤ η

2
||ct||2 ≤ Cη

2

Therefore we have that:

⟨at, ct⟩ − ⟨at+1, ct⟩ = ⟨(at − at+1), ct⟩ ≤ ||at − at+1|| · ||ct|| ≤ C2η

2

Thus we have the final regret bound:

T∑
t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
≤ T

C2η

2
+

A2

η

In general, Follow the Regularized Leader is a flexible design template: As
an exercise, you can derive a Multiplicative-Weights like algorithm and bound
by using the negative entropy regularizer Ψ(a) = − 1

η

∑d
i=1 ai ln(1/ai).

1.6 Online Convex Optimization

We’ve now seen three algorithms for solving the online linear optimization
problem (we were explicit about this for the Follow the Perturbed Leader
and Online Gradient Descent algorithms, but its not hard to see that the
Multiplicative Weights algorithm solves the online linear optimization problem
where the Learner’s action space is the Simplex). In fact, algorithms that solve
the online linear optimization problem can also be used to solve the more
general online convex optimization problem. First we will recall some basic
definitions that we will need.

Definition 5 A function f : Rd → R is convex if for all x1, x2 ∈ Rd, and for
all 0 ≤ α ≤ 1:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

Linear functions are a special case of convex functions in which the inequality
always holds with equality.

Basics of Sequential Decision Making 17

Definition 6 A function f : Rd → R is L-Lipschitz in the L1 norm if for all
x1, x2 ∈ Rd:

|f(x1)− f(x2)| ≤ L||x1 − x2||1
If f is L-Lipschitz for some L we simply say that f is Lipschitz-continuous.

Definition 7 Fix a convex function f : Rd → R. A vector c ∈ R is a subgra-
dient of f at x ∈ R if for all x′ ∈ R:

f(x′)− f(x) ≥ ⟨c, x′ − x⟩

If f is differentiable, then the gradient ∇f(x) = c is always a subgradient of
f at x.

The following fact (which is not hard to prove, but we will take as given so
as not to be led too far astray) will be useful in conceptualizing the reduction
that follows in this section. It states that convex Lipschitz functions have
bounded gradients, and vice versa.

Lemma 1.6.1 A convex function f is L-Lipschitz (in the L1 norm) if and
only if for every x in its domain, and for every subgradient c of f at x,
||c||∞ = maxi∈[d] |ci| ≤ L.

Finally, let us define the online convex optimization problem.

Definition 8 (Online Convex Optimization) In the L-Lipschitz online
convex optimization problem:

1. The Learner has a convex action space A ⊆ Rd, and

2. The Adversary has an action space C consisting of L-lipschitz
convex functions ℓ : A → Rd,

3. At each round t, the learner chooses an action at ∈ A and the
adversary chooses a loss function ℓt ∈ C. The learner experiences
cost ctL = ℓt(at).

After realizing a transcript πT , the regret that the learner experiences to action
a ∈ A is:

Reg(πT , a) =

T∑
t=1

(
ℓt(at)− ℓt(a)

)
Remark 1.6.1 Here we have assumed that the Learner’s action space A is
convex. If it is not, as in previous sections, we can take the Learner’s action
space to be ∆A, the convex hull of A, which is realized through randomization.
Thus the online convex optimization setting generalizes the settings we have
considered so far.

We will observe a generic reduction that converts an arbitrary algorithm for
online linear optimization (like multiplicative weights, online gradient descent,

18Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

or follow the perturbed leader) into an algorithm for online (Lipschitz) convex
optimization with similar regret bounds.

Algorithm 7 A Reduction from Online Convex Optimization to Online Lin-
ear Optimization

Given: An algorithm LinearLearn for d-dimensional online linear optimiza-
tion.
for t = 1 to T do
From LinearLearn, obtain action at.
From the adversary, obtain L-Lipschitz loss function ℓt.
Let ct ∈ [0, L]d be a subgradient of ℓt at at (if ℓt is differentiable, ct =
∇ℓt(at).
Feed ct to LinearLearn as a cost vector.

Theorem 7 Suppose LinearLearn is an online linear optimization algorithm
that obtains regret to each action a ∈ A bounded by R(T) after T rounds, for
all sequences of cost vectors ct ∈ [0, L]d. The the reduction in Algorithm 7
obtains regret to all fixed actions bounded as:

Reg(πT , a) =

T∑
t=1

(
ℓt(at)− ℓt(a)

)
≤ R(T)

for all sequences of L-Lipschitz convex functions.

Proof 12 Fix a comparison action a ∈ A. We know from the guarantees of
the online linear optimization algorithm that:

R(T) ≥
T∑

t=1

(
⟨at, ct⟩ − ⟨a, ct⟩

)
=

T∑
t=1

⟨at − a, ct⟩

≥
T∑

t=1

ℓt(at)− ℓt(a)

= Reg(πT , a)

Here the last inequality follows from the fact that ct is a subgradient of ℓt at
at and Definition 7.

Thus, for any fixed action space A and Lipschitz parameter L, we can use
(e.g.) Multiplicative Weights, Online Gradient Descent, or Follow the Per-
turbed Leader to solve the online convex optimization problem with regret
bounds scaling as O(

√
T).

Basics of Sequential Decision Making 19

Remark 1.6.2 Finally, we note that although we have been discussing online
convex minimization, all of these algorithms can be used for online concave
maximization, simply by flipping the sign of the loss functions ℓ. If ℓ is convex,
then −ℓ is concave, and a minimizer of ℓ within A is a maximizer of −ℓ within
A.

Bibliographic Notes and Further Reading

Multiplicative weights is a classic algorithm with a long history [Littlestone,
1988, Littlestone and Warmuth, 1994, Freund and Schapire, 1999] — for a
through introduction to several variants of the algorithm and its many appli-
cations see Arora et al. [2012]. A follow the perturbed leader like algorithm
was developed by Hannan [1957]. Follow the Perturbed Leader, as developed
in this chapter (applied to online linear optimization) is due to Kalai and Vem-
pala [2005]. The online convex optimization framework and the first analysis of
online gradient descent is due to Zinkevich [2003]. The follow the regularized
leader framework was introduced in Abernethy et al. [2008]. Our treatment of
follow the regularized leader draws from Orabona’s notes here.

https://parameterfree.com/2019/10/08/follow-the-regularized-leader-i-regret-equality/

2

Zero Sum Games and the Minimax
Theorem

CONTENTS

2.1 Zero Sum Games . 21
2.2 From Sequential Decision Making to The Minimax Theorem . . . 22
2.3 Computing Minimax Strategies . 26
2.4 From the Minimax Theorem to Sequential Decision Making 29

Bibliographic Notes and Further Reading . 36

In this chapter we turn from sequential decision making to a seemingly un-
related topic: optimal play in zero-sum games. But as we will see, these two
topics are very tightly linked, and in a strong sense, the kinds of algorithms
we developed in Chapter 1 for online linear and convex optimization are con-
structive versions of the “minimax theorem”, the fundamental property of
zero sum games. We will see a two-way connection: we will prove the mini-
max theorem using the existence of online learning algorithms, and similarly
will show how we can derive online learning algorithms from first principles
starting from the minimax theorem.

2.1 Zero Sum Games

A zero-sum game is a strictly competitive game played between two players.
We model this by assigning both players action sets, and defining a utility
function that one player wants to maximize, and the other player wants to
minimize. We will call these the maximization player (“Max”) and the mini-
mization player (“Min”) respectively.

Definition 9 A zero sum game is defined by:

1. A Maximization player endowed with a closed bounded action
set Amax ⊂ Rm,

2. A Minimization player endowed with a closed bounded action
set Amin ⊂ Rn, and

21

22Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

3. A bounded utility function u : Amax ×Amin → [0, B].

How should Max and Min play a zero sum game? Lets start with an easy
scenario: Suppose Max already knows what action a2 ∈ Amin that Min is
going to play. In this case, he should play the action a1 that maximizes the
utility given Min’s action:

a1 ∈ argmax
a∈Amax

u(a, a2)

Similarly, if Min already knows what action a1 ∈ Amax that Max is going to
play, she should play the action a2 that minimizes the utility given Max’s
actions:

a2 ∈ argmin
a∈Amin

u(a1, a)

We call these best responses for Max and Min respectively:

Definition 10 The set of best responses for Max given an action a2 ∈ Amin

for Min is:
Brmax(a2) = argmax

a∈Amax

u(a, a2)

The set of best responses for Min given an action a1 ∈ Amax for Max is:

Brmin(a1) = argmin
a∈Amin

u(a1, a)

Remark 2.1.1 The fact that we have assumed that the action spaces Amax

and Amin are closed and bounded implies that the best response sets are well
defined.

If Max and Min are playing a pair of actions (a1, a2), and either player is
not playing a best response to their opponent’s action, then they will wish to
change their action to a best response. If neither player wishes to change their
action, we call this pair of actions an equilibrium.

Definition 11 A pair of actions (a1, a2) ∈ Amax×Amin are a Nash Equilib-
rium if both:

a1 ∈ Brmax(a2) a2 ∈ Brmin(a1)

2.2 From Sequential Decision Making to The Minimax
Theorem

An equilibrium is a fixed point of simultanious play, and so in general its not
clear how to go about computing one. Lets start with what seems like an

Zero Sum Games and the Minimax Theorem 23

easier problem: How should Max play if he must first commit to his action a1
and announce it to Min, who will then get an opportunity to best respond?
Knowing that Min will play a best response, he should anticipate this, and
play so as to maximize his utility after Min chooses her action to minimize
it. That is, he should play a “maximin” strategy. Similarly, if Min must go
first and commit to her action and let Max best respond, she should play a
“minimax” strategy:

Definition 12 a1 is a maximin strategy for Max if:

a1 ∈ argmax
a∈Amax

min
a2∈Amin

u(a, a2)

Similarly, a2 is a minimax strategy for Min if:

a2 ∈ argmin
a∈Amin

max
a1∈Amax

u(a1, a)

We can similarly think about he minimax and maximin values of the game:
what utility Max and Min respectively can guarantee if they must commit to
their strategies up front and announce them:

Definition 13 The minimax value of a game vminimax is:

vminimax = min
a2∈Amin

max
a1∈Amax

u(a1, a2)

The maximin value of a game vmaximin is:

vmaximin = max
a∈Amax

min
a2∈Amin

u(a, a2)

In a zero sum game, it can only be a disadvantage to go first, intuitively
because you are revealing information to your opponent, without restricting
her action space. This means that the minimax value of the game can only be
larger than the maximin value:

Lemma 2.2.1 In any zero sum game:

vminimax ≥ vmaximin

Proof 13 Let a1 and a2 be maximin and minimax strategies for Max and Min
respectively. Then:

vminimax = max
a∈Amax

u(a, a2) vmaximin = min
a∈Amin

u(a1, a)

So we have:

vminimax = max
a∈Amax

u(a, a2)

≥ u(a1, a2)

≥ min
a∈Amin

u(a1, a)

= vmaximin

24Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

The fundamental fact about zero sum games is that (subject to some regularity
conditions on the game), going first is not in fact a disadvantage: in particular,
vmaximin = vminimax. The regularity conditions that are needed are exactly
those that allow players to use online convex optimization algorithms to obtain
diminishing regret to the best action in their action space.

Theorem 8 Fix a zero-sum game such that:

1. The strategy sets Amin ⊆ Rn and Amax ⊂ Rm are closed,
bounded, and convex,

2. The utility function u : Amax ×Amin → [0, B] satisfies:

(a) For all a2 ∈ Amin, u(·, a2) is concave and Lipschitz continuous
in its first argument, and

(b) For all a1 ∈ Amax, u(a1, ·) is convex and Lipschitz continuous
in its second argument.

Then:
max

a1∈Amax

min
a2∈Amin

u(a1, a2) = min
a2∈Amin

max
a1∈Amax

u(a1, a2)

Remark 2.2.1 The simplest kind of zero sum games involve finite action
spaces A1, A2. Finite action spaces are not convex, and so to apply the min-
imax theorem, it is necessary to convexity them by letting players use prob-
ability distributions over their actions: Amax = ∆A1, Amin = ∆A2. When
we do this, we extend the utility function u from the domain A1 × A2 to
the domain ∆A1 × ∆A2 by defining for any pair (p1, p2) ∈ ∆A1 × ∆A2,
u(p1, p2) = Ea1∼p1,a2∼p2 [u(a1, a2)]. This function is linear in p1 and p2 (by
linearity of expectation), and so convex and concave in each argument.

Proof 14 (Proof of Theorem 8) We know from Lemma 2.2.1 that vminimax ≥
vmaximin. Suppose for point of contradiction that the inequality is strict, and
let ϵ = vminimax − vmaximin > 0.

We now imagine repeated play of the game between Min and Max for T
rounds, which generates a sequence of action pairs {(at, bt)}Tt=1. Since for ev-
ery at ∈ Amax, u(at, ·) is Lipschitz and convex in its second argument, we
will let Min choose her action every day using an online convex optimization
algorithm (like Multiplicative Weights or Follow the Perturbed Leader, using
the reduction from Theorem 7). We will let Max best respond to Min’s action
each day: at ∈ Brmax(b

t); we will then feed Min’s online convex optimization
algorithm the loss function ℓt(bt) = u(at, bt), which provides the feedback she
needs to select bt+1. Let us now analyze the cumulative utility of the game.
We know two things: First, because Min’s action space is convex and bounded,
and the loss functions ℓt(bt) = u(at, bt) we feed to Min’s learning algorithm
are convex and Lipschitz, she has an O(

√
T) regret guarantee to the best fixed

action in hindsight (the constants in the bound depend on things like the Lip-
schitz constant L and the diameter of the action space, so we elide them with

Zero Sum Games and the Minimax Theorem 25

Big-O notation):

1

T

T∑
t=1

u(at, bt) ≤ min
b∈Amin

1

T

T∑
t=1

u(at, b) +O

(
1√
T

)

≤ min
b∈Amin

u

(
1

T

T∑
t=1

at, b

)
+O

(
1√
T

)
≤ vmaximin +O

(
1√
T

)
Here, in the second inequality we use the fact that for every b ∈ Amin, u(·, b)
is concave in its first argument, and apply Jensen’s inequality. We also use

the fact that Amax is a convex set, which implies that
(

1
T

∑T
t=1 a

t
)
∈ Amax.

On the other hand, since for every t, at ∈ Brmax(b
t), we also have that:

u(at, bt) ≥ vminimax

Combining these two bounds gives:

vminimax ≤
1

T

T∑
t=1

u(at, bt) ≤ vmaximin +O

(
1√
T

)
Thus by taking T to be sufficiently large we can obtain:

vminimax < vmaximin + ϵ

which contradicts our initial assumption. Thus we must have that vminimax =
vmaximin, proving the theorem.

The Minimax theorem (Theorem 8) allows us to speak of the value v of a
zero sum game — we don’t have to specify whether we mean the minimax or
maximin value, as they are the same.

Definition 14 In any zero-sum game for which the conditions of the minimax
Theorem hold, we define the value of the game as the unique value v ∈ R such
that:

vminimax = vmaximin = v

A simple consequence of the minimax theorem is that Nash equilibria in
zero sum games are pairs of minimax/maximin strategies.

Lemma 2.2.2 Fix a zero sum game in which the Minimax theorem holds. A
pair of strategies (a1, a2) ∈ Amax ×Amin is a Nash equilibrium if and only if
a1 is a maximin strategy and a2 is a minimax strategy.

26Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 15 Let v be the value of the zero sum game (whose existence is guar-
anteed by the minimax theorem). First suppose that a1 and a2 are maximin
and minimax strategies respectively. We must have that u(a1, a2) ≥ v. and
u(a1, a2) ≤ v, and so u(a1, a2) = v. Thus we have that a1 ∈ Brmax(a2) (since
a2 is a minimax strategy), and a2 ∈ Brmin(a1) (since a1 is a maximin strat-
egy), implying that (a1, a2) are a Nash equilibrium.

Next, suppose that (a1, a2) are a Nash equilibrium. Since a1 ∈ Brmax(a2),
and since there is a maximin strategy in Amax, we must have that u(a1, a2) ≥
v. Similarly, since a2 ∈ Brmin(a1), we must have that u(a1, a2) ≤ v and so
u(a1, a2) = v. Since a2 is a best response to a1 and vice versa, we have that
a1 and a2 are maximin and minimax strategies respectively.

2.3 Computing Minimax Strategies

So far we’ve used the existence of online convex optimization algorithms to
prove the minimax theorem, but sometimes it will be useful for us to actually
be able to compute approximate minimax (and maximin) equilibria in partic-
ular zero sum games. We can use online convex optimization algorithms to do
this as well. There are a few variants, each of which is sometimes useful. First
we define an approximate minimax and maximin equilibrium:

Definition 15 Fix a zero sum game (Amax,Amin, u). An ϵ-approximate max-
imin strategy is an action a ∈ Amax such that for all b ∈ Amin:

u(a, b) ≥ min
b′∈Amin

u(a, b′)− ϵ

Similarly, an ϵ-approximate minimax strategy is an action b ∈ Amin such that
for all a ∈ Amax:

u(a, b) ≤ max
a′∈Amax

u(a′, b) + ϵ

Our algorithms will be of two types, both of which simulate repeated play
of the zero sum game over some number of rounds T . Either we will play two
no-regret/online convex optimization algorithms against one another, or we
will have one player play using an online convex optimization algorithm, and
the other player “best respond” at each round. In fact, we don’t necessarily
need the “best response” player to play a best response — its enough if they
play a strategy that achieves the value of the game at each round (i.e. the
do not need to be able to exploit their opponent if their opponent is playing
badly).

Definition 16 Fix a zero sum game satisfying the conditions of the minimax
theorem, and let v be the value of the game. A value oracle for Max is a

Zero Sum Games and the Minimax Theorem 27

mapping V al : Amin → Amax such that for all b ∈ Amin, V al(b) = a such
that:

u(a, b) ≥ v

Similarly a value oracle for Min is a mapping V al : Amax → Amin such that
for all a ∈ Amax, V al(a) = b such that:

u(a, b) ≤ v

Remark 2.3.1 Note that computing an actual best response — V al(b) =
Brmax(b) for Max, and V al(a) = Brmin(a) for Min gives a value oracle, but
it might sometimes be easier to implement a value oracle than to compute the
best response in a game.

Algorithm 8 Computing a Minimax Equilibrium: Value Oracle vs. No Regret

Given: A zero sum game (Amax,Amin, u) satisfying the conditions of the
minimax theorem, a Value oracle V al : Amin → Amax for Max, an online
convex optimization algorithm OnlineConvex operating over action space
Amin and loss space {ℓ = u(a, ·)}a∈Amax

that promises regret R(T) to every
action b ∈ Amin after T rounds, and an approximation parameter ϵ.
Let T be such that R(T)/T ≤ ϵ
for t = 1 to T do
Get action bt from OnlineConvex,
Let at = V al(bt)
Feed loss ℓt = u(at, ·) to OnlineConvex.

Let ā = 1
T

∑T
t=1 a

t

Return ā

Theorem 9 The action ā output by Algorithm 8 is an ϵ-approximate Max-
imin strategy.

Proof 16 By the regret bound of OnlineConvex we know for every b ∈ Amin:

ϵ ≥ 1

T

T∑
t=1

(
u(at, bt)− u(at, b)

)
≥ 1

T

(
T∑

t=1

u(at, bt)

)
− u(ā, b)

where the last inequality follows from the fact that u(·, b∗) is convex in its first
argument and Jensen’s inequality.

Rearranging we have that for all b ∈ Amin:

u(ā, b) ≥ 1

T

(
T∑

t=1

u(at, bt)

)
− ϵ

≥ v − ϵ

28Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

where the last inequality follows from the fact that at is selected by a value
oracle V al(bt), and so for all t, u(at, bt) ≥ v Thus ā is an ϵ-approximate
Maximin strategy.

