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Abstract 

With recent advances in deep learning, neural machine translation (NMT) has superseded the 

statistical approach to machine translation (MT) as the state-of-the-art framework. NMT not only 

represents a thrilling milestone in MT research, but has also been widely embraced by industrial 

MT systems and incorporated into tools like Google Translate and Microsoft Translator. Despite 

its growing popularity and influence, NMT is not free of implicit biases. Since the training 

corpora for natural language processing (NLP) tasks – including NMT – often reflect societal 

norms and biases, NMT models are prone to translation inaccuracies that exhibit gender 

stereotypes. This thesis attempts to shed a light on this issue by offering a summary of recent 

studies on gender bias in NMT. The first section provides an overview of the NMT architecture 

and introduces technical concepts such as neural networks, word embeddings, and encoder-

decoder models. The second section discusses research that seeks to understand gender bias in 

the broader context of NLP, while the third section focuses on bias in NMT and approaches to 

mitigate it.
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I. Introduction 

In a world brimming with thousands of languages, human translation has long been our default 

means to overcome language barriers that hinder cross-cultural communication. However, 

manual translation is a laborious task. Due to the productive nature of language, translation could 

be repetitive but never predictable. Furthermore, as language is often intertwined with culture, an 

adequate translation that captures subtleties and nuances demands not only mastery of source and 

target languages but also human creativity. Throughout the 17th century, numerous prominent 

scholars including René Descartes tinkered with the idea of one universal language (Schwartz, 

2018). While this effort proved to be futile and arguably impossible, the emergence of machine 

translation in the mid-20th century provided a promising alternative that might finally be able to 

tear down linguistic barriers. 

  Machine translation (MT) can be defined as the use of machines to translate between 

natural languages (Jurafsky & Martin, 2020, Chapter 11). Prior to the advent of neural machine 

translation (NMT) around 2014, statistical machine translation (SMT; Brown et al., 1993) had 

been the dominant framework for over two decades. While SMT relies on massive bilingual 

corpora to construct a probabilistic model for translation, often in a phrase-by-phrase manner, 

NMT utilizes recurrent neural networks (RNNs) to encode and decode sequences in an end-to-

end fashion (Sutskever et al., 2014; Cho et al., 2014). With improvements over the past years, 

NMT has surpassed SMT in human evaluations and established a new state of the art (Junczys‐

Dowmunt et al., 2016; Castilho et al., 2017); in fact, systems like Google NMT (GNMT) have 

decreased translation errors by an average of 60% on samples in several major language pairs 

(Wu et al., 2016). 

  Even though NMT signifies a remarkable milestone in the field of machine translation, 

like many NLP tasks trained on human language texts (Sun et al., 2019), NMT also exhibits 

gender bias. For the purpose of this thesis, we define gender bias as the preference or prejudice 

toward one gender over the other. While often implicit, such bias can manifest in alarming ways, 

ranging from a tendency to use masculine defaults (Prates et al., 2019) to a reliance on 

prejudiced (albeit potentially misleading) association between occupation and gender (Rudinger 

et al., 2018; Zhao et al., 2018a). For example, when translating the English sentence “The doctor 

asked the nurse to help her in the procedure” into Spanish, Google Translate produces “El doctor 

le pidió a la enfermera que la ayudara en el procedimiento”, identifying the doctor as male in 

spite of the pronoun “her” (Stanovsky et al., 2019). Inaccuracies like this not only undermine 

translation quality – especially on a document level – but may also reinforce and even amplify 

existing societal biases.  

 This thesis aims to shed a light on this issue by summarizing recent efforts to identify and 

mitigate gender bias in machine translation, while highlighting limitations and future research 

directions. In this literature review, we first explore the architecture of NMT and introduce 

technical concepts such as neural networks, encoder-decoder models, and MT evaluation 

metrics. We then investigate gender bias in word embeddings and pre-trained language models, 
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as well as how it propagates to various NLP tasks (Sun et al., 2019), including coreference 

resolution (Zhao et al., 2019). Using insights from the discussion on gender bias in NLP, we 

concentrate on gender bias in the domain of machine translation and examine some state-of-the-

art studies on this subject matter. 
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II. Overview of Neural Machine Translation 

This section introduces the ideas of neural networks and word embeddings. It explores machine 

translation techniques such as recurrent neural network (RNN) encoder-decoder, the attention 

mechanism, and the Transformer architecture. It then discusses some common evaluation metrics 

of machine translation. 

2.1 Neural Networks 

As a prelude to the discussion of neural machine translation (NMT) models, we first introduce 

the concepts of neural networks and word embeddings (Section 2.2), which play a crucial role in 

many natural language processing tasks including NMT. Neural networks are a family of 

machine learning algorithms that take in various inputs to predict outputs. Inspired by neurons in 

the human brain, a neural network consists of computational units that each accept multiple 

inputs to produce a single output, which can then be passed as input to subsequent units in the 

network. Compared to linear models that attempt to find a linear relationship between different 

features, neural networks are non-linear and thus much more versatile. With the use of multiple 

layers of computing units, neural networks can represent and possibly solve an incredibly large 

space of problems (Koehn, 2020, Chapter 5).  

 
Figure 1 A simple feedforward neural network with one input layer, one hidden layer, one output layer, and one 

bias term (Jurafsky & Martin, 2020, p.134). 

In a standard neural architecture, each layer is fully connected to all nodes from the 

previous layer and the subsequent layer. The input layer and the hidden layer(s) may also contain 

bias units, which are helpful in the case where all input values are 0. A feedforward neural 

network with one hidden layer consists of the following components (Koehn, 2020, p. 68):  

• Input vector x = (x1, x2, … xn) 

• Hidden vector h = (h1, h2, … hm) 

• Output vector y = (y1, y2, … yl) 

• Weight matrix W connecting input nodes to hidden nodes 
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• Weight matrix U connecting hidden nodes to output nodes 

For each hidden node, its output can be computed by multiplying the weight matrix W by 

the input vector x, adding a bias term b to the product, and applying an activation function 𝑔 

(e.g., sigmoid, tanh, ReLU) to produce a hidden output h, as illustrated in Eq. 1: 

𝒉 = 𝑔(𝑾𝒙 + 𝒃)  (Equation 1) 

For each output node, the weight matrix U is first multiplied by the hidden vector h to 

produce an intermediate output (Eq. 2). The intermediate output vector is then normalized with 

the softmax function (Eq. 3) so that the outputs resemble a probability distribution (i.e., all 

values are between 0 and 1 and sum to 1). 