Remark 2.3.2 Observe that we didn’t really need an exact value oracle. If
the guarantee was that for at = V al(bt), u(at, bt) ≥ v− ϵ, then we would have
found a 2ϵ-approximate Maximin strategy, so an approximate Value oracle is
enough.

Note also that the situation is symmetric: If we want to compute an ϵ-
approximate Minimax strategy for Min, we can reverse the role of the players
and have Max play a no regret algorithm and have Min play according to an
(approximate) value oracle.

There is another general way to compute Minimax and Maximin strategies
in a zero-sum game: have both players play the game for T rounds so that they
have at most ϵ average regret. They could do this by both playing according
to online convex optimization algorithms, or we could play an online convex
optimization algorithm against a best response (not just a value) oracle.

Theorem 10 Fix a zero sum game (Amax,Amin, u) satisfying the conditions
of the minimax theorem, and let {(at, bt)}Tt=1 be a sequence of action pairs that
mutually have ϵ average regret with respect to each other — i.e. such that:

1

T
min

b∈Amin

T∑
t=1

u(at, b) + ϵ ≥ 1

T

T∑
t=1

u(at, bt) ≥ 1

T
max

a∈Amax

T∑
t=1

u(a, bt)− ϵ

Let

ā =
1

T

T∑
t=1

at b̄ =
1

T

T∑
t=1

bt

Then ā is a 2ϵ-approximate maximin strategy and b̄ is a 2ϵ-approximate min-
imax strategy.

Proof 17 We prove the claim about ā: The claim about b̄ follows exactly
symmetrically.

From the right hand side of the no regret guarantee together with the con-
vexity of u in its second argument (and Jensen’s inequality), we have that:

1

T

T∑
t=1

u(at, bt) ≥ max
a∈Amax

1

T

T∑
t=1

u(a, bt)− ϵ

≥ max
a∈Amax

u(a, b̄)− ϵ

≥ min
b∈Amin

max
a∈Amax

u(a, b)− ϵ

= v − ϵ

Zero Sum Games and the Minimax Theorem 29

From the left hand side of the no-regret guarantee together with the concav-
ity of u in its first argument (and Jensen’s inequality) we have that for every
b ∈ Amin:

u(ā, b) ≥ 1

T

T∑
t=1

u(at, b)

≥ 1

T

T∑
t=1

u(at, bt)− ϵ

≥ v − 2ϵ

Which establishes that ā is a 2ϵ-approximate maximin strategy.

2.4 From the Minimax Theorem to Sequential Decision
Making

We used the existence of online convex optimization algorithms with regret
guarantees to prove the minimax theorem for zero sum games. But historically,
the minimax theorem came first. Suppose we knew the minimax theorem:
could we use it to derive the existence of online convex optimization algorithms
with regret guarantees? The answer is yes, and so in a strong sense, these kinds
of “no regret learning” algorithms should be viewed as equivalent, constructive
versions of the minimax theorem.

Recall from Section 1.6 that to derive online convex optimization algo-
rithms it suffices to derive online linear optimization algorithms, and that
the simplest kind of online linear optimization algorithm is an algorithm (like
multiplicative weights) that selects amongst k actions at each round — this
is just online linear optimization in which the learner’s action space is the
k-dimensional probability simplex. So that’s what we will do for simplicity
— we’ll see how to derive a multiplicative weights like algorithm and regret
bound in this way.

First we recall the setting: there are k actions, and cost vectors ct ∈ [0, 1]k.
At every round, the learner chooses some (distribution on) action(s) pt ∈ ∆A,
after which an adversary chooses a cost vector ct. The cost for the algorithm
at round t if they play an action i is ctL = cti — the expected cost for the
algorithm at round t is Ei∼pt [ctL] = ⟨pt, ct⟩. After T rounds, recall that the
accumulated regret to action i is:

Reg(πT , i) = CT
L − CT

i =

T∑
t=1

(ctL − cti)

30Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

And the overall regret is Reg(πT) = maxi∈[k] Reg(π
T , i). Our high level strat-

egy will be to invoke the minimax theorem to find a strategy pt that the
learner can play at each round t to minimize the increase in her overall regret
—- but the max term that shows up in the overall regret of the learner makes
this increase a complicated, non convex-concave function of pt and ct, which
prevents a direct invocation. Instead we need a surrogate function that has
better analytic properties, but can be used to upper-bound overall regret. A
natural choice is the softmax function, which smoothly approximates the max
function using exponentials.

Definition 17 At round T , define the softmax surrogate with parameter η to
be:

L(πT) =

k∑
i=1

exp
(
ηReg(πT , i)

)
We can use the softmax surrogate to upper bound the overall regret of the

algorithm as follows:

Lemma 2.4.1 For all T :

Reg(πT) ≤ 1

η
ln(L(πT))

Proof 18

ηReg(πT) = max
i∈[k]

ηReg(πT , i)

= ln

(
exp

(
max
i∈[k]

ηReg(πT , i)

))
= ln

(
max
i∈[k]

exp
(
ηReg(πT , i)

))
≤ ln

(
k∑

i=1

exp
(
ηReg(πT , i)

))
= ln(L(πT))

Dividing by η gives the result.

Remark 2.4.1 Observe that the soft-max upper bound on regret is reasonably
tight — it cannot over-estimate the regret by more than an additive term of
1
η · log k. Because L(πT) ≤ k exp(η(Reg(πT))), we have that 1

η log(L(πT)) ≤
log k
η + Reg(πT)

Thus it will suffice to design an algorithm that can control the growth of
L(πT).

Zero Sum Games and the Minimax Theorem 31

Definition 18 Fix a transcript πs−1. Given an action i ∈ [k] and a cost
vector c ∈ [0, 1]k let π̃s = πs−1 ◦ (i, c), the continuation of the transcript that
would result if the learner picked action i and the adversary picked cost vector
c. Let:

∆πs−1

2 (c, i) = L(π̃s)− L(πs−1)

be the change in the squared error surrogate that would result from the play
(i, c) at round s.

Our first step is to analytically upper bound the increase in the softmax
surrogate that results from playing action i against cost vector c at round s:

Lemma 2.4.2 For any η ≤ 1:

∆πs−1

(c, i) ≤

 k∑
j=1

exp
(
ηReg(πs−1, j)

)
η(ci − cj)

+ η2L(πs−1)

Proof 19

∆πs−1

(c, i) = L(π̃s)− L(πs−1)

=

k∑
j=1

exp (ηReg(π̃s, j))− exp
(
ηReg(πs−1, j)

)
=

k∑
j=1

exp
(
ηReg(πs−1, j) + η(ci − cj)

)
− exp

(
ηReg(πs−1, j)

)
=

k∑
j=1

exp
(
ηReg(πs−1, j)

)
(exp (η(ci − cj))− 1)

≤
k∑

j=1

exp
(
ηReg(πs−1, j)

) (
η(ci − cj) + (η(ci − cj))

2
)

≤
k∑

j=1

exp
(
ηReg(πs−1, j)

) (
η(ci − cj) + η2

)

=

 k∑
j=1

exp
(
ηReg(πs−1, j)

)
η(ci − cj)

+ η2L(πs−1)

Where the second to last inequality follows from the fact that for any x ≤ 1,
exp(x) ≤ 1 + x + x2 and the last inequality follows from the assumption that
ci, cj ∈ [0, 1].

Observe that by construction, for a transcript πT generated by a sequence
of plays (pt, ct), the expected softmax surrogate regret is exactly:

E[L(πT)] =

T∑
t=1

E
i∼pt

[∆πt−1

(ct, i)]

32Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Thus, to guarantee that the expected regret of the Learner is small, our
goal will be to find distributions pt at each round t that guarantee that
Ei∼pt [∆πt−1

(c, i)] is small for all c (remembering that we don’t know the rel-
evant loss vector ct at the time that we must pick pt).

Towards this end, we define a zero-sum game between the learner and the
adversary at each round t as follows. We will identify the Learner with the
minimization player and the Adversary with the maximization player.

Definition 19 The round-t softmax-surrogate game is

1. The learner’s action space is Amin = ∆[k], which is a convex
set.

2. The adversary’s action space is Amax = [0, 1]k, which is a convex
set.

3. For each c ∈ Amax and p ∈ Amin, the utility function is defined
as:

u(c, p) = E
i∼p

 k∑
j=1

exp
(
ηReg(πs−1, j)

)
η(ci − cj)

This is a bounded utility function that is linear (and hence con-
vex/concave) in both of its arguments (as at round t, Reg(πt−1, j)
is simply a fixed constant).

We observe that this game satisfies the conditions of the minimax Theorem 8.

Lemma 2.4.3 The maximin value of the round t softmax-surrogate game is:

max
c∈[0,1]k

min
p∈∆[k]

u(c, p) ≤ 0

Proof 20 For any c ∈ Amax, let i∗(c) ∈ argmini∈[k] ci be a coordinate of
minimum cost. the Learner has a best response p∗(c) corresponding to a dis-
tribution that places all of its weight on i∗(c). We have:

u(c, p∗(c)) =

k∑
j=1

exp
(
ηReg(πs−1, j)

)
η(ci∗(c) − cj) ≤ 0

Where the inequality follows because term by term, exp
(
ηReg(πs−1, j)

)
≥ 0

because of the non-negativity of the exponential function, and (ci∗(c) − cj) ≤ 0
because by definition of i∗(c), ci∗(c) ≤ cj for all j.

Since the conditions of the minimax Theorem (Theorem 8) are satisfied by
our round-t surrogate softmax game, we can swap the min and the max and
conclude:

Lemma 2.4.4 The minimax value of the round t softmax surrogate game is:

min
p∈∆[k]

max
c∈[0,1]k

u(c, p) ≤ 0

Zero Sum Games and the Minimax Theorem 33

In other words, at each round t, there exists a distribution over actions p ∈
∆[k] such that for all cost vectors c ∈ [0, 1]k that the adversary might choose,
u(c, p) ≤ 0.

Because we have defined the utility function in our round-t softmax-
surrogate game to be a value that we can use to upper bound the per-round
expected change in softmax-surrogate regret, we can immediately use this fact
to derive a regret bound on Algorithm 9, which simply plays at every round a
distribution pt ∈ ∆[k] such that: maxc∈[0,1]k u(c, p) ≤ 0. The existence of such
a distribution is guaranteed by Lemma 2.4.4.

Algorithm 9 A Minimax Based Sequential Decision Making Algorithm

for t = 1 to T do
Construct the round t softmax-surrogate game as a function of πt−1 with
utility function u.
Play pt ∈ ∆[k] such that: maxc∈[0,1]k u(c, p) ≤ 0.

Theorem 11 Against any sequence of cost functions c1, . . . , cT ∈ [0, 1]k, Al-
gorithm 9 has expected regret bounded by:

E
πT

[Reg(πT)] ≤ ln k

η
+ Tη

Choosing η =
√

ln k
T gives:

E
πT

[Reg(πT)] ≤ 2
√
T ln k

Remark 2.4.2 Note that this exactly matches the worst-case regret bound we
proved for the Multiplicative Weights algorithm in Theorem 2!

Proof 21 We start by upper bounding the expected softmax surrogate regret.
From the definition of ∆πs−1

(c, i) and Lemma 2.4.2 we have that for all rounds
s:

E
ps
[L(πs)|πs−1] = L(πs−1) + E

i∼ps
[∆πs−1

(cs, i)]

≤ (1 + η2)L(πs−1) + E
i∼ps

 k∑
j=1

exp
(
ηReg(πs−1, j)

)
η(ci − cj)

= (1 + η2)L(πs−1) + u(cs, ps)

≤ (1 + η2)L(πs−1)

Where the last inequality follows from the fact (justified by Lemma 2.4.4) that
ps satisfies u(cs, ps) ≤ 0 for all values of cs.

Observing that L(π0) = k and applying the above bound inductively, we
find that:

E
πT

[L(πT)] ≤ k(1 + η2)T ≤ k exp(Tη2)

34Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

We can now apply Lemma 2.4.1 to bound the regret by the softmax surro-
gate regret.

E
πT

[Reg(πT)] ≤ E
πT

[
1

η
ln(L(πT))

]
≤ 1

η
ln

(
E
πT

[
L(πT)

])
≤ 1

η

(
ln k + Tη2

)
=

ln k

η
+ Tη

We proved the existence of the strategy used at each round of 9 non-
constructively using the minimax theorem. How would we actually implement
it? We require finding a minimax strategy for the softmax surrogate game at
each round to find a pt such that maxc∈[0,1]k u(c, p) ≤ 0. In general we could
do this using linear programming, or the no-regret dynamics approaches to
computing minimax optimal strategies that we studied in Section 2.3. But in
this case, it turns out that there is a simple closed form expression for pt!

Lemma 2.4.5 Let pt ∈ ∆[k] be such that:

pti =
1

Φt
exp(ηReg(πt−1, i)) Φt =

∑
i

exp(ηReg(πt−1, i))

Then pt satisfies the requirements of Algorithm 9 — for all c ∈ [0, 1]k:

u(c, pt) = E
i∼pt

 k∑
j=1

exp
(
ηReg(πt−1, j)

)
η(ci − cj)

 ≤ 0

Proof 22 We can directly compute:

u(c, pt) = E
i∼pt

 k∑
j=1

exp
(
ηReg(πt−1, j)

)
η(ci − cj)

=

k∑
i=1

pti

k∑
j=1

exp
(
ηReg(πt−1, j)

)
η(ci − cj)

=
1

Φt

k∑
i=1

k∑
j=1

exp(ηReg(πt−1, i)) exp
(
ηReg(πt−1, j)

)
η(ci − cj)

=
η

Φt

k∑
i=1

k∑
j=1

exp(ηReg(πt−1, i)) exp
(
ηReg(πt−1, j)

)
ci −

η

Φt

k∑
i=1

k∑
j=1

exp(ηReg(πt−1, i)) exp
(
ηReg(πt−1, j)

)
cj

= 0

Zero Sum Games and the Minimax Theorem 35

Thus we have derived a concrete, easy to implement algorithm, that is
a slight variant of multiplicative weights —this variant is sometimes called
“Exponential Weights” .

Algorithm 10 The Exponential Weights Algorithm

For each action i ∈ A, set w1
i = 1. Let W 1 =

∑
i∈A w1

i .
for t = 1 to T do
Play the distribution pt defined as:

pti =
wt

i

W t

Observe costs ct and update weights such that for each i ∈ A:

wt+1
i = wt

i exp(−ηcti) W t+1 =
∑
i∈A

wt+1
i

Theorem 12 The Exponential Weights Algorithm (Algorithm 10) imple-
ments Algorithm 9, and so satisfies the regret bound proven in Theorem 11:

E
πT

[Reg(πT)] ≤ ln k

η
+ Tη

Choosing η =
√

ln k
T gives:

E
πT

[Reg(πT)] ≤ 2
√
T ln k

Proof 23 From the update rule, we can compute that at round t, Algorithm
10 plays a distribution pti defined as

pti =
1

W t
exp

(
−η

t−1∑
s=1

csi

)
W t =

k∑
i=1

exp

(
−η

t−1∑
s=1

csi

)

Our goal is to show that this distribution is identical to the distribution
that we proved in Lemma 2.4.5 implements Algorithm 9. Recall that we wrote
that distribution as:

qti =
1

Φt
exp(ηReg(πt−1, i)) Φt =

∑
i

exp(ηReg(πt−1, i))

Consider any coordinate i of the distribution defined in Lemma 2.4.5. we

36Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

can calculate:

qti =
exp(ηReg(πt−1, i))∑
j exp(ηReg(π

t−1, j))

=
exp

(
η
∑t−1

s=1(c
s
L − csi)

)
∑

j exp
(
η
∑t−1

s=1(c
s
L − csj)

)
=

exp
(
η
∑t−1

s=1 c
s
L

)
· exp

(
−η
∑t−1

s=1 c
s
i

)
exp

(
η
∑t−1

s=1 c
s
L

)∑
j exp

(
−η
∑t−1

s=1 c
s
j

)
=

exp
(
−η
∑t−1

s=1 c
s
i

)
∑

j exp
(
−η
∑t−1

s=1 c
s
j

)
= pti

Thus pt = qt, and so the result follows from Lemma 2.4.5 and Theorem 11.

Bibliographic Notes and Further Reading

The proof of the minimax theorem using no-regret learning algorithms is orig-
inally due to Freund and Schapire [1996], who also show how to compute
minimax equilibria using no regret learning algorithms. The variant in which
a no-regret learner is used to play against a “value oracle” is from Haghta-
lab et al. [2023a]. The derivation of exponential weights using the minimax
theorem follows Lee et al. [2022].

3

Multi-Objective Sequential Learning

CONTENTS

3.1 Motivating Example: Convergence to Correlated Equilibria 37
3.2 A General Framework for Multiobjective Sequential Learning . . 40
3.3 Controlling Regret on Multiple Subsequences 46

3.3.1 Action Independent Subsequences . 49
3.3.1.1 Adaptive Regret . 51
3.3.1.2 Group-wise Regret . 52

3.3.2 General Subsequences . 53
3.3.2.1 Swap Regret . 55
3.3.2.2 Mixing and Matching Guarantees 57

Bibliographic Notes and Further Reading . 57

So far we’ve viewed sequential learning as having a single goal: obtaining a
diminishing regret guarantee, always as computed over the entire sequence.
Similarly we have studied zero sum games in which there is a single, one
dimensional objective function that one player wants to maximize and the
other wants to minimize. In this case there was a tight connection between
learning algorithms with regret guarantees and equilibrium play in games.

In this chapter, things will get more complicated: in a sequential learning
setting, there might be more than one objective that we simultaneously want
to control. We’ll show how to use the tools we have developed for online
convex optimization to solve this problem. We’ll give a number of applications
of this technique; but as a motivating example we’ll think about computing
approximate correlated equilibria, a solution concept in general sum games,
in which there might be many players, each of which have different utility
functions.

37

38Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

3.1 Motivating Example: Convergence to Correlated
Equilibria

Here we will study general games, which remove some of the restrictions of
zero sum games. In particular, there may now be many players in the game,
and the players can have arbitrary (not necessarily strictly opposing) cost
functions.

Definition 20 A (general sum) game is defined by:

1. A finite set of n players {1, . . . , n}
2. For each player, i, a closed, bounded action set Ai ⊆ Rm,

3. For each player i, a bounded cost function ci : A1 × . . .×An →
[0, B]

Remark 3.1.1 For a game to have nice properties (the existence of various
kinds of equilibria) we will generally also want each player’s action sets Ai to
be convex. As usual, if Ai is not already convex, we can convexify it by taking
its convex hull, which corresponds to letting players choose probability distri-
butions over their actions. These are often referred to as “mixed strategies”
in game theory.

General sum games do not in general enjoy the nice structure of the min-
imax theorem that we proved for Zero Sum games in Chapter 2. We can still
define Nash equilibria — stable game states such that no player can decrease
their cost by unilaterally changing their action. However, although Nash equi-
libria are guaranteed to exist when certain mild technical conditions are met,
they are not in general easy to learn.

Definition 21 A set of actions a = (a1, . . . , an) ∈ A1× . . .×An form a Nash
equilibrium if for every player i:

ci(a) ≤ min
a′
i∈Ai

ci(a
′
i, a−i)

Here (a′i, a−i) denotes the vector of actions a in which the value of the i’th
coordinate ai has been replaced with a′i.

We will state but not prove the existence of Nash equilibrium:

Theorem 13 Fix a game in which the action sets Ai are all convex and
closed, and the cost functions ci(ai, a−i) are continuous in all of their argu-
ments and convex in ai. Then a Nash equilibrium exists.