𝒛 = 𝑼𝒉  (Equation 2) 

𝒚 = softmax(𝒛) (Equation 3) 

 For better performance, neural architectures often have multiple hidden layers stacked 

together, resulting in deeper networks that are utilized in deep learning. In addition to 

feedforward neural networks, NLP tasks often employ other neural frameworks, such as 

recurrent neural networks (RNNs; Elman, 1990), Long Short-Term Memory networks (LSTM; 

Hochreiter & Schmidhuber, 1997), and convolutional neural networks (CNNs; LeCun et al., 

1998). Section 2.3 introduces the encoder-decoder architecture for machine translation, with a 

specific focus on models based on recurrent neural networks. 

2.2 Word Embeddings  

Word embeddings (and vector semantics in general) are based on the idea that words that are 

used and occur in similar contexts tend to have similar meanings, formally known as the 

distributional hypothesis in linguistics (Joos, 1950; Harris, 1954). Leveraging this parallel 

between distributional and semantic similarities, words can be represented as vectors in a high-

dimensional space. For example, semantically related words such as cat and dog tend to occur in 

similar environments, so do morphologically related words such as cat and cats; therefore, these 

words would have similar vector representations and are close to each other in the vector space 

(Jurafsky & Martin, 2020, Chapter 6). In addition, once every word in a dictionary is mapped to 

a numeric vector, we can easily quantify the similarity between words with a distance function 

such as the cosine similarity metric. 

One approach of constructing vectors involves creating co-occurrence matrices (i.e., 

term-document or term-term matrix) based on the frequency of words in a collection of d 

documents (Jurafsky & Martin, 2020, Chapter 6). A term-document matrix represents each word 

as a vector of length d (size of the document collection), while a term-term matrix represents 

each word as a vector of length |V| (vocabulary size). Weighting algorithms such as tf-idf (term 

frequency-inverse document frequency) and PPMI (Positive Pointwise Mutual Information) 

would then be applied to transform counts to word vectors. Since rarely do words co-occur with 

all other words, co-occurrence matrices often lead to vectors that are long and sparse (i.e., mostly 
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zeros). To address this, the word2vec software package (Mikolov et al., 2013a; Mikolov et al., 

2013b) was introduced to create short dense vectors, also known as embeddings. 

 

 

Figure 2 Visualization of word embeddings projected into two-dimensional space (Koehn, 2017, p. 36). 

Instead of computing frequencies of words, word2vec aims to predict word co-

occurrences; one such model is skip-gram with negative sampling (SGNS; Mikolov et al., 

2013b). For every word in the text, the algorithm treats the other words in its context window as 

positive examples of environments in which the target word occurs. To obtain negative samples, 

for each target-context pair (i.e., positive sample), the algorithm utilizes negative sampling 

algorithms to randomly select k words (i.e., noise words) in the lexicon that do not co-occur with 

the target. Once positive and negative samples are constructed from a corpus, the algorithm uses 

logistic regression to train a binary classifier to distinguish between the two cases (Eq. 4 

illustrates the loss function for a single target word w). Finally, the weights learned during 

training will be used as word embeddings. 

𝐿 = −[log 𝑃(+|𝑤, 𝑐) + ∑ log(1 − 𝑃(−|𝑤, 𝑛𝑖))]𝑘
𝑖=1   (Equation 4), 

where (w, c) is a single target-context pair from the positive examples, k is the number of 

negative samples for each positive sample, and n is one such negative example. 

 One limitation of word2vec embeddings is that their representation of each word in the 

vocabulary is static. As a result, they are unable to take a word’s syntactic and semantic 

environment into account, and they often fail to adequately model polysemous words in different 

linguistic contexts. Contextualized embeddings such as ELMo (Peters et al., 2018) and BERT 

(Devlin et al., 2019) attempt to address this problem by creating a dynamic representation of 
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each word. ELMo (Embeddings from Language Models) pre-trains a directional LSTM on a 

massive text corpus, so that the language model can predict not just the following but also the 

previous word. Depending on the task, the model learns a function of the hidden states of the 

entire input sentence, which allows it to create a contextualized representation of each word.  

BERT (Bidirectional Encoder Representations from Transformers), on the other hand, 

uses a stacked Transformer architecture (Section 2.4.2). With the Transformer’s self-attention 

mechanism, the model is able to predict any word based on its surrounding words. Similar to 

ELMo, BERT is first pre-trained on a large monolingual corpus then fine-tuned for a specific 

task. Since ELMo and BERT significantly outperform traditional static word embeddings on a 

variety of NLP tasks, NMT opts for dynamic contextualized embeddings when encoding and 

decoding words.  

2.3 Encoder-Decoder Models 

At the sentence-level, machine translation can be defined as the task of converting a sequence of 

tokens in the source language into a sequence of tokens in the target language. A common 

architecture for such task is the encoder-decoder network (Cho et al., 2014), which belongs to the 

broader class of sequence-to-sequence neural network models that map one sequence to another.  

While encoder-decoder models may vary based on their underlying language models (for 

example, various flavors of neural networks such as RNN, LSTM, CNN can be used), a generic 

encoder-decoder framework has the following three components (Jurafsky & Martin, 2020, pp. 

208-209): 

1. An encoder that reads in a sequence of tokens of arbitrary length in the source language, 

x = (x1, …, xn), and converts the tokens into a sequence of contextualized representations 

h = (he
1, …, he

n). 

2. A context vector c that is a function of all the encoder hidden states (he
1, …, he

n) and 

captures the essence of the source text. 

3. A decoder that reads in the context vector c and produces a variable-length sequence of 

vector representations, which will then be transformed into tokens in the target language, 

y = (y1, …, ym). 

 
Figure 3 Illustration of an encoder-decoder model. The context is a function of the hidden representation of the 

input and serves as the input to the decoder (Jurafsky & Martin, 2020, p. 208). 



 7 

To train encoder-decoder models, we use a parallel corpus that contains aligned pairs of 

sentences in the source and target languages. Each pair of input and output sentences are 

concatenated with a special token in the middle as a separator. With this training set, the encoder 

and decoder components of the model are trained jointly to maximize the conditional log-

likelihood of a target sentence given a source sentence. 

To translate an input sentence, at each step of the decoding process, the algorithm 

predicts an output word by first computing the probability distribution over all possible outputs 

(i.e., all words in the vocabulary). The algorithm may take a greedy approach and always select 

the word with the highest probability at every step. However, this locally optimal choice is rarely 

optimal for the entire sentence, since the best translation might contain words that initially seem 

less probable.  

One alternative strategy to the greedy method is beam search. Instead of choosing the 

single best token, beam search keeps track of k candidate translations, where k is called the beam 

width. At each timestep, the algorithm selects k most likely word choices based on the 

probability distribution. The algorithm uses distinct decoders to expand all k hypotheses to obtain 

k * |V| candidates, where |V| is the size of the vocabulary. Each of these candidates will be 

scored with 𝑃(𝑦𝑖|𝑥, 𝑦<𝑖), which evaluates the probability of a potential output given the path that 

led to it. The search space is then pruned down to k best hypotheses based on this score, so that 

the number of hypotheses on the search frontier does not exceed the beam width.  

The decoding process proceeds until an end-of-sentence token is generated for each of 

the k hypotheses. A score is then computed for a hypothesis y with Eq. 5. Note that the score is 

normalized by dividing the negative log probability by the length of y to compensate for the fact 

that longer strings tend to receive lower probabilities. Depending on the use case, either the best 

translation or a subset of the top translations will be returned. 

𝑠𝑐𝑜𝑟𝑒(𝑦) =  − log 𝑃(𝑦 |𝑥) = ∑ log 𝑃(𝑦𝑖|𝑦1, … , 𝑦𝑖−1, 𝑥)𝑡
𝑖=1   (Equation 5) 

 

2.3.1 RNN Encoder-Decoder 

A popular underlying model for encoder and decoder is recurrent neural networks (RNNs), 

which are a type of neural networks that incorporates the previous hidden state ht-1 when 

computing hidden state ht at time step t. Given the complex syntactic and semantic structures that 

exist in natural languages, RNNs often stand out as a suitable choice. Since information obtained 

in previous timesteps is continuously embedded into the current hidden state, RNNs can not only 

accept input sentences of an arbitrary length but also capture the long-distance dependencies 

between words. This is crucial for NMT since a faith translation must preserve agreement in 

gender, number, and other grammatical properties, regardless of the number of intervening 

words in a sentence. 

An RNN-based encoder-decoder framework is usually composed a pair of RNNs. Fig. 4 

is an illustration of a model with a single-layered RNN as the encoder and the decoder. 
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Figure 4 Illustration of a singled-layered RNN encoder-decoder model (Jurafsky & Martin, 2020, p.210). 

Given an input sequence in the source language x = (x1, x2, x3, …, xn), where each xi is the 

embedding of a word in the sentence, the encoder RNN maintains a hidden state vector, he, that 

is continuously updated as the encoder reads over x sequentially. At each timestep t, the RNN 

updates he according to the following equation:       

ℎ𝑡
𝑒 = 𝑓(ℎ𝑡−1

𝑒 , 𝑥𝑡) (Equation 6), 

where 𝑓 is a non-linear activation function such as a sigmoid function or long short-term 

memory (LSTM), ℎ𝑡−1
𝑒  is the cumulative hidden state from the prior state, and xt is the word 

embedding of the input token at the current timestep t. 

At the end of this encoding process (indicated by the end-of-sentence symbol), the latest 

hidden state of the encoder would contain contextualized information of the entire input sentence 

derived from all previous timesteps. This hidden state is often designated as the context vector c 

that will then be passed onto the decoder. 

  As part of the decoding phase, we initialize the decoder RNN’s hidden state ℎ0
𝑑 with the 

context vector c generated by the encoder. At each timestep t, the decoder uses Eq. 7 to update 

the hidden state ℎ𝑡
𝑑 and Eq. 8 to compute a probability that will then be used to generate an 

output token, until the end-of-sentence token is generated. Note that to prevent the influence of c 

from being diluted as more output is generated, c is available as a parameter to 𝑓 and 𝑔 

throughout the decoding process. 

ℎ𝑡
𝑑 = 𝑓(ℎ𝑡−1

𝑑 , 𝑦𝑡−1, 𝒄)      (Equation 7), 

where 𝑓 is an activation function. 

P(yt|𝑦𝑡−1, 𝑦𝑡−2, … , 𝑦1, 𝒄) = 𝑔(ℎ𝑡
𝑑 , 𝑦𝑡−1, 𝒄)    (Equation 8), 

where 𝑔 is an activation function that produces valid probability distribution, such as a softmax 

function. 
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2.4 Attention and Transformers 

2.4.1 Attention Mechanism 

One of the challenges of machine translation is capturing the long-distance dependencies that 

exist in a sentence. The standard encoder-decoder architecture attempts to address this problem 

by compressing an input sequence of arbitrary length into a context vector of fixed length, so that 

the context vector embodies the contextualized information of the entire sentence. However, the 

performance of such models tends to deteriorate rapidly as the length of the input sentence 

increases. This effect can be attributed to the limited representation power of a fixed-length 

intermediate vector: since the standard model uses only the final hidden state of the encoder (or 

some function of the hidden states) as the context vector, the beginning of the input may not be 

equally well represented, and relevant parts of the input may not be emphasized enough when 

generating its corresponding translation.  

 The attention mechanism – first proposed by Bahdanau et al. in 2014 – presents a 

potential solution to this problem. Instead of representing the entire input sequence with a static, 

fixed-length vector, the context vector for each time step of the decoding phase can be computed 

dynamically. By focusing on parts of the input that are relevant for a particular output token, the 

attention mechanism can better capture long-distance dependencies for each word in the output. 

 A standard attention-based model first creates a set of hidden states to represent the input 

by running a bidirectional RNN (BiRNN) on the source sentence. At each time step t in the 

encoding process, we concatenate the two hidden vectors (one from each direction) to create a 

bidirectional representation of the token’s context. We then concatenate all the hidden states 

generated at each time step into a matrix 𝑯𝒆 where each column corresponds to the hidden state 

of an input token. Now instead of a single fixed context vector, the decoder can reference this 

matrix representation of the input when deriving the context vector at each time step of the 

decoding phase. 

 To generate context matrix 𝑐𝑡 at each time step t, the decoder must compute an attention 

vector 𝛼𝑡  that captures the relevance of each encoder hidden state such that 𝑐𝑡 = 𝑯𝒆𝛼𝑡. This 

process consists of the following steps: 

1. For each encoder hidden state, ℎ𝑖
𝑒, compare the similarity between ℎ𝑖

𝑒 and the prior 

decoder hidden state ℎ𝑡−1
𝑑  by computing an attention score 𝑠𝑐𝑜𝑟𝑒(ℎ𝑡−1

𝑑 , ℎ𝑖
𝑒). The scoring 

function can simply be the dot product between ℎ𝑖
𝑒 and ℎ𝑡−1

𝑑 , as long as the two vectors 

have the same length. We can also use a more sophisticated scoring function such as the 

bilinear function, which adds a learnable parameter 𝑊𝑠 to the equation. The weight vector 

not only increases the expressiveness of the scoring function, but also allows vectors to 

have different dimensions (unlike the dot product). 