Multi-Objective Sequential Learning 39

We will focus instead on a more computationally tractable solution con-
cept, called a correlated equilibrium. A correlated equilibrium shares the same
defining philosophy as a Nash equilibrium — defining a “stable state” such
that no player can unilaterally deviate in a way that will improve their cost.
The key distinction is that a correlated equilibrium allows players to random-
ize their actions using correlated randomness, and to consider deviations that
are a function of their own portion of that randomness. Traditionally, one
imagines that a correlated equilibrium is implemented using a “correlating
device” like a traffic light, which supplies signals or suggested actions to each
player. The players observe their own signals, and know how their signals are
correlated with the signals shown to others, but do not directly observe other’s
signals.

Definition 22 Let P ∈ ∆(A1× . . .×An) be a distribution over actions. P is
an ϵ-approximate correlated equilibrium of a game if for all players i and all
deviation functions ϕi : Ai → Ai:

E
a∼P

[ci(a)] ≤ E
a∼P

[ci(ϕi(ai), a−i)] + ϵ

Note that in a correlated equilibrium, players need not consider only deviations
to single fixed actions a′i, but may consider more complex deviations ϕ(ai) that
are functions of their suggested part of the correlated play ai, deviating to
different actions depending on what they are suggested to play. Implicit in this
is a notion of timing in the game: players first see their signal/suggested action,
and then are free to decide what action to play. They may use information
that they learned from their signal to decide on what action to play. This is
closely related to a more demanding kind of “regret” in sequential play than
we have seen before:

Definition 23 Fix an action space for a learner A and a class Φ of “action
modification rules” ϕ : A → A. Given a sequence of action distributions and
loss functions πT = {(p1, ℓ1), . . . , (pT , ℓT)}, the learner’s regret to a strategy
modification rule ϕ ∈ Φ is:

Reg(πT , ϕ) =

T∑
t=1

E
at∼pt

[(
ℓt(at)− ℓt(ϕ(at)

)]
We say that the learner has Φ-regret bounded by α if:

max
ϕ∈Φ

Reg(πT , ϕ) ≤ α

If Φ is the set of all action modification rules ϕ : A → A we refer to Φ
regret as swap regret.

Remark 3.1.2 If Φ = {ϕa}a∈A is the set of all constant action modification
rules defined such that for all a′ ∈ A, ϕa(a

′) = a, then Φ-regret is referred to
as external regret and corresponds to the kind of regret we have encountered
previously: regret to the best fixed action in hindsight.

40Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

The connection between swap regret and correlated equilibrium is straight-
forward. First, we define swap regret in the context of a general sum game, in
which at every round, each of the n players plays i an action ati. The loss with
respect to which regret is defined is simply the cost function for that player:
ℓti = ci(a

t
i, a

t
−i).

Definition 24 Fix a general sum game and a sequence of mixed strategy
profiles P 1, . . . , PT where each P t is a vector of action distributions P t ∈
∆A1 × . . .×∆An. This sequence has swap regret α if for every player i:

max
ϕ:Ai→Ai

E
at∼P t

[
T∑

t=1

(
ci(a

t
i, a

t
−i)− ci(ϕ(a

t
i), a

t
−i

)]
≤ α

Lemma 3.1.1 Fix a general sum game and a sequence of mixed strategy pro-
files P 1 . . . , PT that has swap regret α. Let P be the distribution that first
samples P t uniformly from the set of mixed strategy profiles {P 1, . . . , PT } and
then samples action profile at ∼ P t. Then P is an ϵ-approximate correlated
equilibrium for ϵ = α

T .

Proof 24 This follows from the definitions. For all players i and action mod-
ification rules ϕ : Ai → Ai:

E
a∼P

[ci(a)] =
1

T

T∑
t=1

E
at∼P t

[ci(a
t)]

≤ 1

T

(
T∑

t=1

E
at∼P t

[ci(ϕ(a
t
i), a

t
−i)] + α

)
= E

a∼P
[ci(ϕ(ai), a−i)] +

α

T

Thus, if we can derive learning algorithms that guarantee this stronger
form of swap regret at rates that grow sublinearly with T , we will have an
algorithm (and a learning dynamic) that converges to approximate correlated
equilibrium. In the next section we’ll develop a general framework that will
allow us to derive such an algorithm as a special case (among many other
applications).

3.2 A General Framework for Multiobjective Sequential
Learning

In this section we derive a general framework for optimizing multiple objectives
at once in a sequential learning setting. This will have many applications; one
category of these applications is deriving algorithms that have stronger kinds

Multi-Objective Sequential Learning 41

of regret guarantees than we have seen thus far, including the swap regret
guarantees that we saw imply convergence to the set of correlated equilibria.

We consider a sequential decision making setting in which the learner has
d distinct cost functions, each of which they would like to keep as small as
possible over a sequential interaction. We define a very general setting, in
which the action space for the learner and the adversary, as well as the nature
of each of the loss functions can change at each round. We will not always need
this generality, but when we do it will come in handy. In the general setting,
the adversary gets to choose the action spaces at every round, as well as the
“loss increment functions” for each of the d loss objectives. These can differ at
each round. The learner then selects an action, the adversary responds, and
loss acrues to each loss objective according to the loss increment function for
that objective.

Definition 25 (The Multiobjective Optimization Game) The d-objective
optimization game proceeds in rounds t = 1, . . . , T . At each round t:

1. The adversary selects the environment for round t which com-
prises:

(a) Closed convex, finite dimensional action spaces At,Bt ⊂ Rm

for the learner and adversary respectively, and

(b) A continuous loss increment function ℓti for each of the d losses
i ∈ [d]. Each ℓti : At × Bt → [−1, 1] is convex in its first argu-
ment and concave in its second argument.

2. The Learner selects an action at ∈ At and reveals it to the
adversary.

3. The Adversary selects an action bt ∈ Bt.

4. The Learner suffers and observes loss ℓti(a
t, bt), accruing to each

of the loss objectives i ∈ [d].

At the end of T rounds, the cumulative loss that the learner suffers for each
objective i ∈ [d] is: LT

i =
∑T

t=1 ℓ
t
i(a

t, bt).

The goal of the learner in interacting within the multiobjective optimiza-
tion game is to upper bound the maximum accumulated loss across all objec-
tives: i.e. she wants to minimize maxi L

T
i . What is a reasonable benchmark?

Here we introduce the “Adversary Moves First”value for the environment at
round t:

Definition 26 Fix the environment at round t, defined by (At,Bt, {ℓti}di=1).
The adversary moves first value at round t is:

vtA = max
b∈Bt

min
a∈At

max
i∈[d]

ℓti(a, b)

42Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Informally, the adversary moves first value is the smallest upper bound on
the d loss increments at round t that the learner could guarantee, if she had the
advantage of first observing the adversary’s chosen action bt before deciding on
her own best response at. Note that the order of play here is reversed compared
to how it actually proceeds in the multiobjective optimization game. In the
actual interaction, the learner moves first and then best responds. It is tempt-
ing to appeal to the minimax theorem here to assert that the learner can do
just as well in this play order, but this turns out not to be the case. Although
the loss increments in each coordinate ℓti(a, b) are indeed convex/concave, the
maximum over coordinates maxi∈[d] ℓ

t
i(a, b) does not preserve concavity, and

hence the conditions of the minimax theorem are not satisfied. Indeed, in this
setting, the minimax theorem simply doesn’t hold:

Example 1 Suppose the action spaces for both the learner and the adversary
are the d-dimensional simplex: A = B = ∆[d]. Let the loss increment in
coordinate i be ℓi(a, b) = (bi − ai), the difference between the weight that the
adversary and the learner place on coordinate i. If the adversary moves first
and plays b, the learner can best respond and play a = b, guaranteeing that
the loss increment in every coordinate is equal to 0: thus the adversary moves
first value vA = 0 for this environment.

On the other hand, suppose the learner moves first: for every vector a ∈ A
that she might choose, there is a coordinate i such that ai ≤ 1

d . The adversary
can best respond by playing a vector b that places all of its weight on this
coordinate i: bi = 1. Hence ℓi(a, b) ≥ 1− 1

d . Thus there is a large gap between
the adversary moves first value for this environment and the “learner moves
first” value — the minimax theorem does not hold.

The above example shows that trying to obtain maximum loss equal to the
adversary-moves-first value of the game in a 1-round interaction is impossible.
Nevertheless, we will be able to approach the average of the adversary-moves-
first values of the environments over a larger sequence of T interactions.

Definition 27 (Adversary Moves First Regret) Fix a transcript of in-
teraction in the multiobjective optimization game πT = {(At,Bt, {ℓti}di=1), a

t, bt}Tt=1.
The adversary moves first regret of this transcript is:

RegAMF (π
T) = max

i∈[d]
LT
i −

T∑
t=1

vtA = max
i∈[d]

(
T∑

t=1

(
ℓti(a

t, bt)− vtA
))

Our goal will be to design algorithms that guarantee that the Adversary Moves
First regret grows sublinearly with T . In most of our applications, we will
define the loss increments so that the adversary moves first value of each
environment is 0: vtA = 0 for all t. In this case, the adversary moves first
regret is simply the maximum accumulated loss in any coordinate: maxi L

T
i .

We give the algorithm in Algorithm 11, which is a reduction from the
problem of guaranteeing AMF regret bounded by R(T) to the problem (that

Multi-Objective Sequential Learning 43

we have already solved) of selecting a distribution over d actions at every
round to obtain cost that is as large as the cumulative cost of the highest
cost action in hindsight, up to a regret bound of R(T). (i.e. the online linear
optimization problem over the probability simplex ∆[d]). We’ve already seen
how to solve this problem using several algorithms (e.g. multiplicative weights,
online gradient descent, exponential weights, etc.). Note that we have generally
framed online linear optimization as the problem of minimizing cumulative
cost, whereas here it is more convenient to use an online linear optimization
algorithm that maximizes cumulative cost — but we can obtain an online
linear maximization algorithm from an online linear minimization algorithm
simply by negating the cost vectors.

The intuition for the reduction is simple. We run a sequential linear opti-
mization algorithm over distributions on a set of d actions, with each action
corresponding to one of the loss objectives in the Multiobjective Optimization
Game. From its regret bound, the sequential linear optimization algorithm is
guaranteed to experience cumulative cost that is nearly as large as that of the
action with largest cumulative cost in hindsight — which corresponds to the
cumulative loss of the maximum of the d loss objectives in the Multiobjec-
tive Optimization Game. This is exactly the quantity that we wish to control.
Thus if we want to upper bound the cumulative loss of the highest loss ob-
jective in the Multiobjective Optimization Game, it suffices to upper bound
the cumulative loss of the sequential linear optimization algorithm. Of course
we don’t know what this is going to be, because we don’t know what action
the adversary will choose at each round: but what we can try to do is upper
bound the loss of the sequential linear optimization algorithm in the worst
case over the adversary’s action. That is exactly what the reduction does: it
defines a zero sum game in which the objective is the loss that the sequential
linear optimization algorithm will experience, and plays a minimax strategy
in that game. Thus the cumulative loss of the online linear optimization al-
gorithm, and hence the cumulative loss of the maximum coordinate of the
multiobjective optimization game, is upper bounded by the sum of the values
of the zero-sum games we have defined along the way, which turn out to be ex-
actly the Adversary Moves First values vtA of each round of the multiobjective
optimization game.

44Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Algorithm 11 Reduction from AMF to Simple Regret

Given A sequential linear maximization algorithm Alg operating over ac-
tion space ∆[d] and accepting cost vectors in [−1, 1]d.
for t = 1 to T do
Obtain distribution pt from Alg.
Define a zero-sum game in which the minimization player’s action are At,
the maximization players actions are Bt, and the utility function is:

ut(a, b) =

d∑
i=1

ptiℓ
t
i(a, b)

Compute a minimax equilibrium strategy of this game at for the mini-
mization player and select action at

Observe the adversary’s action bt and report cost vector ct to Alg, defined
such that in each coordinate i ∈ [d]:

cti = ℓti(a
t, bt)

The result is that if we instantiate Algorithm 11 with an online linear opti-
mization algorithm that has regret bound R(T), then we will obtain an AMF
regret bound of R(T) as well in the multi-objective optimization problem!

Theorem 14 Suppose Algorithm 11 is instantiated with a sequential linear
optimization algorithm operating over ∆[d] that has the guarantee that for any
sequence of losses of length T bounded in [-1,1], it generates a transcript πT

with regret at most R(T):

max
i∈[d]

Reg(πT , i) ≤ R(T)

Then in any d-objective optimization game, after T rounds, Algorithm 11
obtains AMF regret at most R(T):

max
i∈[d]

(
T∑

t=1

(
ℓti(a

t, bt)− vtA
))

≤ R(T)

Proof 25 From the regret bound of the online linear maximization algorithm,
we know that for all j ∈ [d]:

T∑
t=1

(
ctj − ⟨pt, ct⟩

)
=

T∑
t=1

(
ℓtj(a

t, bt)−
d∑

i=1

ptiℓ
t
i(a

t, bt)

)
≤ R(T)

Or, rearranging:

max
j∈[d]

LT
j = max

j∈[d]

T∑
t=1

ℓtj(a
t, bt) ≤

T∑
t=1

d∑
i=1

ptiℓ
t
i(a

t, bt) +R(T)

Multi-Objective Sequential Learning 45

Algorithm 11 selects at at every round so that:

at ∈ arg min
a∈At

max
b∈Bt

d∑
i=1

ptiℓ
t
i(a, b)

Because for each coordinate i, we know that ℓti(a, b) is convex in a and
concave in b, and linear combinations of convex/concave functions are con-

vex/concave, the utility function ut(a, b) =
∑d

i=1 p
t
iℓ

t
i(a, b) satisfies the condi-

tions of the minimax theorem (Theorem 8), and so we know that:

min
a∈At

max
b∈Bt

d∑
i=1

ptiℓ
t
i(a, b) = max

b∈Bt
min
a∈At

d∑
i=1

ptiℓ
t
i(a, b)

≤ max
b∈Bt

min
a∈At

max
i∈[d]

ℓti(a, b)

= vtA

Hence we know that at every round t,

d∑
i=1

ptiℓ
t
i(a

t, bt) ≤ vtA

Finally, this lets us conclude that for every loss coordinate j:

LT
j = max

j∈[d]

T∑
t=1

ℓtj(a
t, bt)

≤
T∑

t=1

d∑
i=1

ptiℓ
t
i(a

t, bt) +R(T)

≤
T∑

t=1

vtA +R(T)

Or in other words, the AMF regret is bounded by R(T).

Finally, we can instantiate Algorithm 11 with a particular online linear
maximization algorithm over the simplex ∆[d] — the exponential weights
algorithm we derived in Algorithm 10. The exponential weights algorithm
has a particularly simple form for the weights pti, and a good concrete regret
bound. We give this instantiation below in Algorithm 12.

46Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Algorithm 12 Multiobjective Optimization with Exponential Weights

for t = 1 to T do
Define the distribution pt ∈ ∆[d] as:

pti =
exp

(
η
2

∑t−1
t′=1 ℓ

t′

i (a
t′ , bt

′
)
)

∑d
j=1 exp

(
η
2

∑t−1
t′=1 ℓ

t′
j (a

t′ , bt′)
)

Define a zero-sum game in which the minimization player’s action are At,
the maximization players actions are Bt, and the utility function is:

ut(a, b) =

d∑
i=1

ptiℓ
t
i(a, b)

Compute a minimax equilibrium strategy of this game at for the mini-
mization player and select action at

Theorem 15 In any d-objective optimization game, after T rounds, Algo-
rithm 12 obtains AMF regret at most 4

√
T ln d:

max
i∈[d]

(
T∑

t=1

(
ℓti(a

t, bt)− vtA
))

+ 4
√
T ln d

Proof 26 We simply instantiate Theorem 14 with the regret bound proven for
the exponential weights algorithm in Theorem 12. Note that there we stated
the regret bound for Exponential Weights when the costs were scaled in [0, 1]
and the algorithm was minimizing cost. In our case, the costs are scaled in
[−1, 1] and we are maximizing cost. We simply apply the cost transformation
described in Remark 1.3.2 and negate the cost vectors to obtain the given
algorithm and regret bound.

3.3 Controlling Regret on Multiple Subsequences

As our first application of online multiobjective optimization, we will design
algorithms for choosing amongst k actions that have diminishing regret to
the best action in hindsight — not just on average over the whole sequence,
but simultaneously on many different subsequences, which may be defined by
(among other things) the actions we choose to play. If we instantiate this for
the k subsequences corresponding to the rounds in which we chose to play
each of our k actions, this will correspond to a guarantee of no swap regret

Multi-Objective Sequential Learning 47

as we defined it in Section 3.1, giving us learning algorithms that converge to
correlated equilibrium when played against one another in general sum games.

First we introduce a general/abstract framework for subsequence regret.
In our formulation, there will be d subsequences on which the learner will
want to guarantee that their cost is comparable to the cost of the best ac-
tion in hindsight. Whether or not each round t is included in a subsequence i
will be determined by a subsequence selection function E(t, at, xt) which can
depend on the round t, the action at chosen by the learner at that round,
and xt, which represents any additional context or outside information avail-
able to the learner before round t. This is expressive enough to define subse-
quences like “Rounds 1000 through 2000”, “Rounds on which we play action
3”, “Rounds on which the person with features xt we are making a decision
about is female”, and combinations thereof. Although our language of “subse-
quence selection” is suggestive that each round will either be a part of a given
subsequence or not (and most of our applications will be of this sort), we will
define subsequence selection functions more generally so that they can take
values in [0, 1], which we can interpret as having the ability to fractionally
select rounds to participate in each subsequence.

Definition 28 (Subsequence Selection and Regret) Fix an action space
A = [k] and a context space X . Let E be a collection of m subsequence selec-
tion functions E : [T] × A × X → [0, 1]. The interaction between the learner
and the adversary proceeds in rounds t = 1 to T :

1. The learner observes a context xt ∈ X (if any) that may be
chosen by the adversary.

2. The learner chooses a distribution over actions pt ∈ ∆A
3. The adversary chooses a cost vector ct ∈ [0, 1]k.

4. The learner samples experiences expected cost ⟨pt, ct⟩.

Fix a transcript πT = {(xt, pt, ct)}Tt=1. The expected regret to action i ∈ [k]
on subsequence E ∈ E is:

Reg(πT , E, i) =

T∑
t=1

E
j∼pt

[
E(t, j, xt)

(
ctj − cti

)]
The learner has expected E-subsequence regret bounded by α if:

max
E∈E,i∈[k]

Reg(πT , E, i) ≤ α

Finally we introduce some terminology. If a collection of events E contains
events E that are independent of the played action (i.e. such that for all
a, a′ ∈ A, we always have E(t, a, x) = E(t, a′, x)), then we say that E is
an action independent collection of events. When writing the subsequence se-
lection functions E, we elide dependence on parameters that are not used: for
example, if a subsequence depends only on the action chosen we will write
E(a) rather than E(t, a, x), etc.

48Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Remark 3.3.1 Observe that the “simple” regret we have mostly worked with
thus far is just the special case of subsequence regret for the single subsequence
that includes all rounds: E(t) = 1 for all t.

We can cast the problem of obtaining no-subsequence regret over k actions
and a collection of subsequences E of size |E| = m as a d = (m · k)-objective
optimization game.

Definition 29 (Subsequence Regret Multiobjective Optimization Game)
Fix a collection of m subsequence selection functions E and k actions [k]. We
define a d = m · k multiobjective optimization game in which the environment
at each round t is:

1. The action space for the learner is At = ∆[k] and the action
space for the adversary is Bt = [0, 1]k.

2. The loss increment functions are defined as follows. For each
subsequence indicator function E ∈ E and action i ∈ [k], we define
loss increment:

ℓtE,i(p
t, ct) = E

j∼pt

[
E(t, j, xt)

(
ctj − cti

)]
We can immediately apply Theorem 15 to get a bound on any subsequence

regret problem:

Theorem 16 Fix a collection of m subsequence selection functions E and
a set of k actions. If we run Algorithm 12 on the multiobjective optimization
game defined in Definition 29, then against any sequence of costs, we generate
a transcript πT that has subsequence regret bounded by:

max
E∈E,i∈[k]

Reg(πT , E, i) ≤ 4
√

T (lnm+ ln k)

Theorem 17 We first verify that the construction in Definition 29 satisfies
the conditions required of a multiobjective optimization game. Indeed, the ac-
tion sets At,Bt are closed and convex. The loss functions are linear in both
At and Bt (and hence convex/concave), and bounded in [−1, 1] as required.