2. After computing a score for each vector in 𝑯𝒆, we can normalize the scores into a 

probability distribution with softmax to obtain the proportional relevance of ℎ𝑖
𝑒 to ℎ𝑡

𝑑: 
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𝛼𝑖𝑡 = softmax(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡−1
𝑑 , ℎ𝑖

𝑒) ∀ 𝑖 ∈ 𝑒) =  
exp(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡−1

𝑑 ,ℎ𝑖
𝑒))

∑ exp(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡−1
𝑑 ,ℎ𝑘

𝑒))𝑘
   (Equation 9) 

3. Compute the weighted average of all the encoder hidden states, which will then be used 

as the context vector for the current time step t. 

𝑐𝑡 = ∑ 𝑎𝑖𝑡ℎ𝑖
𝑒

𝑖   (Equation 10) 

2.4.2 Transformer 

One drawback of an RNN-based encoder-decoder model is that recurrent neural networks require 

a sequential walk-through of the entire input in order to generate hidden states. This approach is 

not only time and space consuming but might also lead to a loss of relevant information over a 

long sequence of recurrent connections. The Transformer (Vaswani et al., 2017), on the other 

hand, is a non-recurrent and highly parallelized architecture that solely relies on the attention 

mechanism. It’s not only more time and space efficient but also established a new state-of-the-art 

BLEU score when it was first introduced in 2017.  

In addition to components such as feedforward neural networks and the encoder-decoder 

attention mechanism (Section 2.4.1), the Transformer also utilizes self-attention in its encoder 

and decoder. Instead of a recurrent approach, self-attention creates a representation of a sequence 

by computing the relationship between a target position and other positions in the same 

sequence. By attending to relevant contextual information for each input token, the model can 

better identify its long-distance dependencies and provide a more refined representation of the 

word. Moreover, since the computation for each position is independent of other computations, 

the self-attention mechanism can perform information extraction and inference for large contexts 

by utilizing parallel computation.  

To facilitate learning during training, the embedding of each input word is associated 

with three weight matrices: Query vector, Key vector, and Value vector. Eq. 11 can be used to 

compute the outputs of a self-attention layer. Furthermore, to capture both the local context and 

long-range dependencies of a word, multi-head self-attention – which consists of multiple self-

attention layers running in parallel – may be used to extract different kinds of relations. These 

parallel layers each have a set of distinct parameters but are focused on learning different aspects 

of the context. The output from each layer can be concatenated and reduced to the original output 

dimension, as expected by the subsequent layer. 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉   (Equation 11), 

where 𝑑𝑘 is the dimension of the query and key vectors. 

MultiHead(𝑄, 𝐾, 𝑉)  = 𝑾𝒐(ℎ𝑒𝑎𝑑1 ⊕  ℎ𝑒𝑎𝑑2 . . .⊕ ℎ𝑒𝑎𝑑ℎ)  (Equation 12), 

where ℎ𝑒𝑎𝑑𝑖  is the output of 𝑖𝑡ℎ head (computed with Eq. 11) and 𝑾𝒐 is the weight matrix that 

projects the concatenated output to the original output dimension.  
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The output of the self-attention layers will then be passed to additional feedforward 

layers, residual connections, normalization layers. These layers form a transformer block that can 

be stacked on top of each other. Furthermore, since the order of tokens is no longer preserved, 

the Transformer uses positional encoding to combine information about the relative positions of 

words with their embeddings, and such information will be passed to the transformer blocks.  

As in RNN encoder-decoder models, the Transformer uses attention between its encoder 

and decoder to focus on relevant parts of the input sequence. The decoder also utilizes stacked 

self-attention layers, in addition to residual connections, layer normalization, and a feedforward 

network. 

2.5 Performance Evaluation  

To track progress in the field machine translation, it is crucial to develop systematic ways to 

evaluate the effectiveness of different translation systems. Currently, human evaluation sets the 

gold standard for translation assessment. One human assessment approach involves grading 

outputs along two dimensions: fluency and adequacy (Jurafsky & Martin, 2020, p. 221). While 

fluency is concerned with how natural and grammatically correct the translation is, adequacy is 

concerned with how well the translation captures the meaning of the input sentence. 

Alternatively, human annotators can rank outputs from different systems on a sentence-by-

sentence basis to determine the superior translation. An obvious downside of human assessment 

is that it could be inefficient and expensive, which means automatic evaluation methods are 

much more practical and preferable, especially when it comes to evaluating large amounts of 

translations across different system configurations. This section explores a few popular 

automatic metrics, including BLEU, METEOR, and translation error rate (TER). 

 

2.5.1 BLEU 

Developed by IBM researchers Papineni et al. in 2002, BLEU (Bilingual Evaluation Understudy) 

is the most widely used automatic evaluation metric. Given a candidate MT translation and a 

gold standard produced by manual translation, BLEU computes the number of n-gram (word-

sequence) overlaps between the two sentences. 

𝑝𝑟𝑒𝑐𝑛 =
∑ ∑ count_match(n_gram)n−gram∈𝑆𝑆∈𝐶

∑ ∑ count_all(n_gram′)n−gram′∈𝑆′𝑆′∈𝐶
 (Equation 13), 

where 𝐶 is the set of all candidate sentences in the corpus; 𝑆 is a candidate sentence for which we 

count all the n-gram matches of a certain type (e.g., unigram matches) with the reference. The 

denominator is simply the total of all such n-grams (e.g., unigrams) in all candidate sentences.  

Since this metric is precision-focused, it is possible to game the system by producing 

very short outputs consisting only of n-grams with high confidence (Dorr et al., 2010). Instead of 
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using recall (Eq. 15) or F-measure (Eq. 16), BLEU uses a brevity penalty (Eq. 17) to explicitly 

address such scenarios, and the BLEU metric is defined in Eq. 18. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
matches

n−gram_count(𝑐)
  (Equation 14), 

where the numerator is the number of n-gram matches between the candidate and the reference, 

and the denominator is the total number of n-grams in the candidate sentence. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
matches

n−gram_count(𝑟)
  (Equation 15), 

where the numerator is the number of n-gram matches between the candidate and the reference, 

and the denominator is the total number of n-grams in the reference sentence. 