Next, we verify that the adversary-moves-first value of the game at each
round t is 0: vTA = 0. To see this, fix any action c for the adversary. Let
i∗(c) ∈ argmini∈[k] ci be a minimum coordinate of the cost vector c. If we let
p(c) be the distribution that places all of its weight on action i∗(c). We have
that:

vtA = max
c∈Bt

min
p∈At

max
E∈E,i∈[k]

ℓtE,i(p, c)

≤ max
c∈Bt,E∈E,i∈[k]

ℓtE,i(p(c), c)

= max
c∈Bt,E∈E,i∈[k]

E(t, i∗(c), xt)(ci∗(c) − ci)

≤ 0

Multi-Objective Sequential Learning 49

where the last inequality follows from the fact that by definition of i∗, ci∗(c) ≤ ci
for all i.

The bound then follows from Theorem 15. For every E, i:

Reg(πT , E, i) = E
j∼pt

[
E(t, j, xt)

(
ctj − cti

)]
=

T∑
t=1

ℓtE,i(p
t, ct)

=

T∑
t=1

(
ℓtE,i(p

t, ct)− vtA
)

≤ 4
√

T ln(m · k)

Remark 3.3.2 Note that this is the same (!) bound we get for simple regret
with Multiplicative Weights or Exponential Weights (Theorem 12), except the
ln k term has been replaced with a ln(mk) term, where m is the number of
subsequences we are interested in.

So we have an extremely general technique for minimizing regret simulta-
neously across any collection of m subsequences, with regret bounds growing
only logarithmically in m. But running Algorithm 12 generically requires com-
puting a minimax equilibrium at each step to find the distribution pt to play.
In certain cases we can do better and get a closed form for pt.

3.3.1 Action Independent Subsequences

Recall that a set of subsequence selection functions E is action independent if
for every E ∈ E , for every t, x, and for every a, a′ ∈ A: E(t, a, x) = E(t, a′, x).
In other words, the subsequences do not depend on the actions chosen by the
algorithm. We can write the subsequence selection functions as E(t, x) in this
case. Just as we did when deriving the exponential weights algorithm in Sec-
tion 2.4, in this case we can derive a closed form for the minimax equilibrium
that needs to be played at each round by Algorithm 12.

50Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Algorithm 13 Getting Action Independent Subsequence Regret

Given A collection E of m action-independent subsequence selection func-
tions.
for t = 1 to T do
Observe context xt

Define the distribution pt ∈ ∆[k] as:

pti =

∑
E∈E E(t, xt) · exp

(
η
2

∑t−1
t′=1 E(t′, xt′)

(
⟨pt′ , ct′⟩ − ct

′

i

))
∑k

j=1

∑
E∈E E(t, xt) · exp

(
η
2

∑t−1
t′=1 E(t′, xt′)

(
⟨pt′ , ct′⟩ − ct

′
j

))
Play distribution pt.

Remark 3.3.3 The algorithm has a simple form: For each subsequence E,
it computes a weight proportional to the exponential of the regret to action i
on that subsequence, and sums up the weights, scaling each one by E(t, xt),
the degree to which subsequence E is active at round t. Then it gives action i
weight proportional to this sum.

For binary subsequences (in which each round t is either contained in the
subsequence E(t, xt) = 1 or not E(t, xt) = 0, it simply zeros out the weight
for each of the subsequences that are inactive at round t.

Theorem 18 For any collection E of m action independent subsequence se-
lection functions, Algorithm 13 implements Algorithm 12 for the Subsequence
Regret Multiobjective Optimization Game (Definition 29), and hence obtains
the regret bound from Theorem 16:

max
E∈E,i∈[k]

Reg(πT , E, i) ≤ 4
√

T (lnm+ ln k)

Proof 27 Algorithm 12 needs to play a distribution pt at each round that is
a minimax equilibrium for the game with utility function defined as:

ut(p, c) =
∑

E∈E,i∈[k]

exp
(

η
2

∑t−1
t′=1 ℓ

t′

E,i(p
t′ , ct

′
)
)

∑
E′,j exp

(
η
2

∑t−1
t′=1 ℓ

t′
E′,j(p

t′ , ct′)
)ℓtE,i(p, c)

=
∑

E∈E,i∈[k]

exp
(

η
2

∑t−1
t′=1 E(t, xt′)

(
⟨pt′ , ct′⟩ − ct

′

i

))
∑

E′,j exp
(

η
2

∑t−1
t′=1 E

′(t, xt)
(
⟨pt′ , ct′⟩ − ct

′
j

))E(t, xt) (⟨p, c⟩ − ci)

This game has value 0. Thus we need to show that for the distribution pt

defined in Algorithm 13, for all cost vectors c, ut(pt, c) ≤ 0.

Multi-Objective Sequential Learning 51

Observe from the way we have defined pt, can write ut(p, c) as:

ut(p, c) =

k∑
i=1

1

Φt
pti (⟨p, c⟩ − ci)

=
1

Φt

k∑
i=1

pti

 k∑
j=1

pjcj − ci

=

1

Φt

 k∑
i=1

k∑
j=1

ptipjcj −
k∑

i=1

k∑
j=1

ptici

=

1

Φt

k∑
i=1

k∑
j=1

(
cj(p

t
ipj − ptj)

)
where Φt is a normalization factor defined as

Φt =

∑
E′,j exp

(
η
2

∑t−1
t′=1 E

′(t, xt)
(
⟨pt′ , ct′⟩ − ct

′

j

))
∑

E′,j E
′(t, xt) exp

(
η
2

∑t−1
t′=1 E

′(t, xt)
(
⟨pt′ , ct′⟩ − ct

′
j

))
So, plugging in p = pt we have that for all c:

ut(pt, c) =
1

Φt

k∑
i=1

k∑
j=1

(
cj(p

t
ip

t
j − ptj)

)
≤ 0

Since for every i, j: ptipj ≤ ptj.

So what are some interesting examples of action-independent subsequence
regret? We briefly explore a few:

3.3.1.1 Adaptive Regret

The basic regret guarantees we have proven roughly speaking promise the
following: On average, over the sequence of rounds 1, . . . , T , the cost of the
algorithm is at most the cost of the best (lowest cost) fixed action in hindsight
— up to a regret bound of O(

√
T). But the best fixed action in hindsight is

the action that has the lowest cost after all T rounds, and if we start keeping
track of regret at some round t′ > 0 — or stop keeping track of regret at
some round t < T , then we do not necessarily have the same guarantees. On
the other hand, an adaptive regret guarantee asks that simultaneously for all
0 < t′ < t ≤ T , our algorithm has low regret to the best fixed action as
evaluated on the subsequence [t′, t].

52Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Definition 30 (Adaptive Regret) Fix an action space A = [k] and a tran-
script πT = {ps, cs}Ts=1. The expected regret to action i ∈ [k] on the subse-
quence [t′, t] for 0 < t′ < t ≤ T is:

Reg(πT , [t′, t], i) =

t∑
s=t′

(⟨ps, cs⟩ − csi)

The learner has expected adaptive regret bounded by α if:

max
i∈[k],0<t′<t≤T

Reg(πT , [t′, t], i) ≤ α

We observe that adaptive regret is a special case of subsequence regret
on the action-independent subsequences EAdapt = {Es′,s}0<s′<s≤T , where
Es′,s(t) = 1 if s′ ≤ t ≤ s and Es′,s(t) = 0 otherwise. Observe that
|EAdapt| ≤ T 2, and so we can apply Theorem 16 to immediately conclude:

Theorem 19 When instantiated with E = EAdapt, Algorithm 13 obtains adap-
tive regret bounded by:

max
i∈[k],0<t′<t≤T

Reg(πT , [t′, t], i) ≤ 4
√
T (2 lnT + ln k)

3.3.1.2 Group-wise Regret

Sometimes, we will receive information or context xt ∈ X about the decision
we are about to make at round t before we make it. For example, when making
a weather prediction, we might get to observe atmospheric measurements;
when making healthcare decisions we will observe an individual’s medical
history and current vitals, etc. We might want to obtain diminishing regret
to the best fixed action in hindsight not just overall, but also conditional on
relevant pieces of information. For example, when we are making decisions
about people and we have fairness concerns, maybe we want to have no regret
overall, but also on subsequences of people corresponding to men and women,
and also on subsequences of people corresponding to different ethnicities, and
also on subsequences of people corresponding to different income brackets, etc.
We might also want to condition on subsequences of people corresponding to
individuals that have features that we think are relevant to the task at hand
—- in a medical setting, perhaps subsequences of people with high blood
pressure, subsequences of people with a family history of diabetes, etc. The
key thing is that these subsequences are intersecting: a single person will have
a gender, an ethnicity, an income bracket, a unique medical history, etc. So it
would not make sense to try and run a different no regret algorithm for people
with each of the characteristics that we care about, since what would we do
when we encountered someone who fit into more than one group?

We can nevertheless ask for a single algorithm to make decisions that has
diminishing regret on all of the subsequences defined by the groups we care
about.

Multi-Objective Sequential Learning 53

Definition 31 (Group-Wise Regret) Fix an action space A = [k], a
context space X , a collection of groups G ∈ 2X and a transcript πT =
{xt, pt, ct}Tt=1. The expected regret to action i ∈ [k] on the subsequence corre-
sponding to group G ∈ G is::

Reg(πT , G, i) =
∑

t:xt∈G

(⟨ps, cs⟩ − csi)

The learner has expected groupwise regret over G bounded by α if:

max
G∈G

Reg(πT , G, i) ≤ α

We observe that groupwise regret is a special case of subsequence regret
on the action-independent subsequences EG = {EG}G∈G , where EG(x

t) = 1
if xt ∈ G and EG(x

t) = 0 otherwise. Observe that |EG | = |G|, and so we can
apply Theorem 16 to immediately conclude:

Theorem 20 Fix any collection of groups G ∈ 2X . When instantiated with
E = EG, Algorithm 13 obtains adaptive regret bounded by:

max
G∈G

Reg(πT , G, i) ≤ 4
√
T (ln |G|+ ln k)

3.3.2 General Subsequences

The general form of Algorithm 13 was to weight each action with probability
proportional to the (exponential of) the regret to that action on each subse-
quence, weighted by the current activation of each of the subsequences. This
worked when the subsequences had activations E(t, xt) that were indepen-
dent of the action at chosen at round t — but in general, does not make sense
when the events E(t, xt, at) depend on the action chosen. The solution (since
we need to select an action from a distribution that depends in some way on
the subsequence activations, which in turn depend on which action we pick) is
to compute a distribution by solving for a fixed point. This is what the general
subsequence regret algorithm below (Algorithm 14) does. The algorithm will
seem mysterious at first blush, but we will derive it from first principles in the
proof of Theorem 21.

54Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Algorithm 14 Getting General Diminishing Subsequence Regret

Given A collection E of m subsequence selection functions.
for t = 1 to T do
Observe context xt

For each E ∈ E and each i ∈ [k], define the weights:

wt
E,i =

exp
(

η
2

∑t−1
t′=1 Ej′∼pt′

[
E(t′, xt′ , j′)

(
ct

′

j′ − ct
′

i

)])
∑

E′,j exp
(

η
2

∑t−1
t′=1 Ej′∼pt′

[
E(t′, xt′ , j′)

(
ct

′
j′ − ct

′
j

)])
Define the k × k matrix A so that:

Ai,j =

∑
E∈E w

t
E,jE(t, xt, i)∑

i′∈[k]

∑
E∈E w

t
E,i′E(t, xt, j)

Compute pt ∈ ∆[k], a probability distribution such that:

Apt = pt

i.e. an eigenvector of A with eigenvalue 1.
Play the distribution pt.

Theorem 21 Algorithm 14 is well defined (i.e. the claimed eigenvector ex-
ists). Moreover, for any collection E of m subsequence selection functions,
Algorithm 13 implements Algorithm 12 for the Subsequence Regret Multiob-
jective Optimization Game (Definition 29), and hence obtains the regret bound
from Theorem 16:

max
E∈E,i∈[k]

Reg(πT , E, i) ≤ 4
√

T (lnm+ ln k)

Proof 28 We will derive the algorithm from first principles, which will help
build intuition, rather than just proving that it is correct “out of nowhere”.

Algorithm 12 needs to play a distribution pt at each round that is a minimax
equilibrium for the game with utility function defined as:

ut(p, c) =
∑

E∈E,i∈[k]

wt
E,iℓ

t
E,i(p, c)

=
∑

E∈E,i∈[k]

wt
E,i E

j∼p

[
E(t, xt, j) (cj − ci)

]
where

wt
E,i =

exp
(

η
2

∑t−1
t′=1 ℓ

t′

E,i(p
t′ , ct

′
)
)

∑
E′,j exp

(
η
2

∑t−1
t′=1 ℓ

t′
E′,j(p

t′ , ct′)
)

Multi-Objective Sequential Learning 55

We can expand out the expectation and inner product in the utility func-
tion:

ut(p, c) =
∑

E∈E,i∈[k]

wt
E,i E

j∼p

[
E(t, xt, j) (cj − ci)

]
=

∑
i∈[k]

∑
j∈[k]

∑
E∈E

wt
E,ipjE(t, xt, j)(cj − ci)

=
∑
i∈[k]

∑
j∈[k]

∑
E∈E

wt
E,iE(t, xt, j)pjcj −

∑
i∈[k]

∑
j∈[k]

∑
E∈E

wt
E,jE(t, xt, i)picj

=
∑
j∈[k]

cj

∑
i∈[k]

∑
E∈E

wt
E,iE(t, xt, j)pj −

∑
i∈[k]

∑
E∈E

wt
E,jE(t, xt, i)pi

︸ ︷︷ ︸

χt
j(p)

So:
ut(p, c) =

∑
j∈[k]

cjχ
t
j(p)

We know that the value of this game is 0, and so if p∗ is a minimax strategy,
it must be that for all c ∈ [0, 1]k, ut(p∗, c) =

∑
j∈[k] cjχ

t
j(p

∗) ≤ 0 In order for

this to be true, it must be that for all j, χt
j(p

∗) ≤ 0 (since otherwise if there
was such a j such that χt

j(p
∗) > 0 the adversary could set cj = 1 and cj′ = 0

for all j′ ̸= j, which would lead to ut(p∗, c) > 0, a contradiction). Moreover,

we can see by symmetry that for all p,
∑k

j=1 χ
t
j(p) = 0. Therefore all of the

inequalities must be equalities: for all j, χt
j(p) = 0. From this we get a set of

equalities characterizing p∗: For all j:

p∗j =

∑
i∈[k]

∑
E∈E w

t
E,jE(t, xt, i)p∗i∑

i∈[k]

∑
E∈E w

t
E,iE(t, xt, j)

Note that if we define the k × k matrix A such that

Ai,j =

∑
E∈E w

t
E,jE(t, xt, i)∑

i′∈[k]

∑
E∈E w

t
E,i′E(t, xt, j)

Then these constraints simplify to:

Ap∗ = p∗

In other words, p is an eigenvector of A with eigenvalue 1. Observe that
since we know the game has value 0, we know that such a p∗ must exist (i.e.
this matrix must have an eigenvector with eigenvalue 1), and p∗ must therefore
be a minimax strategy.

56Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

3.3.2.1 Swap Regret

Recall that one of the motivating problems for this section was finding a
learning dynamic that converges to correlated equilibrium in general games.
In Section 3.1, we established that the empirical distribution over a sequence
of action profiles would form an ϵ-approximate correlated equilibrium if and
only if each player had sufficiently small swap regret. i.e. if for each player i:

max
ϕ:Ai→Ai

T∑
t=1

E
at∼P t

[(
ci(a

t
i, a

t
−i)− ci(ϕ(a

t
i), a

t
−i

)]
≤ αT

We first observe that in a k action game, swap regret is at most k times
larger than the subsequence regret over the set of k subsequences E = {Ea}a∈[k]

corresponding to rounds in which the learner i played a particular action a:
Ea(a

t
i) = 1[ati = a]. This kind of subsequence regret is also called internal

regret.

Definition 32 A learner has internal regret bounded by α if they have subse-
quence regret bounded by α for the collection of subsequences EInt = {Ea}a∈[k],
where for each a, Ea(a

t) = 1[at = a]. In other words, if for each i ∈ [k] and
for each a ∈ [k]:

Reg(πT , Ea, i) =

T∑
t=1

pta
(
cta − cti

)
≤ α

Lemma 3.3.1 If a k-action learner has internal regret bounded by α on tran-
script πT , then their swap regret is bounded by kα — i.e. for every ϕ : A → A:

T∑
t=1

E
at∼pt

[(
ctat − ctϕ(at)

)]
≤ kα

Proof 29 We calculate:

T∑
t=1

E
at∼pt

[(
ctat − ctϕ(at)

)]
=

T∑
t=1

∑
a∈A

pta ·
(
cta − ctϕ(a)

)

=
∑
a∈A

T∑
t=1

pta ·
(
cta − ctϕ(a)

)
=

∑
a∈A

Reg(πT , Ea, ϕ(a))

≤ kα

We can therefore invoke Theorem 21 to show that Algorithm 14 can be
used to obtain low internal (and hence swap) regret:

Multi-Objective Sequential Learning 57

Theorem 22 When Algorithm 14 is instantiated with the k events EInt, it
guarantees internal regret bounded by:

max
a∈[k],i∈[k]

Reg(πT , Ea, i) ≤ 4
√

T (2 ln k)

By Lemma 3.3.1 it therefore also guarantees swap regret bounded by:

max
ϕ:A→A

T∑
t=1

E
at∼pt

[(
ctat − ctϕ(at)

)]
≤ 4k

√
T (2 ln k)

Recall that Lemma 3.1.1 tells us that if all n players in a general-sum
game have swap regret bounded by α over a T -round interaction, then the
uniform distribution over their empirical history of play forms an ϵ-correlated
equilibrium for ϵ = α

T . Therefore, plugging in α = 4k
√
T (2 ln k) and solving

for T , we find that:

Corollary 3.3.1 If all players in a k-action general sum game choose their
actions over a sequence of T rounds using Algorithm 14 instantiated with
events Eint, then their empirical history of play forms an ϵ-approximate cor-
related equilibrium so long as:

T ≥ 32k2 ln(k)

ϵ2

3.3.2.2 Mixing and Matching Guarantees

Our multi-objective/subsequence regret framework gives us the flexibility to
easily mix and match guarantees. For example, given k actions A and a col-
lection of groups G ∈ 2X if we instantiate Algorithm 14 with the events
E = EG × Eint = {EG(xt) · Ea(a

t)}G∈G,a∈A, then we get an algorithm that
has groupwise swap regret. Similarly if we instantiate the algorithm with the
events EAdapt ×Eint we get adaptive-swap regret. We can similarly get group-
wise adaptive swap regret, and a variety of other kinds of guarantees.

Bibliographic Notes and Further Reading

See Williams [1980] for a sufficient condition for the existence of Nash equilib-
ria in continuous general sum games. The multi-objective optimization frame-
work from Section 3.2 is from Lee et al. [2022], who derive the algorithm from
first principles (deriving exponential weights along the way). Haghtalab et al.
[2023b] give a variant of this reduction that modularly derives multiobjective
guarantees from an arbitrary no-regret algorithm, which is the exposition we
follow here. Swap regret was first studied by Foster and Vohra [1999]. Blum
and Mansour [2007] gave efficient algorithms for swap and subsequence regret
that are very similar to the ones we derive here. Algorithms for adaptive re-
gret have been given by Hazan and Seshadhri [2009], Adamskiy et al. [2012].
Blum and Lykouris [2020] gave the first algorithms for obtaining diminishing
groupwise regret.