𝐹1 =
2𝑃𝑅

𝑃+𝑅
   (Equation 16), 

where P denotes precision (Eq. 14) and R denotes recall (Eq. 15).  

𝐵𝑃 = min(1, exp (1 −
𝑟

𝑐
))  (Equation 17), 

where r is the sum of the length of all references, and c is the sum of the length of all candidates. 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 × (∏ 𝑝𝑟𝑒𝑐𝑛
4
𝑛=1 )  (Equation 18), 

where n specifies the n-gram length1. 

 

2.5.2 METEOR 

Unlike BLEU, which only considers exact matches between the translation and its reference, 

METEOR (Banerjee & Lavie, 2005) is more focused on the semantic quality of a sentence and 

allows more variations in word choice. In addition to exact matching, METEOR also uses stem 

matching and synonym matching to detect morphologically or semantically similar words, and 

synonyms can often be obtained via WordNet (Fellbaum, 1998). 

 Furthermore, while BLEU relies solely on a fixed brevity penalty to compensate for the 

lack of recall, METEOR incorporates both precision and recall into the equation to compute their 

harmonic mean:  

𝐹𝑚𝑒𝑎𝑛 =
𝑃∙𝑅

𝛼𝑃+(1−𝛼)𝑅
  (Equation 19), 

where 𝑃 denotes precision (Eq. 14), 𝑅 denotes recall (Eq. 15) and 𝛼 is usually set to be 0.9 since 

METEOR is a recall-focused metric. 

 
1 A common maximum length for n-grams is four. 
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 Finally, METEOR also uses a penalty score to favor longer matches over shorter 

fragments (e.g., unigrams):  

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝛾 ∙ 𝑓𝑟𝑎𝑔𝛽   (Equation 20), 

where 𝑓𝑟𝑎𝑔 is the number of consecutive unigram matches divided by the total number of 

unigram matches; 𝛾 is defaulted to be 3.0 and 𝛽 is 0.5.  

 The METEOR score can be defined as: 

𝑠𝑐𝑜𝑟𝑒 = (1 − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦) ∙ 𝐹𝑚𝑒𝑎𝑛   (Equation 21) 

 

2.5.3 TER 

Translation error rate (TER; Snover et al., 2006) is concerned with the number of edits, or 

movement or words, from the candidate translation to reference. An edit could be an operation 

that inserts, deletes, or substitutes a word, or an operation that shifts a sequence of words. TER is 

then computed as the total number of substitutions, insertions, deletions, and shifts, over the 

average number of words across multiple reference sentences. 

𝑇𝐸𝑅 =  
minimum # of edits

average # of reference words
 (Equation 22) 

 It’s worth noting that the computation of TER score is NP-complete, since there are too 

many shifts to efficiently compute the optimal number edits. As a result, a greedy algorithm is 

often used to first compute the word error rate (WER) between a translation and its reference, 

and then iteratively find the best shift operation until the score decreases. 



III. Gender Bias in Pre-trained Models 

This section explores gender bias in pre-trained language models, with a focus on bias in word 

embeddings. Since word embeddings are widely used in various NLP tasks, understanding how 

human biases are encoded into these systems might shed a light on bias in machine translation. 

Furthermore, this section discusses methods for quantifying bias in pre-trained models, as well as 

techniques that can be employed to mitigate gender bias. 

3.1 Gender Bias in Word Embeddings 

Word embeddings play a crucial role in a variety of natural language processing applications, 

and the development of word2vec and contextualized embeddings (e.g., ELMo, BERT) led to 

significant improvements in tasks including machine translation. However, as pre-trained models 

are derived from corpora of human language texts, word embeddings have been shown 

(Bolukbasi et al., 2016; Zhao et al., 2019; Webster et al., 2020) to exhibit biases that reflect 

stereotypes about gender, race, age, and other demographic factors.  

In 2016, Bolukbasi et al. published a seminal paper that revealed human-like biases in 

w2vNEWS embedding – a 300-dimensional word2vec embedding trained on a Google News 

corpus of 3 million English words. Since vectors are used to embody word semantics, the 

relationship between words can be modeled by the difference between corresponding word 

vectors. For instance, when solving the analogy puzzle “man is to king as woman is to x” 

(denoted as man:king :: woman:x), word embedding arithmetic returns x = queen, since 

 
Even though vector arithmetic can capture useful relationships between words, it can also 

shed a light on biases encoded into the system. By projecting word2vec embeddings of 

occupations onto the she-he axis, the model generates analogies such as man:computer 

scientist :: woman:homemaker and father:doctor :: mother:nurse. In a similar fashion, 

embeddings can make biased predictions based on names and are likely to rank “computer 

science” as more highly related to male names than female names. This correlation between 

occupation and gender word embeddings might result in amplified bias in downstream 

applications. For instance, if word vectors were employed to improve the relevance of search 

results (Nalisnick et al., 2016), the search engine might rank pages related to male computer 

scientists higher than those related to female computer scientists. Furthermore, comparable 

results were replicated by the GloVe word embeddings pretrained on a web-crawl corpus 

(Bolukbasi et al., 2016), suggesting that such bias is prevalent across different word embedding 

systems. 
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Figure 5 Projection of potentially stereotyped words (represented by GloVe vectors) along the she-he axis. Words to 

the left are he words and words on the right are she words (Chakraborty et al., 2016). 

 While contextualized embedding models such as ELMo (Peters et al., 2018), BERT 

(Devlin et al., 2019) and ALBERT (Lan et al., 2020) have led to substantial improvement across 

a range of NLP tasks, they are not free from gender bias. Zhao et al. (2019) show that not only 

does the training corpus for ELMo (i.e., the Billion Word corpus) contain three times more 

masculine pronouns (i.e., he, his, and him) than feminine pronouns (i.e., she, her, and hers), 

masculine pronouns are also more likely to co-occur with occupation words. In addition to the 

bias in training data, ELMo seems to represent and propagate information associated with male 

entities better than information associated with female entities. In their study, Zhao et al. show 

that an SVM classifier is 14% more accurate when predicting the gender of a profession term in 

a sentence (e.g., “the engineer went back to her home”) when the true gender is male instead of 

female. BERT and ALBERT also learn gendered correlations and exhibit quantifiable bias 

(Webster et al., 2020), which might manifest in downstream tasks such as gender pronoun 

resolution and coreference resolution. 

3.2 Evaluation Frameworks 

3.2.1 Analogy-based Evaluation 

To detect gender bias in word2vec embeddings, Bolukbasi et al. (2016) propose an analogy-

based evaluation approach. They first distinguish between gender-specific words, which are 

associated with a gender by definition (e.g., brother, sister), and gender-neutral words, which 
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encompass all other words and are the target of the debiasing algorithm (described in Section 

3.3.1).  

Bolukbasi et al. then identify two types of bias: direct bias refers to the association 

between a gender-neutral word and a clear gender pair (e.g., he and she), which can be reflected 

by the locations of vectors (e.g., doctor is closer to man than woman). A less obvious kind of 

bias, indirect bias, is manifested in the association between gender-neutral words, which is most 

likely derived from the words’ respective relationships with gendered words. For instance, the 

fact that receptionist is closer to softball than football may be attributed to their respective 

associations with gender specific words such as she and woman.   

To demonstrate that word embeddings contain quantifiable gender bias in their geometry, 

Bolukbasi et al. utilize a gender subspace, which consists of the difference vectors of multiple 

gender pairs (e.g., she and he, her and his, woman and man). Since the gender subspace 

encompasses multiple directions in which word embeddings could carry gender bias, it is 

expected to capture the overall gender bias in the embeddings.  

Given a set of gender-neutral words, denoted by N, and a direction for the gender 

subspace, denoted by g, direct bias can be defined by the following equations: 

DirectBiasc =
1

|𝑁|
∑ | cos(𝑤, 𝑔) |𝑐

𝑤∈𝑁  (Equation 23) 

where c is a parameter for specifying how strict the bias measurement should be, with c = 0 

being the strictest (i.e., no overlap between w and g is tolerated) and c = 1 being more lenient. In 

Bolukbasi et al.’s study with 327 occupation words, DirectBias1 = 0.08, suggesting that the 

embeddings of many occupation words have a component along the gender direction. 

 To measure indirect bias, a more sophisticated equation is used to detect the effect of g 

on pairs of gender-neutral words (denoted 𝑤, 𝑣): 

𝛽(𝑤, 𝑣) = (𝑤 ∙ 𝑣 −
𝑤⊥∙𝑣⊥

||𝑤⊥||
2

||𝑣⊥||
2

) / 𝑤 ∙ 𝑣  (Equation 24) 

in which 𝑤⊥ = 𝑤 − 𝑤𝑔 and 𝑤𝑔 = (𝑤𝑔)𝑔. The numerator represents the change in inner product 

after gender subspace is projected out from 𝑤 and 𝑣, and the overall metric is the ratio of this 

difference to the original inner product value. 

 Using this evaluation metric, the indirect bias 𝛽 between softball and receptionist, 

waitress, and homemaker are 67%, 35%, 38%, respectively, suggesting that 𝑔 has a substantial 

impact on the relationship between two supposedly gender-neutral words. 

 

3.2.2 WinoBias 

WinoBias (Zhao et al., 2018a) is a challenge dataset for analyzing gender bias in coreference 

resolution, which is the task of identifying all phrases (i.e., mentions) that refer to the same 

entity. The WinoBias corpus contains 3160 Winograd-style (Rahman & Ng, 2012) sentences, in 

which a pronoun must correspond to one of two previously mentioned entities. All sentences 
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contain references to one of 40 occupations that are considered stereotypical based on US 

Department of Labor statistics2 and contain roughly follow two prototypical templates (Zhao et 

al., 2018a): 

Type 1 (WinoBias-knowledge): [entity1] [interacts with] [entity2] [conjunction] [pronoun] 

[circumstances]. 

Coreference resolution requires world knowledge about given circumstances since sentences of 

this type contain no syntactic cues. 

Type 2 (WinoBias-syntax): [entity1] [interacts with] [entity2] and then [interacts with] 

[pronoun] for [circumstances]. 

Coreference decisions can be made based on syntactic information and understanding of the 

pronoun, and both semantic and syntactic cues are able to assist with disambiguation. 

Coreference resolution systems are expected to do well in these cases. 

Each sentence in the challenge set can be characterized as either pro-stereotypical, in 

which the pronoun refers to an occupation dominated by the gender of the pronoun, or anti-

stereotypical, in which the occupation is not dominated by the gender of the pronoun. A 

coreference resolution system is considered gender biased if it links pronouns to occupations 

more accurately in pro-stereotypical examples than in anti-stereotypical examples.  

 
Figure 6 Pairs of gender balanced co-reference tests in the WinoBias dataset. Male and female entities are marked 

in blue and orange, respectively. For each example, the gender of the pronominal reference is irrelevant for the co-

reference decision. Systems must be able to make correct linking predictions in pro-stereotypical scenarios (solid 

purple lines) and anti-stereotypical scenarios (dashed purple lines) equally well to pass the test (Zhao et al., 2018a). 

 
2 https://www.bls.gov/cps/cpsaat11.htm 

https://www.bls.gov/cps/cpsaat11.htm
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With the WinoBias challenge set, the study reveals that three systems representative of 

three paradigms – the Stanford Deterministic Coreference System (rule-based; Raghunathan et 

al., 2010), the Berkeley Coreference Resolution System (feature-driven; Durrett & Klein, 2013), 

and the UW End-to-end Neural Coreference Resolution System (neural system; Lee et al., 2017) 

– all contain gender bias. More specifically, all three systems exhibit a significant (p < .05) 

difference in 𝐹1 score between pro-stereotypical and anti-stereotypical conditions, with an 

average difference of 21.1 across the systems.  

Since the training corpus used by these systems, Ontonotes 5.03, contains significantly 

more male entities than female entities, Zhao et al. employ a data augmentation approach with 

anonymization (discussed in Section 3.3.1) to eliminate this gender imbalance in training data. 

Furthermore, since coreference systems are built on word embeddings that have been shown to 

display gender bias (Bolukbasi et al., 2016), Zhao et al. replace GloVe embeddings with 

debiased vectors (described in Section 3.2.1) to prevent bias propagation. Overall, the 

combination of these debiasing methods result in significant reduction in bias when evaluated on 

WinoBias, without significantly affecting accuracy. 

 

3.2.3 Winogender 

Similar to WinoBias, Winogender4 (Rudinger et al., 2018) is a Winograd schema-style challenge 

set for detecting gender bias in coreference resolution systems. However, the two datasets differ 

in that Winogender schemas also include gender-neutral pronouns and are human-validated on 

Mechanical Turk. In addition, each Winogender sentence contains only one occupational 

mention, as opposed to two.  