4

Making Unbiased Predictions and
Calibration

CONTENTS

4.1 Modeling Decision Makers . 60
4.2 Predicting for No-Regret Play . 61
4.3 A Model for Unbiased Prediction . 65

4.3.1 Conditionally Unbiased Prediction . 67
4.4 Calibration . 70
4.5 Efficiently Making Unbiased Predictions . 74

4.5.1 One Dimensional (Multi)Calibration . 74
4.5.2 The General Case . 79

4.6 Predicting for No-Swap-Regret Play . 84
4.7 Obtaining No-Subsequence-Regret in Online Combinatorial

Optimization . 87
4.8 Predicting Label Probabilities with “Transparent Coverage” . . . 90

Bibliographic Notes and Further Reading . 93

Thus far we have studied the design of decision making algorithms: i.e. al-
gorithms whose output is a choice of which action to take — that promise
various kinds of regret guarantees. But suppose instead we want to provide
a forecast for some outcome that other (diverse) decision makers can use to
make decisions downstream, depending on their own utility functions? This
will bring us to the topic of calibrated forecasting — as well as a variety of
related guarantees.

To start, we will ignore the incentives of the downstream decision maker,
and ask whether we can make predictions that will guarantee that downstream
decision makers will have no (external) regret if they act as if our predictions
are correct. Next, we’ll ask whether we can make predictions that will offer
stronger guarantees to the downstream decision makers, and incentivize them
to follow our predictions.

To answer this question, we’ll will start out by looking at a model in which
we aim to predict, in sequence, an adversarially chosen vector valued outcome
such that our predictions are unbiased — i.e. such that on average over the
sequence, the average of our predictions will be equal to the average of the
realized outcomes. This will turn out to be too easy of a goal: we can obtain

59

60Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

it simply by predicting what happens today is what happened yesterday, and
correspondingly, such marginally unbiased predictions will not be very useful.
But we can use the multiobjective framework we developed in Chapter 3 to
ask for more: unbiasedness not just marginally, but simultaneously over many
different subsequences, which can be defined in terms of our predictions. As
we will see, if we choose these subsequences correctly, our predictions will
become useful for downstream decision makers.

4.1 Modeling Decision Makers

A decision maker is defined by an action space and a utility function. We will
assume in this Chapter that the decision maker’s utility function depends on
the action they take and on some vector-valued state that is unknown at the
time that they must make their prediction. We will assume that their utility
is linear in this state vector.

Definition 33 A decision maker is defined by a collection of actions A, a
convex state space C ⊂ Rd, and a utility function u : A×C → [0, 1] such that for
every a ∈ A, u(a, ·) is a linear function of the state s. We will also assume that
u(a, ·) is L-Lipschitz (in the L∞-norm) in its second argument, for all a. That
is for all a ∈ A, and for all s, s′ ∈ Rd: |u(a, s)−u(a, s′)| ≤ Lmaxi∈[d] |si−s′i|.

Remark 4.1.1 The assumption that u is linear in the state s is not very
restrictive. First note that it easily generalizes to utility functions that are
affine in the state, by simply adding an extra dimension to the state space
that always takes value 1. This preserves the convexity of C, and now allows
a constant offset in the utility for each action. If the dimension of the state is
equal to the number of actions d = |A| , then we can encode arbitrary payoffs
for each of the d actions in coordinate si. In this case, u(i, s) = ⟨ei, s⟩, which
is linear in s, and places no restrictions at all on the payoff the agent gets
from each action. Similarly, suppose for each action a, the decision maker has
arbitrary utility for each of d possible outcomes that might be realized. Here
s can represent a probability distribution over these d outcomes: for a risk
neutral decision maker (who cares about maximizing their expected utility),
their (expected) utility is a linear function of s by linearity of expectation.
Both of these examples result in a Lipschitz utility function as well. We will
see more examples.

Suppose that in a sequential decision making setting, we make predictions
ŝt ∈ C at each round t of the unknown state st The decision maker can choose
what action to take at each round using a policy that maps a prediction to an
action. We will pay particular attention to the best response policy, which for
a decision maker with utility function u, in response to a prediction ŝt, plays

Making Unbiased Predictions and Calibration 61

the action that would maximize utility if the true state was actually realized
to be st = ŝt.

Definition 34 Fixing a prediction space C and an action space C, A policy is
a function P : C → A. For a utility function u, the best response policy for u
is:

BR(u, ŝ) = argmax
a∈A

u(a, ŝ)

Where ties may be broken using any consistent rule.

Remark 4.1.2 A decision maker could use information other than the pre-
diction ŝ to take an action, but we will restrict attention here to decision
makers who have no other source of information about the state and so use
some policy as we have defined it.

Fixing a sequence of predictions ŝt, outcomes st, and a policy P for a
decision maker induces a sequence of actions for them, which in turn realize
utility and regret.

Definition 35 Fix a sequence of predictions ŝt and outcomes st, as well as
a policy P for a decision maker with utility function u and action space A.
Their induced regret to an action a ∈ A is:

T∑
t=1

(
u(a, st)− u(P (ŝt), st)

)

4.2 Predicting for No-Regret Play

There is a simple strategy for making predictions that will guarantee that
for any agent with utility function u, if they play their best response policy,
they will have no regret to any of their actions. The idea is straightforward:
we simply predict the average state that has been observed so far, perturbed
with a bit of noise. When downstream agents play the best response policy,
they will be implementing a version of “Follow the Perturbed Leader”, which
we proved in Section 1.4 gives them a no-regret guarantee. In the version we
give below, the “predictions” won’t quite look like states in C, because of the
noise. This isn’t hard to fix, and we won’t bother for the sake of simplicity.
(We’ll in any case see how to make predictions with stronger guarantees that
avoid this issue shortly).

62Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Algorithm 15 State-Perturbed Follow the Pertured Leader (SP-FTPL): Get-
ting External Regret Guarantees for Downstream Actors

for t = 1 to T do
Predict:

ŝt =
1

t− 1

(
t−1∑
t′=1

st
′
+N t

)
where N t ∼ U [0, 1/ϵ]d is a uniformly random noise vector.

Any decision maker who follows the best response policy for predictions
produced by Algorithm 15 will get a no-regret guarantee at the same rate they
would had they played Follow the Perturbed Leader — essentially because
they will be playing follow the perturbed leader! The only difference is that
we are perturbing the signal rather than their utilities directly (which we do
not know), but as we will see the effect will be the same. This algorithm has
the advantage that it gets no regret guarantees for all downstream decision
makers simultaniously.

Theorem 23 Fix any utility function u : A×Rd that is linear and L-Lipschitz
in its 2nd argument. Then for any sequence of states s1, . . . , sT a decision
maker with utility function u following the best response policy with respect to
the forecasts ŝ made by Algorithm 15 will have expected regret at most:

T∑
t=1

(
u(a, st)− E

Nt
[u(BR(u, ŝt), st)]

)
≤ L

ϵ
+ 2Cϵ · T

where C = maxs∈C ||s||1.

Remark 4.2.1 Choosing ϵ =
√

L
2CT to minimize this bound we get a final

regret bound of

T∑
t=1

(
u(a, st)− E

Nt
[u(BR(u, ŝt), st)]

)
≤ 2

√
2CLT

Our analysis will mirror our analysis of Follow the Perturbed Leader from
Section 1.4, by going through two intermediate algorithms. State Be the
Leader (SBL) will correspond to the algorithm that at every round predicts
state s̄t = 1

t

∑t
t′=1 s

t′ (i.e. the average of the states up to and including round
t), and State-Perturbed-Be-the-Perturbed-Leader (SP-BTPL) will be the al-

gorithm that predicts state s̃t = 1
t

(∑t
t′=1 s

t′ + Ñ t
)
where Ñ t ∼ U [0, 1/ϵ]d

We first observe that for any utility function u that is linear in the state
space, following the predictions of SBL will result in no regret.

Lemma 4.2.1 Fix any utility function u : A×Rd that is linear in its second

Making Unbiased Predictions and Calibration 63

argument. Then for any sequence of states s1, . . . , sT , a decision maker with
utility function u following the best response policy with respect to s̄t will have
no external regret. In other words for all a ∈ A:

T∑
t=1

(
u(a, st)− u(BR(u, s̄t), st)

)
≤ 0

Proof 30 We will establish that if the decision maker is best responding to
predictions s̄t, then they are in fact taking the same sequence of actions that
they would have taken had they been directly implementing “Be the Leader”.
That is, we will show that:

BR(u, s̄t) ∈ argmax
a∈A

1

T

T∑
t=1

u(a, st)

Once we establish this, the claim follows from Lemma 1.4.1 which bounds the
regret of Be the Leader. This equivalence follows because of the linearity of u
in the state. For every action a ∈ A:

u(a, s̄t) = u

(
a,

1

t

t∑
t′=1

st
′

)

=
1

T

t∑
t′=1

u(a, st
′
)

Thus

BR(u, s̄t) ∈ argmax
a∈A

1

T

T∑
t=1

u(a, st)

which is what we needed to establish.

Next, we establish that following the predictions of SP-BTPL still leads
to low regret — informally, because the noise cannot affect the agent’s utility
substantially, because her utility function is Lipschitz.

Lemma 4.2.2 Fix any utility function u : A × Rd that is linear and L-
Lipschitz in its second argument. Then for any sequence of states s1, . . . , sT ,
a decision maker with utility function u following the best response policy with
respect to s̃t will have expected external regret bounded by:

max
a∈A

(
T∑

t=1

u(a, st)− E
Ñ1,...,ÑT

[
T∑

t=1

u(a,BR(u, s̃t), st)

])
≤ L

ϵ

Proof 31 Just as with our analysis of follow the perturbed leader, we will
reduce our analysis of SP-BTPL to the analysis we just completed of SBL, on
an alternative sequence of states that includes the noise added by the algorithm.

64Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

First we note that to bound expected regret we can imagine that the algorithm
uses the same noise at every round. To make the dependence explicit, we write
s̃t(N t) to reflect the dependence on the forecast that SP-BTPL makes at round
t on the noise N t:

E
Ñ1,...,ÑT

[
T∑

t=1

u(a,BR(u, s̃t(Ñ t)), st)

]
=

T∑
t=1

Ẽ
Nt

[u(a,BR(u, s̃t(Ñ t)), st)]

=

T∑
t=1

Ẽ
N
[u(a,BR(u, s̃t(Ñ)), st)]

where N ∼ U [0, 1/ϵ]d is a single noise vector distributed uniformly at random
in each coordinate. Thus in the remainder we analyze a sequence of forecasts
s̃1(Ñ), . . . , s̃T (Ñ) that results from using a variant of SP-BTPL that uses the
same random perturbation at each round. Observe that we can interpret s̃t(Ñ)
by imagining that the noise is a perturbation of the first state s1:

s̃t(Ñ) =
1

t

(
t∑

t′=1

st
′
+ Ñ

)
=

1

t

(
(s1 + Ñ) +

t∑
t′=2

st
′

)
Thus we can view SB-BTPL as being equivalent to SBTL on this modified
sequence. Applying Lemma 4.2.1 we have that for all Ñ ∈ [0, 1/ϵ]d and all
a ∈ A:

T∑
t=1

u(a,BR(u, s̃t(Ñ)), st)] ≥ u(a, (s1 + Ñ) +

T∑
t=2

u(a, st)

≥
T∑

t=1

u(a, st)− L

ϵ

where in the last inequality we use the fact that ||Ñ ||∞ ≤ 1
ϵ and that u is

L-Lipschitz in its second argument.

Finally (again, just as in our analysis of FTPL), we observe that at every
round, SP-BTPL and SP-FTPL play a very similar distribution over actions
and so must have a similar regret bound.

Lemma 4.2.3 Let C = maxs∈C ||s||1. Then there is a coupling between N t

and Ñ t such that with probability at least 1− 2Cϵ, ŝt(N t) = s̃t(Ñ t). A conse-
quence of this is that for any policy P mapping forecasts to actions, and any
utility function u(a, s) taking values in [0, 1]:

E
N1,...,NT

[
T∑

t=1

u(P (ŝt(N t)), st)

]
≥ E

Ñ1,...,ÑT

[
T∑

t=1

u(P (s̃t(Ñ t)), st)

]
− 2Cϵ · T

The proof of this lemma follows very similar arguments as in Section 1.4 and
so we will not repeat it. In all, we have the ingredients to prove Theorem 23:

Making Unbiased Predictions and Calibration 65

Proof 32 (Proof of Theorem 23) Combining the statements of Lemmas
4.2.3 and 4.2.2, we have for every action a ∈ A:

E

[
T∑

t=1

u(BR(u, ŝt), st)

]
≥ E

[
T∑

t=1

u(BR(u, s̃t), st)

]
− 2Cϵ · T

≥
T∑

t=1

u(a, st)− L

ϵ
− 2Cϵ · T

which completes the proof.

Thus we have an algorithm for producing a single set of predictions that can
be used by any number of downstream decision-makers with different utility
functions. If they treat our predictions as correct (i.e. as if our predicted state
is the true state) and best respond to them, then they will all have diminishing
(external) regret. Pretty cool! But there are a few reasons why we might want
more.

1. Why should downstream agents treat our predictions as correct?
Rather than best responding to them, they could use some other
policy mapping our predictions to actions, and we have not given
any reason to think that the straightforward policy which plays the
best response to the predicted state is the best policy. If downstream
agents are rational, they may therefore not best respond to our
predictions.

2. Can we offer downstream agents guarantees that are stronger than
external regret guarantees? What about the other kinds of regret
guarantees we have studied, when we had the luxury of designing
the decision maker’s algorithm: swap regret, adaptive regret, subse-
quence regret, groupwise regret, and so on. Can we make predictions
such that many different downstream agents with different utility
functions will all have these stronger forms of regret if they best
respond to our predictions?

Towards answering these questions, we’ll define a more general task that
will turn out to be useful: making unbiased predictions.

4.3 A Model for Unbiased Prediction

In our model for prediction, there will be a d dimensional prediction space
and outcome space. In rounds, the predictor will choose a (distribution over)
prediction(s) from the prediction space, and then the adversary will choose
an outcome. Our eventual goal will be that the predictions of the predictor

66Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

should equal the outcomes chosen by the adversary on average over various
subsequences.

Definition 36 (Adversarial Prediction) Fix a convex bounded prediction
space C ⊂ [0, 1]d and a context space X . The adversarial prediction game
proceeds in rounds t = 1, . . . , T :

1. The learner observes context xt ∈ X , chosen by an adversary.

2. With knowledge of s1, . . . , st−1 the learner chooses a distribution
over predictions pt ∈ ∆C.
3. With knowledge of p1, . . . , pt the adversary chooses an outcome
st ∈ C.
4. The instantaneous expected bias of the learner’s prediction is
btL = Eŝt∼pt [ŝt − pt] = Eŝt∼pt [ŝt]− pt.

Given a T round interaction, the realized predictions and outcomes are accu-
mulated in a transcript πT = {(x1, p1, s1), . . . , (xT , pT , st)}

There are various natural decision spaces. For example, perhaps we aim to
predict one of k disjoint weather outcomes (e.g. it might be sunny, or cloudy, or
rainy, or snowy...), in which case the prediction/outcome space would naturally
be C = ∆[k], the probability simplex over k outcomes. In this case we would
predict a distribution on outcomes (“a 20% chance of rain, a 30% chance of
snow, ...”), and what the adversary would realize is a deterministic outcome
(e.g. a standard basis vector ei corresponding to the event that outcome i
is realized). Alternately, we might aim to predict the gains that we would
obtain by taking one of k actions, as in the experts learning problem. In
this case, our prediction and outcome space might naturally be C = [0, 1]k,
the unit k-dimensional hyper-cube. Or in an online linear optimization/online
combinatorial optimization setting like an online shortest paths problem, we
might aim to predict the cost or congestion associated with each of d atomic
actions. One can imagine other choices as well.

The simplest goal we can start from is that our predictions be unbiased
on average, no matter what sequence of outcomes is realized. Our predictions
(and therefore our bias) are vector-valued quantities. We will quantify bias
using the ℓ∞ norm, which asks that our maximum bias across all coordinates
is bounded.

Definition 37 Fixing a transcript πT , the learner’s expected bias after T
rounds is:

Bias(πT) =

∥∥∥∥∥
T∑

t=1

E
ŝt∼pt

[ŝt]− st

∥∥∥∥∥
∞

= max
i∈[d]

∣∣∣∣∣
T∑

t=1

E
ŝt∼pt

[ŝti]− sti

∣∣∣∣∣
If all we want of our predictions is that they have small bias, then there

is a simple algorithm that can obtain it: simply predict that the realization
today will be the same as yesterday: ŝt = st−1.

Making Unbiased Predictions and Calibration 67

Algorithm 16 Making Unbiased Predictions

Let s0 = 0.
for t = 1 to T do
Observe context xt (and ignore it).
Predict ŝt = st−1, and observe st.

Claim 4.3.1 Algorithm 16 makes predictions such that for any sequence of
realized outcomes, the bias of the predictions after T rounds is at most:

Bias(πT) =

∥∥∥∥∥
T∑

t=1

ŝt − st

∥∥∥∥∥
∞

≤ 1

Proof 33 Consider any coordinate i ∈ [d]. We have:∣∣∣∣∣
T∑

t=1

(ŝti − sti)

∣∣∣∣∣ =

∣∣∣∣∣
T∑

t=1

(st−1
i − sti)

∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

sti −
T−1∑
t=1

sti

∣∣∣∣∣
=

∣∣sTi ∣∣
≤ 1

This is a terrific bound — the bias doesn’t grow with time at all, and is in
fact universally upper bounded by 1. But the algorithm is self-evidently “too
simple”: how can predicting that tomorrow’s outcome will be the same as
yesterdays provide any information that is useful for decision making? Indeed
it does not (at least not directly). One way to see this, which foreshadows how
we will use predictions that satisfy more sophisticated bias guarantees, is to
ask whether a decision maker who treats the forecasts as correct will perform
well as measured by regret. Consider an expert learning problem with two
experts: our goal is to forecast the costs of the two experts—C = [0, 1]2.
Suppose the actual sequence of costs is the sequence we saw in Chapter 1
which demonstrated why the “Follow the Leader” algorithm obtains linearly
growing regret:

c1 = (1/2, 0) c2 = (0, 1) c3 = (1, 0) c4 = (0, 1) c5 = (1, 0), c6 = (0, 1), . . .

In this case, by consistently predicting that yesterday’s costs will be repeated
today (when in fact they alternate), we will consistently mislead a downstream
decision maker about which action is best, leading once again to linearly grow-
ing regret.

The solution will be to ask for more than marginally unbiased predictions.

68Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

4.3.1 Conditionally Unbiased Prediction

To define conditionally unbiased prediction, we introduce events similar to
those we used in defining subsequence regret in Chapter 3.

Definition 38 In an adversarial prediction setting, an event is defined by a
subsequence selection function E : [T] × C × X → [0, 1]. Fixing a transcript
πT = {(x1, p1, s1), . . . , (xT , pT , st)}, the bias with respect to event E is:

Bias(πT , E) =

∥∥∥∥∥
T∑

t=1

E
ŝt∼pt

[E(t, ŝt, xt) ·
(
ŝt − st

)
]

∥∥∥∥∥
∞

For a collection of events E, we say that a transcript πT has E-bias bounded
by α if:

Bias(πT , E) = max
E∈E

Bias(πT , E) ≤ α

As before, when writing subsequence selection functions, we will elide pa-
rameters that are not used. For example, if an event E is independent of the
round and the context, we will write E(ŝt) rather than E(t, ŝt, xt).

Given a finite collection of events E , we can reduce the problem of mak-
ing E-unbiased predictions to the problem of multiobjective optimization, us-
ing the framework we developed in Section 3.2. To do so, we will define a
2 ·d · |E|-coordinate multiobjective optimization game, with one coordinate for
each dimension d of our prediction space, each event E ∈ E , and each sign
σ ∈ {−1, 1} (to account for the fact that we don’t want the bias in each co-
ordinate to have large magnitude in either the positive or negative direction).
The action space for both the learner and the adversary will consist of the
outcome/prediction space C — but to satisfy the requisite technical condition
that the loss functions be convex in the learner’s actions, we will need to al-
low the learner to randomize over a finite number of discrete points in their
prediction space. The formal construction follows.

Definition 39 Cϵ ⊂ C ⊂ Rd is an ℓ∞ ϵ-net for a set C if for every s ∈ C,
there exists an s′ ∈ Cϵ such that ||s− s′||∞ ≤ ϵ.

Observation 4.3.1 For any C ⊆ [0, 1]d, simply by discretizing each coordi-
nate of vectors s ∈ C to multiples of ϵ, we obtain a finite ϵ-net Cϵ of size

|Cϵ| ≤
(
1
ϵ

)d
.

Definition 40 (ϵ-Encoding E-unbiased Prediction as Multiobjective Optimization)
Given a d-dimensional instance of the adversarial prediction problem and a set
of events E, we construct a 2d|E|-dimensional instance of the multiobjective
optimization game as follows: At each round t:

1. The strategy space for the Learner is At = ∆Cϵ, the set of dis-
tributions over some finite ϵ-net of C.

Making Unbiased Predictions and Calibration 69

2. The strategy space for the Adversary is Bt = C.
3. For each σ ∈ {−1, 1}, E ∈ E, and i ∈ [d] we construct a loss
increment function:

ℓσ,E,i(p
t, st) = σ · E

ŝt∼pt
[E(t, ŝt, xt)(ŝti − sti)]

First, we verify that our encoding in Definition 40 satisfies the requirements
of a multiobjective optimization game, and bound the adversary-moves-first
value of the game.

Lemma 4.3.1 The encoding in Definition 40 satisfies the requirements of a
multiobjective optimization game and at each round has adversary moves first
value bounded by:

vtA = max
s∈Bt

min
p∈At

max
σ,E,i

ℓtσ,E,i(p, s) ≤ ϵ

Proof 34 By assumption, Bt = C is a closed d-dimensional convex set. Simi-
larly, since Cϵ is finite, ∆Cϵ is a finite dimensional closed convex set. We now
consider the loss increments:

ℓσ,E,i(p
t, st) = σ · E

ŝt∼pt
[E(t, ŝt, xt)(ŝti − sti)]

These functions are linear (and hence concave) in the adversary’s ac-
tion st, and by linearity of expectation, are linear (and hence convex) in the
learner’s action pt; thus we have established that the encoding satisfies the re-
quirements of a multiobjective optimization game. Next to bound the adversary
moves first value of the game.

Since Bt = C and At = ∆Cϵ (a distribution over an ϵ-net of Bt), for any
s ∈ Bt, the Learner can best respond with a distribution p(s) ∈ At that places
all of its weight on s′ ∈ At such that ||s− s′||∞ ≤ ϵ. Therefore:

vtA = max
s∈Bt

min
p∈At

max
σ,E,i

ℓtσ,E,i(p, s)

≤ max
s∈Bt

max
σ,E,i

ℓtσ,E,i(p(s), s)

= σE(t, s′, xt)(s′i − si)

≤ ϵ

Next, we verify that our encoding is correct: namely that a bound on the
adversary-moves-first regret in the multiobjective optimization game defined
in Definition 40 in fact corresponds to a bound on the E-bias in the original
adversarial prediction game.

Lemma 4.3.2 Fix an adversarial prediction game, and consider the corre-
sponding ϵ-encoding as a multiobjective optimization game defined in Def-
inition 40. Then a transcript πT = {(x1, p1, s1) . . . , (xT , pT , sT)} that has
Adversary-Moves-First regret bounded by α also has E-bias bounded by ϵ·T+α:

Bias(πT , E) ≤ ϵ · T + RegAMF (π
T)

70Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 35 We can calculate:

RegAMF (π
T) = max

σ,E,i

T∑
t=1

(ℓtσ,E,i(p
t, st)− vtA)

≥ max
σ,E,i

T∑
t=1

ℓtσ,E,i(p
t, st)− ϵT

= max
σ,E,i

T∑
t=1

σ · E
ŝt∼pt

[E(t, ŝt, xt)(ŝti − sti)]− ϵT

= max
E

∥∥∥∥∥
T∑

t=1

E
ŝt∼pt

[E(t, ŝt, xt)(ŝt − st)]

∥∥∥∥∥
∞

− ϵT

= Bias(πT , E)− ϵT

Rearranging terms gives the lemma.

Therefore, we can apply Theorem 15 to conclude that using Algorithm 12
to make predictions guarantees bounded conditional bias, for any finite set of
conditioning events E :

Theorem 24 Fix an adversarial prediction game with a set of events E. Using
the ϵ-encoding as a multiobjective optimization game defined in Definition 40,
Algorithm 12 guarantees that for any sequence of realizations s1, . . . , sT , the
E-bias on the resulting transcript is bounded by:

Bias(πT , E) ≤ 4
√

T ln(2 · |E|d) + ϵT

Proof 36 This follows from applying Lemma 4.3.2 and the AMF regret bound
given in Theorem 15 to our multiobjective game, which has 2d|E| objective
coordinates.

Remark 4.3.1 If we instantiate Theorem 24 with ϵ ≤ 1√
T
, then the bias we

obtain is at most 5
√
T ln(2 · |E|d).

Observe that it is not clear how we can efficiently run Algorithm 12, which
in our case requires computing a minimax equilibrium at each round in a game
that has exponentially many (in d) actions for the learner, and continuously
many d-dimensional actions for the adversary: we will return to this question
in Section 4.5. In the mean time we will begin investigating whether there are
collections of events E that make E-unbiased predictions useful for downstream
decision makers.

Making Unbiased Predictions and Calibration 71

4.4 Calibration

Marginally unbiased predictions (i.e. E-unbiased predictions for E containing
only the constant function E(t) = 1) are one extreme of the E-bias spectrum:
they ask for very little, and they are very easy to obtain. Calibration will be
the other extreme: it will informally ask for unbiasedness of our predictions
conditional on our predictions themselves (Although for technical reasons we’ll
need to in fact condition on a small ball of predictions). On the one hand, as we
will see, this will offer an extremely strong guarantee to downstream decision
makers. On the other hand, it means that the number of events E we care
about will grow exponentially in the dimension d of our predictions, which
will make it infeasible to obtain except in very low dimensional prediction
settings.

Definition 41 (An m Bucketing) Let C1/m be a minimal (1/m)-net (in the

ℓ∞ norm) of C ⊆ [0, 1]d. For any s ∈ C and s′ ∈ C1/m, say that s ∈ B(s′) if
||s′ − s||∞ ≤ ||s′′ − s||∞ for all s′′ ∈ C1/m. We break ties arbitrarily so that
each s ∈ B(s′) for only a single s′ ∈ C1/m.

Note we can always have |C1/m| ≤ md.

Definition 42 Fix an adversarial prediction setting with outcome space C ⊆
[0, 1]d. We say that a transcript πT corresponds to (α,m)-calibrated predictions
if it has Em−Cal-bias bounded by α for the set of events:

Em−Cal = {Es′(ŝ
t) = 1[st ∈ B(s′)] : s′ ∈ C1/m}

Calibration will be an attractive guarantee because it will turn out not
only that downstream decision makers who best respond to calibrated pre-
dictions will have strong regret guarantees, but that it is in fact an optimal
policy (amongst all policies mapping predictions to actions) to treat calibrated
predictions as correct and best respond to them. To simplify the analysis, we
will not release the predictions ŝt directly to the decision maker, but will first
“snap” ŝt to its nearest point s̃t ∈ C1/m and release that. Here ŝt ∈ B(s̃t),
and in particular ||ŝt − s̃t|| ≤ 1/m.

Theorem 25 Fix any utility function u : A × C such that for each action
a ∈ A u(a, ·) is linear and L-Lipschitz in its second argument. Let P : C → A
be any policy mapping “snapped” predictions s̃ to actions A. Then for any
transcript πT whose predictions are (α,m)-calibrated:

T∑
t=1

E
ŝt∼pt

[
u(BR(u, s̃t), st)

]
≥

T∑
t=1

E
ŝt∼pt

[
u(P (s̃t), st)

]
− 2α ·md · L− 2T

m

72Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 37 We can calculate:

T∑
t=1

E
ŝt∼pt

[
u(BR(u, s̃t), st)

]
=

T∑
t=1

∑
s′∈C1/m

Pr[ŝt ∈ B(s′)]u(BR(u, s′), st)

=
∑

s′∈C1/m

u

(
BR(u, s′),

T∑
t=1

E[1[ŝt ∈ B(s′)]]st

)

≥
∑

s′∈C1/m

(
u

(
BR(u, s′),

T∑
t=1

E[1[ŝt ∈ B(s′)]]ŝt

)
− αL

)

≥
∑

s′∈C1/m

(
u

(
BR(u, s′),

T∑
t=1

E[1[ŝt ∈ B(s′)]]s′

)
− αL−

∑T
t=1 Pr[ŝ

t ∈ B(s′)]

m

)

=
∑

s′∈C1/m

u

(
BR(u, s′),

T∑
t=1

E[1[ŝt ∈ B(s′)]]s′

)
− α|C1/m|L− T

m

≥
∑

s′∈C1/m

u

(
BR(u, s′),

T∑
t=1

E[1[ŝt ∈ B(s′)]]s′

)
− α ·md · L− T

m

≥
∑

s′∈C1/m

u

(
P (s′),

T∑
t=1

E[1[ŝt ∈ B(s′)]]s′

)
− α ·md · L− T

m

≥
T∑

t=1

E
ŝt∼pt

[
u(P (s̃t), st)

]
− 2α ·md · L− 2T

m

Here we have used the bias condition and the fact that ||ŝ − s̃||∞ ≤ 1/m to
compare the expression u(BR(u, s̃t)), st) to u(BR(u, s̃t), s̃t). The best response
policy is by definition the optimal policy in this case (and hence obtains higher
utility than P):

u(BR(u, s̃t), s̃t) ≥ u(P (s̃t), s̃t)

We then use the bias conditions to again compare this to u(P (s̃t), st).

If our goal is to make predictions that downstream agents will be strongly
incentivized to treat as correct (and best respond to), then we get to pick the
parameter m. Once we do this, we can apply Theorem 24 to find the value
of α that our multiobjective optimization algorithm will be able to obtain. In
particular, given a choice of m, the number of events that we need to control
the bias of is at most md, and so we have:

Corollary 4.4.1 Fix an adversarial prediction setting with outcome space

Making Unbiased Predictions and Calibration 73

C ⊆ [0, 1]d and a bucketing parameter m. There is an algorithm that against
any sequence of outcomes s1, . . . , sT produces a transcript with predictions that
are (α,m)-calibrated for:

α = Bias(πT , Em−Cal) ≤ 5
√

T (ln(2d) + d ln(m))

Proof 38 We just apply Theorem 24 for sufficiently small ϵ and |E| ≤ md.

Finally, we can choose our choice of bucketing parameter m to optimize
our bound from Theorem 25:

Corollary 4.4.2 Fix any utility function u : A× C such that for each action
a ∈ A u(a, ·) is linear and L-Lipschitz in its second argument. Let P : C → A
be any policy mapping “snapped” predictions s̃ to actions A. If we choose m =(

T
αL

) 1
d+1 Then for any transcript πT whose predictions are (α,m)-calibrated,

we have:

T∑
t=1

E
ŝt∼pt

[
u(BR(u, s̃t), st)

]
≥

T∑
t=1

E
ŝt∼pt

[
u(P (s̃t), st)

]
− 4T

d
d+1 · (αL)

1
d+1

In particular, plugging in the bound for α from Corollary 4.4.1, we get:

T∑
t=1

E
ŝt∼pt

[
u(BR(u, s̃t), st)

]
≥

T∑
t=1

E
ŝt∼pt

[
u(P (s̃t), st)

]
− Õ

(
T

2d+1
2d+2

)
The statement we just proved most straightforwardly says something about

the incentives that a downstream agent has (no matter what their utility func-
tion) to best respond to our predictions as if they were correct. If our predic-
tions are calibrated, they will obtain higher utility just best responding to the
predictions, compared to any other policy they could choose mapping predic-
tions to actions. But what kinds of regret guarantees will these downstream
agents have? It isn’t hard to see that the downstream agents will not just have
diminishing (external) regret, but will in fact have diminishing swap regret.
The reason is because any benchmark sequence of actions that we could have
obtained by counter-factually applying a swap function to their actions could
have been directly obtained by some policy P — and we already know that
no policy can consistently out perform the best response policy with respect
to calibrated predictions.

Corollary 4.4.3 Fix any utility function u : A× C such that for each action
a ∈ A, u(a, ·) is linear and Lipschitz in its second argument. Fix a transcript

πT whose predictions are (α,m)-calibrated, with m =
(

T
αL

) 1
d+1 and α as in

Corollary 4.4.1. Suppose an agent with utility function u takes action at =
BR(u, s̃t) at each round t. Then the Agent has swap regret bounded by:

max
ϕ:A→A

T∑
t=1

(
u(ϕ(at), st)− u(at, st)

)
≤ Õ

(
T

2d+1
2d+2

)

74Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 39 We simply plug in the appropriate policy into Corollary 4.4.2. For
any strategy modification rule, let Pϕ(s̃

t) = ϕ(BR(u, s̃t)). Then

Pϕ(s̃
t) = ϕ(BR(u, s̃t)) = ϕ(at)

and the bound follows directly from Corollary 4.4.2.

In some sense this is great — we’ve solved the problem we wanted to from
the end of Section 4.2. We have a way of making predictions such that:

1. Any downstream agent, independently of their utility function, are
actually incentivized to treat our predictions as correct, and

2. By doing so, they will obtain utility guarantees that are only
stronger than swap regret guarantees.

But there are two serious problems:

1. The bounds we have proven in this section scale very badly with
the dimension d: Even when d = 1, our bound is Õ(T 3/4) rather
than O(

√
T), and it gets worse from there: for d = 2, the bound

is Õ(T 5/6), and as the dimension increases the rate approaches the
trivial bound of T exponentially fast with d. So these bounds are
really only useful for very low dimensional problems.

2. Similarly, our generic multi-objective optimization algorithm when
instantiated with the calibration problem requires solving a game
whose strategy space for both players grows exponentially with d
and whose number of objectives grows exponentially with d. Even
if the regret bounds were useful in high dimensions, how would we
efficiently make calibrated predictions?

4.5 Efficiently Making Unbiased Predictions

We now turn to the computational problem: How can we efficiently make
predictions that obtain the bias guarantees that we proved (existentially) in
Theorem 24? We’ll start with 1-dimensional calibration — this is of course a
special case (and the algorithm we give will not generalize to higher dimen-
sions) — but has enough structure to give a very interesting algorithm that
is worth seeing that avoids needing to solve an arbitrary minimax problem.
We’ll then turn to the general case in which we will solve a minimax prob-
lem — but one in which both the Learner and the Adversary have very large
strategy spaces, and so solving it efficiently will require some cleverness.

Making Unbiased Predictions and Calibration 75

4.5.1 One Dimensional (Multi)Calibration

Calibration will only be feasible for low dimensional problems — here we will
give an algorithm for the case in which d = 1. But it is not be hard to extend
1-dimensional calibration to 1-dimensional “multicalibration”, which we can
think of as asking for calibration not just marginally, but on polynomially
large collections of subsequences which can be defined by context and history.
So that is what we’ll do. First we recap some calibration definitions in the
special case of d = 1.

Definition 43 (m-Bucketing) The 1-dimensional m bucketing of the unit
interval [0, 1] is the partition:

B(0) =

[
0,

1

m

)
B

(
1

m

)
=

[
1

m
,
2

m

)
, . . . , B

(
m− 1

m

)
=

[
m− 1

m
, 1

]
Observe that there are exactly m buckets in an m-bucketing, and the m-
bucketing is a 1/m-net for the unit interval.

We define multicalibration in terms of an m-bucketing:

Definition 44 Let the prediction space C = [0, 1]. Fix a collection of events
G such that for each G ∈ G, G(t, xt) ∈ [0, 1]. We say that a transcript πT

corresponds to (α,m)-multicalibrated predictions with respect to G if it has
Em,G-bias bounded by α for the set of events:

Em,G =
{
EG,s′ = 1[st ∈ B(s′)] ·G(t, xt) : G ∈ G, s′ ∈

{
0,

1

m
, . . . ,

m− 1

m

}}
Remark 4.5.1 Just as subsequence regret asks for regret not just overall, but
on many intersecting subsequences defined by subsequence selection functions,
multicalibration asks for calibration not just overall but on many intersecting
subsequences defined by intersecting “events”, which are also represented by
subsequence selection functions.

We can encode multicalibration as a multiobjective optimization problem
analogously to how we defined calibration. We will have an objective for each
sign σ, prediction s′, (and now) event G.

Definition 45 (r-Encoding (α,m)-Multicalibration as Multiobjective Optimization)
Given a 1 dimensional instance of the (α,m) Multicalibration problem with
respect to events G, we construct a 2|G|m-dimensional instance of the multi-
objective optimization game as follows: At each round t:

1. The strategy space for the Learner is At = ∆{0, 1/r, 2/r, . . . , 1},
the set of distributions over a finite 1/r-net of [0, 1].

2. The strategy space for the Adversary is Bt = [0, 1].

76Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

3. For each σ ∈ {−1, 1}, G ∈ G, and s′ ∈ {0, 1/m, . . . , (m− 1)/m}
we construct a loss increment function:

ℓσ,G,s′(p
t, st) = σ · E

ŝt∼pt
[1[ŝt ∈ B(s′)] ·G(t, xt)(ŝt − st)]

Remark 4.5.2 Observe that we allow the algorithm to play distributions over
a 1/r-net of the unit interval, whereas we measure calibration error with re-
spect to a 1/m net. In general it will be important that we allow r ≫ m. r here
is a nuisance parameter — a discretization that we need to allow in order for
the minimax theorem to apply, and we can take it to be as large as we want
without affecting the final bounds. m on the other hand is a key parameter
of the problem, effecting both the granularity of our final guarantees and the
number of loss functions in our multiobjective optimization problem.

We recall our generic multiobjective optimization algorithm, instantiated
for the multicalibration problem:

Algorithm 17 Multicalibration via Multiobjective Optimization

for t = 1 to T do
Define the distribution wt ∈ ∆[2|G|m] as:

wt
σ,G,s′ ∝ exp

(
η

2

t−1∑
t′=1

σ · E
ŝt′∼pt′

[1[ŝt
′
∈ B(s′)] ·G(t′, xt′)(ŝt

′
− st

′
)]

)

Define a zero-sum game in which the minimization player’s action are At,
the maximization players actions are Bt, and the utility function is:

ut(pt, st) =
∑

σ,G,s′

wt
σ,G,s′σ · E

ŝt∼pt
[1[ŝt ∈ B(s′)] ·G(t, xt)(ŝt − st)]

Compute a minimax equilibrium strategy of this game pt for the Learner
and sample a forecast ŝt from pt.

We can read off bounds for our multicalibration error from our general
theorem about unbiased prediction (Theorem 24)

Theorem 26 Fix an r-encoding of an (α,m)-multicalibration problem with
respect to a collection of events G (Definition 45). Running Algorithm 17
guarantees against any adversary that the (α,m)-multicalibration error with
respect to G will be bounded by:

E[α] ≤ 4
√
T ln(2 · |G|m) +

T

r

Remark 4.5.3 If we instantiate Theorem 27 with r ≥
√
T , then the multi-

calibration error we obtain is at most 5
√

T ln(2 · |G|m).