To reveal cases in which a system may be more or less likely to correctly identify the 

reference of a pronoun, Winogender utilizes 60 one-word occupations and 120 hand-written 

sentence templates. Each sentence consists of an occupation, a secondary participant, and a 

pronoun (i.e., which could be female, male, or gender-neutral) that is coreferential with either the 

occupation or the participant.  

 
Figure 7 Example sentences generated from the occupation paramedic. Correct answers are highlighted in bold  

(Rudinger et al., 2018). 

 
3 https://catalog.ldc.upenn.edu/LDC2013T19 
4 https://github.com/rudinger/ winogender-schemas 

https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/rudinger/%20winogender-schemas
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With this dataset, Rudinger et al. find that across all three types of coreference system 

architectures (rule-based, statistical, and neural), male pronouns are more likely to be resolved as 

the occupation than female or neutral pronouns; meanwhile neutral pronouns (i.e., 

they/their/them) are often failed to be resolved correctly, possibly due to ambiguity in number 

agreement. Furthermore, as illustrated in Figure 8, the gender preferences exhibited by all three 

systems mirror real-world occupational gender disparities, based on both the U.S. Bureau of 

Labor Statistics and Bergsma and Lin (2016)’s work on assigning a count-based gender score to 

a large list of English nouns. 

 
Figure 8 Each point in the plot represents an occupation. The y-axis represents how much more a system prefers a 

female pronoun to a male pronoun, with 100% being the maximum female bias, and -100% being the maximum 

male bias. Since the Winogender dataset is gender-balanced for each occupation, the dotted black line at y=0 

represents the ideal system with 100% accuracy (Rudinger et al., 2018). 

 

3.2.4 Word Embedding Association Test (WEAT) 

The Word Embedding Association Test (WEAT) is a statistical method devised by Caliskan et 

al. (2017) to quantify social bias in word embeddings. Inspired by the Implicit Association Test5 

(IAT; Greenwald et al., 1998) – a widely used test for measuring human biases, WEAT 

compares two sets of target concepts of equal size, denoted X and Y, with two sets of attribute 

words, denoted A and B. For instance, X and Y could be sets of gendered terms such as {man, 

male} and {woman, female}, while A and B are career or family-related words such as 

{programmer, engineer, scientist} and {nurse, teacher, librarian}. To assess whether there 

exists a significant difference between how the two sets of target words relate to the two sets of 

attribute words, Caliskan et al. use cosine similarity between target and attribute word 

 
5 https://implicit.harvard.edu/implicit/takeatest.html 

https://implicit.harvard.edu/implicit/takeatest.html
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embeddings to quantify bias. More specifically, Eq. 25 and Eq. 26 are used to compute the test 

statistics, Eq. 27 is used to compute the p-value, and Eq. 28 is used to compute the effect size. 

𝑠(𝑡, 𝐴, 𝐵) = [mean𝑎∈𝐴sim(𝑡, 𝑎) − mean𝑏∈𝐵sim(𝑡, 𝑏)]   (Equation 25), 

where sim is the cosine similarity between the embeddings for a target word and an attribute 

word. 

𝑆(𝑋, 𝑌, 𝐴, 𝐵) = [mean𝑥∈𝑋𝑠(𝑥, 𝐴, 𝐵) − mean𝑦∈𝑌𝑠(𝑦, 𝐴, 𝐵)]  (Equation 26), 

where the degree of bias for each target word in X and Y (i.e., 𝑠(𝑥, 𝐴, 𝐵) and 𝑠(𝑦, 𝐴, 𝐵)) is 

computed with Eq. 25. 

𝑝 = Pr[𝑆(𝑋𝑖 , 𝑌𝑖 , 𝐴, 𝐵) > 𝑆(𝑋, 𝑌, 𝐴, 𝐵)] (Equation 27) 

𝑑 =
𝑆(𝑋,𝑌,𝐴,𝐵)

std𝑡∈𝑋∪𝑌 𝑠(𝑡,𝐴,𝐵)
    (Equation 28) 

While the cosine-based methods may expose bias in traditional word embeddings such as 

word2vec and GloVe, they are less effective when detecting bias in contextualized embeddings 

such as BERT (May et al., 2019). To quantify bias in BERT, Kurita et al. (2019) propose an 

alternative algorithm to compute the association between a target and an attribute. The following 

procedure is illustrated with examples in which [TARGET] = male gender and [ATTRIBUTE] = 

programmer. 

1. Using the target and the attribute, create a template sentence such as “[TARGET] is a 

[ATTRIBUTE]” (e.g., “he is a programmer”). 

2. Replace [TARGET] with masked tokens, denoted by [MASK], to obtain “[MASK] is a 

[ATTRIBUTE]” (e.g., “[MASK] is a programmer”), denote this as sentence-1. 

Query BERT with sentence-1 and compute ptarget = P([MASK] = [TARGET] | sentence-

1), which represents the association between the target and the attribute. 

3. Replace both [TARGET] and [ATTRIBUTE] with [MASK] (e.g., “[MASK] is a 

[MASK]”), denote this as sentence-2.  

Query BERT with sentence-2 and compute prior probability pprior = P([MASK] = 

[TARGET] | sentence-2), which represents how likely the target word is in BERT given 

the sentence structure alone. 

4. Compute the log probability bias score = log(
𝑝𝑡𝑎𝑟𝑔𝑒𝑡

𝑝𝑝𝑟𝑖𝑜𝑟
), which indicates the relative 

association between the target and the attribute (e.g., how much more BERT prefers the 

association between male gender and programmer than the association between female 

gender and programmer). 

 



 21 

 While conducting WEAT on BERT fails to find any statistically significant biases at p < 

0.01, the algorithm for log probability bias score queries the underlying language model with 

masked sentences, and it reveals that BERT also exhibits human-like biases. Furthermore, Kurita 

et al. show that the gender bias encoded in BERT might influence downstream tasks such as 

Gendered Pronoun Resolution (GPR; Webster et al., 2018), which is a subtask in coreference 

resolution. By employing the log probability bias score method, they observe that it may be 

challenging for BERT to perform coreference resolution correctly when the pronoun is female 

and the topic is biased towards the male gender. 