Making Unbiased Predictions and Calibration 77

We now proceed to specialize the algorithm, taking advantage of the special
structure of the 1-dimensional (multi)calibration problem to give a simpler
algorithm that will not require that we solve a general minimax problem at
every round. In fact, the algorithm we derive will be almost deterministic: it
will make predictions that randomize between pairs of points that differ by at
most 1/r from one another. To derive the algorithm, it will be helpful to first
rewrite the utility function of the game that we need to solve to implement
Algorithm 17. Because the utility function is linear in the learner’s distribution
pt, it will be enough to write the utility as a function of the pure strategies
ŝt ∈ {0, 1/r, . . . , 1}.

Lemma 4.5.1 Fix any ŝt ∈ {0, 1/r, . . . , 1}. Let s̃t ∈ {0, 1/m, 2/m, . . . , (m −
1)/m|} be the unique point such that ŝt ∈ B(s̃t). Then we have that:

ut(ŝt, st) =
∑
G∈G

(
wt+

G,s̃t − wt−
G,s̃t

)
︸ ︷︷ ︸

wt
G,s̃t

G(t, xt)(ŝt − st)

where

wt+

G,s′ ∝ exp

(
η

2

t−1∑
t′=1

E
ŝt′∼pt′

[1[ŝt
′
∈ B(s′)] ·G(t′, xt′)(ŝt

′
− st

′
)]

)

wt−

G,s′ ∝ exp

(
η

2

t−1∑
t′=1

E
ŝt′∼pt′

[1[ŝt
′
∈ B(s′)] ·G(t′, xt′)(st

′
− ŝt

′
)]

)

78Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Algorithm 18 A Sequential Multicalibration Algorithm

Given: m, r, and G.
for t = 1 to T do
For each s ∈

{
0, 1

m , . . . , m−1
m

}
, compute:

Vs =
∑
G∈G

wt
G,sG(t, xt)

if Vs ≥ 0 for all s then
Predict ŝt = 0.

else if Vs ≤ 0 for all s then
Predict ŝt = 1.

else
Choose s ∈

{
1
m , . . . , m−1

m

}
such that

Vs−1/m · Vs ≤ 0

Choose q ∈ [0, 1] such that

q · Vs + (1− q) · Vs−1/m = 0

Predict ŝt = s − 1
r with probability 1 − q and Predict ŝt = s with

probability q.

Theorem 27 Fix an r-encoding of an (α,m)-multicalibration problem with
respect to a collection of events G (Definition 45). Algorithm 18 implements
Algorithm 17 and so against any adversary obtains (α,m)-multicalibration
error with respect to G bounded by:

E[α] ≤ 4
√
T ln(2 · |G|m) +

T

r

Proof 40 We need to show that Algorithm 18 plays a strategy pt that against
any opponent action st guarantees utility at most 1/r in the game with utility
function:

ut(ŝt, st) =
∑
G∈G

wt
G,s̃tG(t, xt)(ŝt − st)

We consider the three cases in the algorithm.

Making Unbiased Predictions and Calibration 79

1. Case 1: Vs ≥ 0 for all s. In this case, ŝt = 0 and we have:

u(ŝt, st) = u(0, st)

= (0− st) ·
∑
G∈G

wt
G,0G(t, xt)

= −st · V0

≤ 0

where the last inequality follows from the fact that −st ≤ 0 and
V0 ≥ 0.

2. Case 2: Vs ≤ 0 for all s. In this case, ŝt = 1 and we have:

u(ŝt, st) = u(1, st)

= (1− st) ·
∑
G∈G

wt
G,m−1

m

G(t, xt)

= (1− st) · Vm−1
m

≤ 0

where the last inequality follows from the fact that 1 − st ≥ 0 and
Vm−1

m
≤ 0.

3. Case 3: q ·Vs+(1−q)·Vs−1/m = 0. In this case, we can compute
the expected utility:

E[u(ŝt, st)] = q · u(s, st) + (1− q)u(s− 1/m, st)

= q · (s− st)Vs + (1− q)(s− 1/r − st)Vs− 1
m

= (s− st)
(
qVs + (1− q)Vs− 1

m

)
− (1− q)

r
Vs− 1

m

≤ 0 +
1

r
|Vs− 1

m
|

≤ 1

r

which completes the proof in all cases.

Remark 4.5.4 Just as calibration implies that (in the limit) it is a dominant
strategy for any downstream agent with utility that is linear and Lipschitz in
the state to choose actions using the best response policy, multicalibration with
respect to a collection of events G guarantees that it will be a dominant strategy
to use the best response policy not just overall, but on every subsequence defined
by an event G ∈ G.

80Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

4.5.2 The General Case

We now consider the general problem of efficiently computing conditionally
unbiased predictions in d dimensions against an adaptive adversary. Recall
that given a collection of events E , our goal is to bound:

max
E∈E

Bias(πT , E) = max
E∈E

∥∥∥∥∥
T∑

t=1

E
ŝt∼pt

[E(t, ŝt, xt) ·
(
ŝt − st

)
]

∥∥∥∥∥
∞

We recall our general algorithm for doing this:

Algorithm 19 Generic Algorithm for Conditionally Unbiased Prediction

for t = 1 to T do
Define the distribution wt ∈ ∆[2|E|d] as:

wt
σ,E,i ∝ exp

(
η

2

t−1∑
t′=1

σ · E
ŝt′∼pt′

[E(t′, ŝt
′
, xt′)(ŝt

′

i − st
′

i)]

)

Define a zero-sum game in which the minimization player’s action are
At = ∆Cϵ, the maximization players actions are C, and the utility function
is:

ut(p, s) =
∑
σ,E,i

wt
σ,E,iσ · E

ŝ∼p
[E(t, ŝ, xt)(ŝi − si)]

Compute a minimax equilibrium strategy of this game pt and sample ŝt

from pt.

Elsewhere we have specialized algorithms of this sort, for subsequence re-
gret, swap regret, and calibration. But in those cases, the “generic” algorithm
was already polynomial time (it required solving a minimax problem with a
linear program), and what we gained from specialization was getting a faster
combinatorial algorithm, or some insight into the solution. Here though, it
is not immedietly apparent how to implement our generic algorithm in time
polynomial in the dimension d. The difficulty is that the set of pure strate-

gies for the learner, Cϵ, has size Ω
((

1
ϵ

)d)
, exponentially large in d — and

the strategy space C for the adversary is continuously large. Thus we cannot
generically write down a polynomially sized linear program to solve this min-
imax problem, and if we hope to do so in time polynomial in d, we need to
take advantage of some special structure that it has.

First let us recall one of the methods we derived for computing minimax
equilibrium strategies: simulating play in which one player uses a “no-regret”
algorithm, and the other player responds to the no-regret player’s distribution
at every round using a “value oracle”. A value oracle takes as input an oppo-
nent strategy, and returns a strategy that is guaranteed to obtain at least the
value of the game against the given opponent strategy:

Making Unbiased Predictions and Calibration 81

Algorithm 20 Computing a Minimax Equilibrium: Value Oracle vs. No Re-
gret

Given: A zero sum game (Amax,Amin, u) satisfying the conditions of the
minimax theorem, a Value oracle V al : Amin → Amax for Max, an online
convex optimization algorithm OnlineConvex operating over action space
Amin and loss space {ℓ = u(a, ·)}a∈Amax

that promises regret R(T) to every
action b ∈ Amin after T rounds, and an approximation parameter ϵ.
Let T be such that R(T)/T ≤ ϵ
for t = 1 to T do
Get action bt from OnlineConvex,
Let at = V al(bt)
Feed loss ℓt = u(at, ·) to OnlineConvex.

Let ā = 1
T

∑T
t=1 a

t

Return ā

We will see that we can efficiently implement this algorithm (in time poly-
nomial in d and |E| by using follow the perturbed leader for the adversary, and
implementing a Value oracle for the Learner by simply having them copy the
adversary’s strategy.

We start by rewriting an equivalent utility function for the Adversary that
fits into the online linear optimization framework that is regret-equivalent to
the original utility function ut.

Lemma 4.5.2 Define the cost function:

ct(p, s) =
∑
σ,E,i

wt
σ,E,i E

s̃∼p
[E(t, s̃, xt)si] = ⟨s, ct(p)⟩

where ct(p) ∈ Rd is defined as:

cti(p) =
∑
σ,E

wt
σ,E,i E

s̃∼p
[E(t, s̃, xt)]

Then if on transcript πT the adversary has regret α with respect to minimizing
costs ct:

T∑
t=1

⟨st, ct(pt)⟩ ≤ min
s∈C

T∑
t=1

⟨s, ct(pt)⟩+ α

they also have regret α with respect to maximizing utilities ut:

T∑
t=1

ut(pt, st) ≥ max
s∈C

T∑
t=1

ut(pt, s)− α

Proof 41 First we observe that we can write the utility function:

ut(p, s) =
∑
σ,E,i

wt
σ,E,i E

ŝ∼p
[E(t, ŝ, xt)ŝi]︸ ︷︷ ︸

ût(p)

−ct(p, s)

82Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Importantly, the first term is independent of the Adversary’s action s. There-
fore we have:

max
s∈C

T∑
t=1

ut(pt, s) = max
s∈C

T∑
t=1

(
ût(pt)− ct(pt, s)

)
=

T∑
t=1

ût(pt)−min
s∈C

T∑
t=1

ct(pt, s)

≤
T∑

t=1

ût(pt)−
T∑

t=1

ct(pt, st) + α

=

T∑
t=1

ut(pt, st)

Thus:
T∑

t=1

ut(pt, st) ≥ max
s∈C

T∑
t=1

ut(pt, s)− α

as claimed.

Since obtaining no-regret to linear costs of the form ⟨s, ct(p)⟩ is just an online
linear optimization problem, we can solve it using follow-the-perturbed-leader.
We can read off the regret bounds that the Adversary can obtain in this setting
from our bound on the regret for Follow the Perturbed Leader:

Lemma 4.5.3 In the minimax equilibrium computation, the Adversary using
Follow the Perturbed Leader can obtain regret to the best action in C:

R(T) ≤
√
8CRT

where C = maxs∈C ||s||1 and R = maxs∈C ||s||∞.

Proof 42 We apply the bound from Theorem 3, observing that ||ct(p)||1 ≤ 1
since the weights wσ,E,i form a probability distribution, and hence

max
s∈C,ct(p)∈[0,1]d

⟨s, ct(p)⟩ ≤ max
s∈C

||s||∞

What about implementing a value oracle? The utility function is not linear
in the (pure) strategies of the Learner because the events E can be arbitrary,
and so it is not clear how we would efficiently implement a “best response”
oracle. However, in this case it turns out that implementing a value oracle is
much easier: We simply copy (the expectation of) the mixed strategy deployed
by the Adversary.

Lemma 4.5.4 For the game with utility function

ut(p, s) =
∑
σ,E,i

wt
σ,E,iσ · E

ŝ∼p
[E(t, ŝ, xt)(ŝi − si)]

Making Unbiased Predictions and Calibration 83

given any distribution q ∈ ∆C over strategies of the adversary, we can imple-
ment a value oracle as:

V al(q) = E
s∼q

[s]

Proof 43 We recall that the value of the bias game is 0. Thus we need to show
that for any q ∈ ∆C, if ŝ = Es∼q[s], then Es∼q[u(ŝ, s)] ≤ 0. We calculate:

E
s∼q

[u(ŝ, s)] = E
s∼q

∑
σ,E,i

wt
σ,E,iσ · E(t, ŝ, xt)(ŝi − si)

=

∑
σ,E,i

wt
σ,E,iσ · E(t, ŝ, xt)(ŝi − E

s∼q
[si])

= 0

which completes the proof.

Thus we can instantiate the Value-Oracle vs. No-Regret Dynamics as fol-
lows.

Algorithm 21 Efficiently Computing a Minimax Equilibrium of the Unbiased
Predictions Game
Given: An outcome space C, a collection of events E , and an approximation
parameter ϵ.
Let C = maxs∈C ||s||1 and R = maxs∈C ||s||∞. Let T = 8CR

ϵ2 .
Initialize a copy of Follow the Perturbed Leader (FTPL) to solve a d-
dimensional online linear optimization problem over C.
for t = 1 to T do
Obtain distribution qt from FTPL.
Let ŝt = Es∼q[s].
Feed loss ct ∈ Rd to FTPL where:

ci =
∑
σ,E

wt
σ,E,iE(t, ŝt, xt)

Return the distribution pt ∈ ∆C that is uniform over {ŝ1, . . . , ŝT }

We then have as a corollary of Theorem 9 that we can compute an ϵ-
approximate equilibrium for the game we need to in order to make condition-
ally unbiased predictions with respect to C, in time polynomial in |E|, d, and
1/ϵ.

Corollary 4.5.1 Assuming we can solve linear optimization problems over
C, Algorithm 21 outputs an ϵ-approximate equilibrium of the conditional bias
game in time polynomial in d, |E|, and 1/ϵ.

84Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Remark 4.5.5 Note that to implement the value oracle we have assumed
that we can compute ŝt = Es∼q[s], whereas what FTPL gives us is an efficient
(given a linear optimization oracle over C) implementation of a sampling or-
acle for distribution q. For some common geometries for C (e.g. the rectangle
or the simplex) it is not hard to find an expression for the expectation in closed
form. But otherwise, we need to approximate this quantity by sampling. We
only need to approximate this quantity up to error O(ϵ) in each coordinate,
which we can do with high probability with polynomially many in 1/ϵ many
samples using standard concentration arguments.

The upshot is that we can efficiently make predictions in d dimensions that
are unbiased with respect to polynomially many events E . This is not enough
to give us efficient algorithms for full calibration (which requires unbiasedness
with respect to exponentially many in d events) — but as we will see, is enough
for many of our goals.

4.6 Predicting for No-Swap-Regret Play

Ok! Now that we know how to efficiently make predictions that are unbiased
subject to a polynomial number of conditioning events, lets put this technology
to work on the problem we initially set out to solve: making predictions so
that many downstream agents will obtain strong guarantees when they best
respond to them. Recall that in Section 4.2 we showed how to guarantee
that arbitrary downstream agents obtain no external regret — we simply
added noise to the empirical history of play, which “tricked” best responding
agents into playing follow the perturbed leader. In Section 4.4, we showed
that calibrated predictions are sufficient to guarantee arbitrary downstream
agents no swap regret if they best respond to them — but unfortunately
at rates that degraded exponentially with the dimension d of the problem,
and that did not even obtain the correct O(

√
T) rates when the dimension

d = 1. We also do not have a computationally efficient (in d) algorithm for
producing calibrated forecasts in d dimensions. In this section, we will show
how to produce d-dimensional predictions ŝt ∈ C ⊆ Rd that guarantee that any
downstream agent with a utility function u : A× C → [0, 1], with u ∈ U who
bests responds to our predictions swap regret tending to 0 at a rate scaling like
O(
√
T log(d|U|). Moreover, we will be able to make our predictions in time

polynomial in d, |A|, and |U|. This efficiently gives (up to log terms) nearly
optimal swap regret to a collection of downstream decision makers — although
compared to results from previous sections, our guarantees no longer hold for
all downstream decision makers, but only for those with utility functions from
a fixed-up-front set U , whose cardinality we depend linearly on in our running
time and logarithmically on in our regret bounds. The algorithm will be the
one we have already developed: we will simply make predictions that are

Making Unbiased Predictions and Calibration 85

conditionally unbiased conditional on events that are defined in terms of the
best response correspondence of the utility functions in U .

Definition 46 (Best Response Events) Fix a state space C ⊆ Rd and an
action set A. Given a utility function u : A×C → [0, 1], for each a ∈ A, define
the best-response event:

Eu,a(s) = 1[a = BR(u, s)]

where we recall that:
BR(u, s) = argmax

a∈A
u(a, s)

Here we assume that ties are broken consistently (e.g. by choosing the lexico-
graphically first action) when the argmax is not unique. Given a collection U
of such utility functions, we define the collection of events:

EU = {Eu,a}u∈U,a∈A

First we note that this isn’t too many events: Given an action space A
and a set of utility functions U , we have that |EU | = |U| · |A| — so it is
polynomial in the number of utility functions and actions, and independent
of the dimension d of the state space. Next we observe that if a sequence of
predictions is unbiased with respect to EU , then it guarantees no swap regret
for every u ∈ U (assuming they follow the best response policy).

The intuition is very simple. Consider the subsequence of rounds on which
such an agent plays a particular action (say action 1). Would they have pre-
ferred to play another action (say action 2) instead, in hindsight? Well, this
subsequence of rounds corresponds to the event Eu,1, which is one of our con-
ditioning events — and so the sequence of our predictions is correct on average
over this sequence. The utility function is linear, which means that the utility
that the agent gets for playing action 1 is what he thought it would be, given
the predictions. It also means that the utility that the agent thought he would
have gotten from playing action 2 is what he thought it would be. And the
reason he played action 1 over action 2 is because he thought action 1 would
have higher payoff — as it must have had, on average, over this sequence.
Thus he has no swap regret. We now formalize this argument.

Theorem 28 Fix a set of utility functions U over state space C and action
space A, such that each utility function u ∈ U is such that u : A × C →
[0, 1] is linear and L-Lipschitz in its second argument. Fix a transcript πT

of predictions ŝ1, . . . ŝT that has bias at most α conditional on the events EU .
Suppose at each round, an agent with utility function u ∈ U takes an action
at = BR(u, ŝt). Then this agent has swap regret bounded by:

max
ϕ:A→A

T∑
t=1

(
E

ŝt∼pt
[u(ϕ(at), st)− u(at, st)]

)
≤ 2|A|αL

86Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Towards proving this, it will be useful to first observe that if an action is a
best response to states s1 and s2, then it is also a best response to any linear
combination of these states.

Lemma 4.6.1 Fix any two s1, s2 ∈ Rd and any two c1, c2 ∈ R≥0. Suppose
that a = BR(u, s1) and a = BR(u, s2). Then: a = BR(u, c1s

1 + c2s
2).

Proof 44 Fix any other action a′. We have that:

u(a, c1s
1 + c2s

2)− u(a′, c1s
1 + c2s

2) = c1(u(a, s
1)− u(a′, s1)) + c2(u(a, s

2)− u(a′, s2))

≥ 0

as a is a best response to both s1 and s2. Moreover, if a is the lexicographically
first best response to both s1 and s2, it is also the lexicographically first best
response to c1s

1 + c2s
2.

Proof 45 (Proof of Theorem 28) We now formalize our intuition. Fix
any utility function u ∈ U and swap function ϕ : A → A.

T∑
t=1

E
ŝt∼pt

[u(at, st)] =

T∑
t=1

∑
a∈A

E
ŝt∼pt

[1[a = BR(u, ŝt)]u(a, st)]

=
∑
a∈A

u

(
a,

T∑
t=1

E
ŝt∼pt

[Eu,a(ŝ
t)]st

)

≥
∑
a∈A

(
u

(
a,

T∑
t=1

E
ŝt∼pt

[Eu,a(ŝ
t)ŝt]

)
− αL

)

≥
∑
a∈A

u

(
ϕ(a),

T∑
t=1

E
ŝt∼pt

[Eu,a(ŝ
t)ŝt]

)
− α|A|L

≥
∑
a∈A

(
u

(
ϕ(a),

T∑
t=1

E
ŝt∼pt

[Eu,a(ŝ
t)]st

)
− αL

)
− α|A|L

=

T∑
t=1

∑
a∈A

E
ŝt∼pt

[1[a = BR(u, ŝt)]u(ϕ(a), st)]− 2α|A|L

=

T∑
t=1

E
ŝt∼pt

[u(ϕ(at), st)]− 2α|A|L

Here the 2nd and and 3rd equalities follow from the linearity of the objec-
tive function, the first and third inequalities follow from the α bias condition
together with the L-Lipschitzness of the objective function, and the 2nd in-
equality follows from the definition of the best response function and Lemma
4.6.1

Plugging in the bound on α that we get from running Algorithm 21 on the
collection of events EU , we obtain the following corollary:

Making Unbiased Predictions and Calibration 87

Corollary 4.6.1 Fix a set of utility functions U over state space C and action
space A, such that each utility function u ∈ U is linear and L-Lipschitz in its
second argument.

There is an algorithm running in time polynomial in d, |U|, and |A| that
produces forecasts ŝt such that for any agent with utility function u ∈ U who
takes an action at = BR(u, ŝt), then this agent has swap regret bounded by:

max
ϕ:A→A

T∑
t=1

(
E

ŝt∼pt
[u(ϕ(at), st)− u(at, st)]

)
≤ 2|A|L

√
T ln(2d|U||A|)

4.7 Obtaining No-Subsequence-Regret in Online Com-
binatorial Optimization

In Section 4.6 we showed how to efficiently make predictions for downstream
agents with utility functions in U that cause each of them to obtain (up to a
log |U| term) swap regret bounds that are as good as they could have obtained
had they run their own swap regret algorithm — but now, all that we require
of them is that they best respond to our predictions. We can think of this as a
way of coordinating agents towards good outcomes even when the individual
agents don’t have the sophistication to run complicated algorithms. But if all
we want to do is provide a swap regret guarantee for a single agent capable
of running an algorithm we give them, we haven’t in fact improved over the
basic swap regret algorithm we derived in Section 3.3.2.1.

In this section we show how to use the machinery we have developed for
making conditionally unbiased predictions to give new efficient learning al-
gorithms: in particular, how to get subsequence regret (as defined in Section
3.3) in d-dimensional combinatorial optimization settings in time polynomial
in d. In a d-dimensional combinatorial optimization setting, there are d base
actions, but the learner can play compound actions that are subsets of these d
base actions. Each day a gain or a cost is realized for each of the base actions,
and the gain or cost of a compound action is the gain or cost of the base
actions included in the compound action. The online shortest paths problem
is a special case of this, and more generally these problems are instances of
online linear optimization. Importantly, the number of actions in an online
combinatorial optimization setting can be as large as 2d. We say in Section
1.4 how to efficiently (in d) obtain no external regret in online combinatorial
optimization settings (and more generally online linear optimization settings)
— but our algorithms for subsequence regret from Section 3.3 depended poly-
nomially on the number of actions in the game, and hence would scale with
2d. We will show that to obtain no subsequence regret with respect to a collec-
tion of events E , it will suffice to best-respond to forecasts of the base-action
gains that are unbiased subject to a collection of conditioning events of size

88Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

d · |E|, and so can be done in time polynomial in d and |E|. Of course, if we
have many downstream decision makers who have utility functions from U , we
can include d · |E| conditioning events defined in terms of the utility functions
corresponding to each u ∈ U and get downstream subsequence regret guar-
antees for all of the agents — but for clarity, we will focus on a single utility
function, and view our task as an algorithm design problem for a single agent.

Definition 47 (Online Combinatorial Optimization) An online combi-
natorial optimization problem is defined by a set of d base actions B and a set
of actions A ∈ 2B such that each action a ∈ A is a subset of B: a ⊆ B. In
rounds t = 1, . . . , T :

1. The learner chooses a distribution over actions pt ∈ ∆A,

2. The adversary chooses a vector of gains gt ∈ [0, 1]d, indexed by
the base actions B.
3. The learner obtains utility

u(pt, gt) = E
at∼pt

[u(at, gt)] = E
at∼pt

[∑
b∈at

gta

]

We now recall the definition of subsequence regret from Section 3.3, which
is defined by a collection of subsequence selection functions E (which are very
similar objects to the “events” that we speak of in conditionally unbiased
predictions, but are functions of an Agent’s actions in A rather than predic-
tions in C.) A subsequence selection function E : [T]×A×X → {0, 1} maps
time (and history), the action selected by the Agent/Learner, and context
to an indicator in {0, 1} expressing if the current round is a member of the
subsequence or not. An agent with utility function u(pt, gt) who chooses (dis-
tributions over) actions p1, . . . , pT when the vectors of gains chosen by the
adversary are realized as g1, . . . , gT will have subsequence regret to action
a ∈ A defined as:

Reg(πT , E, a) =

T∑
t=1

E
at∼pt

[
E(t, at, xt) · (u(a, gt)− u(at, gt))

]
We say that the learner has expected E subsequence regret bounded by α if:

max
E∈E,a∈A

Reg(πT , E, a) ≤ α

Note that in an online combinatorial optimization setting, subsequence regret
is asking for regret to all of the possibly Ω(2d) actions in A, over each of
the subsequences E ∈ E . Our goal will be to efficiently achieve this for any
polynomial (in d) collection of subsequence indicator functions E .

Conditioning on the events Eu,a that we used in Section 4.6 is no longer
feasible, because there are too many such events — one for each of the possibly

Making Unbiased Predictions and Calibration 89

Ω(2d) actions in A. Instead we need to take advantage of the linear structure
of online combinatorial optimization. Towards that end, we define events in
terms of the base actions b ∈ B and their inclusion in the best response.

Definition 48 Given a vector of gains g define

BR(g) = argmax
a∈A

u(a, g) = argmax
a∈A

∑
b∈a

gta

breaking ties lexicographically. For each b ∈ B define the event:

Eb(g) = 1[b ∈ BR(g)]

Definition 49 Given a collection of subsequence selection functions Ẽ, define
the collection of events:

E(Ẽ ,B) = {EẼ,b(t, g, x
t) = Ẽ(t, BR(g), xt) · Eb(g)}Ẽ∈Ẽ,b∈B

This collection of events scales only with d · |Ẽ |, but will suffice to give us
no subsequence regret over the subsequences in Ẽ and all of the (exponentially
many in d) actions in A.

Theorem 29 Fix a d-dimensional online combinatorial optimization problem
and a collection of subsequence indicator functions Ẽ. Let the state space C =
[0, 1]d be the set of feasible gains. Fix a transcript πT of predictions ĝ1, . . . , ĝT

that has bias at most α conditional on the events in E(Ẽ ,B) ∪ Ẽ. Suppose at
each round the Learner chooses the action at = BR(ĝt). Then the agent has
Ẽ-subsequence regret bounded by:

max
Ẽ∈Ẽ,a∈A

Reg(πT , Ẽ, a) ≤ 2αd

90Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Proof 46 Fix a subsequence Ẽ ∈ Ẽ and an action a ∈ A. We can compute:

T∑
t=1

Ẽ(t, at, xt) · u(at, gt) =

T∑
t=1

(
Ẽ(t, at, xt) ·

∑
b∈at

gtb

)

=
∑
b∈B

T∑
t=1

Ẽ(t, at, xt) · Eb(ĝ
t) · gtb

≥
∑
b∈B

(
T∑

t=1

Ẽ(t, at, xt) · Eb(ĝ
t) · ĝtb − α

)

=
∑
b∈B

T∑
t=1

Ẽ(t, at, xt) · Eb(ĝ
t) · ĝtb − α · d

=

T∑
t=1

Ẽ(t, at, xt) · u(BR(ĝt), ĝt)− α · d

≥
T∑

t=1

Ẽ(t, at, xt) · u(a, ĝt)− α · d

=
∑
b∈a

T∑
t=1

Ẽ(t, at, xt) · ĝtb − αd

≥
∑
b∈a

T∑
t=1

Ẽ(t, at, xt) · gtb − 2αd

=

T∑
t=1

Ẽ(t, at, xt) · u(a, gt)− 2α · d

which is what we wanted.

Once again, we can plug in the bound on α that we get from running
algorithm 21 on the collection of events E(Ẽ ,B) ∪ Ẽ to obtain the following
corollary:

Corollary 4.7.1 Fix a d-dimensional online combinatorial optimization
problem and a collection of subsequence indicator functions Ẽ. Let the state
space C = [0, 1]d be the set of feasible gains. There is an algorithm that in time
polynomial in |Ẽ | and d produces a transcript of actions at such that against
any adversarially realized sequence of gains has expected Ẽ-subsequence regret
bounded by:

max
Ẽ∈Ẽ,a∈A

Reg(πT , Ẽ, a) ≤ 2d ·
√

T ln(2|Ẽ |(d+ 1))

Note that because the action space A is exponentially large in d, this is not
something that we knew how to do before.

Making Unbiased Predictions and Calibration 91

4.8 Predicting Label Probabilities with “Transparent
Coverage”

Before we close out this Chapter we’ll give one more application of our unbi-
ased prediction technology.

Suppose we are trying to solve a k-class classification problem: At each
round t, we observe features xt and need to predict a label yt ∈ {1, . . . , k} that
could take k discrete values. For example, this could be an image classification
task: xt would in this case be the pixel representation of an image, and the
label set would consist of the names of k possible objects that might be in the
image.

Classification problems can be difficult, and so any classification technology
must be prepared to make mistakes. How should we express the uncertainty
of a classification technology? One was is by producing a prediction set rather
than a point prediction: a set of labels St ⊆ [k] that is intended to contain
(“cover”) the true label yt with some target probability, say 90%.

How should we produce a prediction set? Many kinds of classifiers, given
features x, actually produce scores sti(x) ∈ [0, 1] for each label i ∈ [k]. Often

these scores “look like” probabilities in the sense that
∑k

i=1 s
t
i(x) = 1, and

higher scores are supposed to connote more likely labels: the standard way
to turn such scores into point predictions is to predict the label that has the
highest score.

If the labels sti(x) somehow represented “true label probabilities” Pr[yt =
i|xt]1, then there would be a simple method to produce the smallest prediction
set that covered the label 90% of the time: Simply produce the set St that con-
sists of the shortest prefix of labels, in descending order by their probabilities
sti(x), such that their cumulative probability sums to at least 90%.

More generally, if the scores sti(x) represented true probabilities, then any
algorithm mapping vectors of probabilities to prediction sets S : [0, 1]k → 2[k]

would, for any sequence of examples, cover the true label at a rate that could
be “read off” from the probabilities. We call this a “transparent coverage”
guarantee. Of course, the difficulty will be that it is not possible to produce
scores that represent “true” probabilities.

Definition 50 Fix any method for sequentially producing class scores st :
X × Π<t → [0, 1]k and any method S for mapping class scores to prediction
sets S : [0, 1]k → 2[k]. Fix any transcript πT including a sequence of examples
(xt, yt). Then the apparent coverage of S is:

˜Cov(πT) =
1

T

T∑
t=1

E
st,S

 ∑
i∈S(st(xt,π<t))

sti(x
t, π<t)

1Don’t think too hard about whether such probabilities actually make sense or you might

become a philosopher

92Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

The actual coverage of S is:

Cov(πT) =
1

T

T∑
t=1

E
st,S

[
1[yt ∈ S(st(xt, π<t))]

]
We say that S has α-transparent coverage with respect to scores st if for

every transcript πT : ∣∣∣ ˜Cov(πT)− Cov(πT)
∣∣∣ ≤ α

If S satisfies a transparent coverage guarantee with respect to scores st,
that means that the coverage you would expect of the prediction sets S(st(x)),
were the scores st(x) real probabilities, is in fact the coverage you get — at
least as averaged over all of the T examples. So, for example, if S is defined
so that it always gets (say) 90% coverage when the scores sti(x) represent true
class probabilities Pr[yt = i|xt], then S will still get 90% coverage.

What we will show is that if our class scores sti(x) are unbiased subject to
the label selection events ES defined with respect to a prediction set algorithm
S : [0, 1]k → 2[k] then S will satisfy a transparent coverage guarantee with
respect to scores st.

Definition 51 Fix a prediction set algorithm S : [0, 1]k → 2[k]. For each label
i ∈ [k] define the event:

ES,i(s
t) = 1[i ∈ S(st)]

And let ES = {ES,i}i∈[k].

It will be helpful for us, when discussing the bias of our k dimensional
predictions st, to encode labels yt as k-dimensional vectors et(yt) defined
such that eti(y

t) = 1 for i = yt and etj = 0 for all j ̸= yt.

Theorem 30 Fix a prediction set algorithm S : [0, 1]k → 2[k]. Fix a transcript
πT on which the predicted scores s1, . . . , sT have at most α bias conditional on
the events ES (where their prediction target is the labels y1, . . . , yT represented
as k-dimensional indicator variables et(yt)). Then S has α · k/T -transparent
coverage: ∣∣∣ ˜Cov(πT)− Cov(πT)

∣∣∣ ≤ α · k
T

Making Unbiased Predictions and Calibration 93

Proof 47 We can compute:

˜Cov(πT) =
1

T

T∑
t=1

E
st,S

 ∑
i∈S(st)

sti

=

1

T

T∑
t=1

E
st,S

∑
i∈[k]

ES,i(s
t)sti

=

1

T

∑
i∈[k]

T∑
t=1

E
st,S

[
ES,i(s

t)sti
]

≤ 1

T

∑
i∈[k]

(
T∑

t=1

E
st,S

[
ES,i(s

t)eti(y
t) + α

)]

=
1

T

(
T∑

t=1

E
st,S

[1[yt ∈ S(st)]] + αk

)

= Cov(πT) +
αk

T

We also have symmetrically that ˜Cov(πT) ≥ Cov(πT)− αk
T , which proves the

claim.

As usual, we can plug in the bound on α that we get from running
Algorithm 21 to make predictions over the simplex ∆[k] that are unbi-
ased with respect to ∪S∈SES for any collection of prediction set algorithms
S : [0, 1]k → 2[k] to obtain the following corollary:

Corollary 4.8.1 Fix any collection S of prediction set algorithms S. There is
an algorithm running in time polynomial in k and |S| per time-step that makes
predictions st such that simultaneously for each S ∈ S, S has α-transparent
coverage with respect to st for:

α ≤ k ·
√
ln(2|S|k)

T

This gives us a way to obtain class scores that satisfy transparent coverage
guarantees for any collection of prediction set algorithms. But what about
accuracy? The algorithms we have given ignore the context xt, so cannot in
general be very good predictive algorithms. It turns out this is an easy fix.
Suppose we have some trained model f : X → [0, 1]k that produces class
scores as a function of context. If we additionally ask that our forecasts are
multicalibrated (marginally, in each dimension i) with respect to the level sets
of f (which we can do efficiently, by asking that our forecasts have low bias
with respect to the cartesian product of level sets of f and level sets of our
predictor), then our predictions will perform as well as f as measured by
squared error, cross-entropy-loss, or indeed any other “proper scoring rule”.

94Learning in Games (and Games in Learning)INCOMPLETE WORKING DRAFT

Bibliographic Notes and Further Reading

The idea of making predictions so that downstream decision-makers who best
respond to those predictions have low external regret is explored by Klein-
berg et al. [2023], which they call “U-Calibration”. The follow-the-perturbed-
algorithm like algorithm we give for this problem is taken from Kleinberg
et al. [2023]. The algorithm we give for efficiently making d-dimensional pre-
dictions that are unbiased with respect to a polynomial collection of condi-
tioning events, together with the applications to obtaining diminishing swap
and subsequence regret for downstream agents in online combinatorial op-
timization problems, as well as “transparent coverage” comes from Noarov
et al. [2023]; they give other applications as well. The algorithm we give for
online calibration has similar structure (randomizing between only two adja-
cent buckets) to a calibration algorithm first given by Foster and Hart [2021].
The multicalibration we give, based on exponential weights, is from Gupta
et al. [2022].

Bibliography

Jacob Duncan Abernethy, Elad Hazan, and Alexander Rakhlin. An efficient
algorithm for bandit linear optimization. In Conference on Learning Theory,
2008.

Dmitry Adamskiy, Wouter M Koolen, Alexey Chernov, and Vladimir Vovk. A
closer look at adaptive regret. In International Conference on Algorithmic
Learning Theory, pages 290–304. Springer, 2012.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory of computing,
8(1):121–164, 2012.

Avrim Blum and Thodoris Lykouris. Advancing subgroup fairness via sleep-
ing experts. In Innovations in Theoretical Computer Science Conference
(ITCS), volume 11, 2020.

Avrim Blum and Yishay Mansour. From external to internal regret. Journal
of Machine Learning Research, 8(6), 2007.

Dean P Foster and Sergiu Hart. Forecast hedging and calibration. Journal of
Political Economy, 129(12):3447–3490, 2021.

Dean P Foster and Rakesh Vohra. Regret in the on-line decision problem.
Games and Economic Behavior, 29(1-2):7–35, 1999.

Yoav Freund and Robert E Schapire. Game theory, on-line prediction and
boosting. In Proceedings of the ninth annual conference on Computational
learning theory, pages 325–332, 1996.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplica-
tive weights. Games and Economic Behavior, 29(1-2):79–103, 1999.

Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M Pai, and Aaron
Roth. Online multivalid learning: Means, moments, and prediction intervals.
In 13th Innovations in Theoretical Computer Science Conference (ITCS
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Nika Haghtalab, Michael I Jordan, and Eric Zhao. A unifying perspective on
multi-calibration: Unleashing game dynamics for multi-objective learning.
arXiv preprint arXiv:2302.10863, 2023a.

95

96 Bibliography

Nika Haghtalab, Chara Podimata, and Kunhe Yang. Calibrated stackelberg
games: Learning optimal commitments against calibrated agents. arXiv
preprint arXiv:2306.02704, 2023b.

James Hannan. Approximation to bayes risk in repeated play. Contributions
to the Theory of Games, 3:97–139, 1957.

Elad Hazan and Comandur Seshadhri. Efficient learning algorithms for chang-
ing environments. In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 393–400, 2009.

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307, 2005.

Bobby Kleinberg, Renato Paes Leme, Jon Schneider, and Yifeng Teng. U-
calibration: Forecasting for an unknown agent. In The Thirty Sixth Annual
Conference on Learning Theory, pages 5143–5145. PMLR, 2023.

Daniel Lee, Georgy Noarov, Mallesh Pai, and Aaron Roth. Online minimax
multiobjective optimization: Multicalibeating and other applications. Ad-
vances in Neural Information Processing Systems, 35:29051–29063, 2022.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine learning, 2:285–318, 1988.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm.
Information and computation, 108(2):212–261, 1994.

Georgy Noarov, Ramya Ramalingam, Aaron Roth, and Stephan Xie. High-
dimensional prediction for sequential decision making. arXiv preprint
arXiv:2310.17651, 2023.

RJ Williams. Sufficient conditions for nash equilibria in n-person games over
reflexive banach spaces. Journal of Optimization Theory and Applications,
30:383–394, 1980.

Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th international conference on
machine learning (icml-03), pages 928–936, 2003.

	Basics of Sequential Decision Making
	Basic Definitions
	Warmup: The Halving Algorithm
	The General Case: Multiplicative Weights
	Large Action Spaces: Online Linear Optimization
	Follow the Regularized Leader and Online Gradient Descent
	Online Convex Optimization

	Zero Sum Games and the Minimax Theorem
	Zero Sum Games
	From Sequential Decision Making to The Minimax Theorem
	Computing Minimax Strategies
	From the Minimax Theorem to Sequential Decision Making

	Multi-Objective Sequential Learning
	Motivating Example: Convergence to Correlated Equilibria
	A General Framework for Multiobjective Sequential Learning
	Controlling Regret on Multiple Subsequences
	Action Independent Subsequences
	Adaptive Regret
	Group-wise Regret

	General Subsequences
	Swap Regret
	Mixing and Matching Guarantees

	Making Unbiased Predictions and Calibration
	Modeling Decision Makers
	Predicting for No-Regret Play
	A Model for Unbiased Prediction
	Conditionally Unbiased Prediction

	Calibration
	Efficiently Making Unbiased Predictions
	One Dimensional (Multi)Calibration
	The General Case

	Predicting for No-Swap-Regret Play
	Obtaining No-Subsequence-Regret in Online Combinatorial Optimization
	Predicting Label Probabilities with ``Transparent Coverage''

	Bibliography