 

3.2.5 Discovery of Correlations (DisCo) 

With a focus on intrinsic gendered correlations, Webster et al. (2020) propose a new evaluation 

framework called Discovery of Correlations (DisCo) that reveals and quantifies correlates of 

gender in contextual representations. DisCo utilizes a series of templates with unfilled slots (e.g., 

“[PERSON] studies [BLANK] at college”). In each sentence, the [PERSON] slot is filled 

manually, with either a name (e.g., Maria) or a term (e.g., The poetess) that is associated with a 

gender. While the two sources – names from the US Social Security name statistics6 (denoted 

Names) and terms from the list of gendered nouns compiled by Zhao et al. (2017; denoted 

Terms) – only have binary labels (female and male), the word lists could be extended to include 

gender-neutral values. The second slot, labeled [BLANK], is then filled by a pre-trained model.  

Based on the value of [PERSON], the model might exhibit preference for one gender 

over another when supplying a word for [BLANK]. Therefore, the DisCo metric is defined to be 

the number of fills that are significantly associated with a gender over the total number of 

templates, where the presence of gendered correlations is determined by a ꭓ-squared test. 

Unlike evaluation methods based on tasks such as coreference resolution, DisCo provides 

insight into gendered correlations intrinsic to a pre-trained language model. In the experiments 

conducted by Webster et al., a large BERT model (with 334 parameters) has a DisCo value of 

1.0 when evaluated with Terms and a value of 3.4 when evaluated with Names. Since 

experiments with random groups (not categorized by gender) achieved a DisCo value of either 

0.0 or 0.1, the non-zero DisCo values of BERT suggest that gendered correlations are inherent in 

the model.  

3.3 Mitigation Techniques  

3.3.1 Word Embedding Debiasing 

To address gender bias in word2vec word embeddings, Bolukbasi et al. (2016) propose a linear 

algebraic debiasing technique to mitigate bias. The debiasing algorithm has two flavors. In the 

hard debiasing (also known as “neutralize and equalize”) approach, all gender-neutral words are 

neutralized so that they are all at position 0 in the gender subspace. The equalization step then 

 
6 https://www.ssa.gov/oact/babynames/limits.html 

https://www.ssa.gov/oact/babynames/limits.html
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ensures that gender-neutral words are equidistant from words in gender-specific pairs. For 

instance, given two gender specific pairs {grandmother, grandfather} and {guy, gal} and a word 

gender-neutral word babysit, equalization guarantees that babysit is equidistant from the words 

in each pair, though it is plausible that babysit is closer to {grandmother, grandfather} than 

{guy, gal}. However, one disadvantage of this hard debiasing method is that by completely 

subtracting gender associations from all gender-neutral words, it might also remove useful 

semantic differences between words in the same gender specific pair. For example, grandfather 

carries a gender-neutral meaning (i.e., “to permit to continue under a grandfather clause”7) that 

cannot be substituted by grandmother, and this distinction is removed during equalization. 

 In the soft-debiasing approach, the algorithm not only projects embeddings into a 

subspace orthogonal to the gender subspace, but it also strives to maintain as much similarity to 

the original embeddings as possible. A parameter is trained to find a balance between preserving 

the pairwise inner products of embeddings and minimizing the gendered component in gender-

neutral words. 

To assess the effectiveness of these debiasing algorithms, Bolukbasi et al. use the analogy 

generation task as described in Section 3.2.1. While initially 19% of the top 150 analogies were 

perceived to display gender stereotypes by human evaluators, after applying the hard debiasing 

technique, only 6% of the analogies generated by the new word embeddings were judged as 

stereotypical. For instance, given the puzzle man:doctor :: woman:x, the original embeddings 

return x = nurse, while the debiased embeddings yield x = physician. At the same time, the new 

embeddings are attuned to gender appropriate analogies, as suggested by examples such as 

he:prostate cancer :: she:ovarian cancer. Even though it is more challenging to quantify the 

impact of debiasing on indirect bias, some qualitative improvements are observed. However, the 

study also finds that soft debiasing is less effective in reducing gender bias in word embeddings 

than hard debiasing. 

In spite of the effectiveness of strict debiasing, there are some limitations with this 

approach. First, this method hinges on the correct classification of gender-neutral and gender-

specific words; errors in this step might affect the rest of the pipeline and the entire model. 

Second, as mentioned above, hard debiasing completely removes all gender information from 

words, including that might be useful or even essential in domains such as medicine and social 

science (Zhao et al., 2018b). Furthermore, Gonen and Goldberg (2019) argue that simply 

projecting out a gender direction is rather superficial and does not address the underlying source 

of bias. While previously “biased” words have an altered geometry with respect to the gender 

subspace, the relative spatial relationship between word that exhibit a specific bias stays largely 

the same; as a result, there still might be lingering hidden bias among debiased words. Last, both 

the analogy-based evaluation framework and the hard debiasing approach cannot be effectively 

generalized to contextualized word embeddings (Webster et al., 2020), which have become 

increasingly more popular and widely adopted. 

 

 
7 https://www.merriam-webster.com/dictionary/grandfather 

https://www.merriam-webster.com/dictionary/grandfather
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3.3.2 Counterfactual Data Augmentation  

An alternative to word embeddings debiasing is counterfactual data augmentation (CDA; Lu et 

al., 2018), which aims to minimize associations between gendered and gender-neutral words by 

augmenting the corpus with some intervention mechanism. 

For instance, to address the gender imbalance in training corpora like OntoNotes 5.0, 

Zhao et al. (2018a) propose a training-time data augmentation technique in which all male 

entities are substituted for female entities and vice versa. In this rule-based approach, all named 

entities are first anonymized, and then a set of rules (e.g., “she → he”, “Mr.” → “Mrs.”, 

“mother” → “father”) would be applied to all matching tokens in OntoNotes 5.0 to produce a 

new corpus. For instance, a sentence like “John went to his house” would become its 

counterfactual counterpart “E1 went to her house” after gender swapping. Coreference systems 

would then be trained on the union of the original corpus and the gender-swapped corpus. In the 

study (Zhao et al., 2018a), by adopting this gender-swapping data augmentation approach in 

combination with debiased word embeddings, the end-to-end neural coreference system and the 

feature-rich system both pass the WinoBias test. 

In addition to the simple heuristic of swapping gendered word pairs, Lu et al. (2018) 

introduce more nuanced adjustments in order to maintain semantic and grammatical structures. 

For instance, instead of flipping all gendered words, the proposed model (called the grammatical 

intervention) uses coreference information to avoid modifying words that are in a coreference 

chain with a proper noun (e.g., Queen Elizabeth). This would prevent a sentence like 

“Elizabeth … she … queen” from being used to generate a counterfactual sentence like 

“Elizabeth … he … king” (Maudslay et al., 2019). Furthermore, the model uses part-of-speech 

tags (which are part of the training corpus metadata) to disambiguate between the objective 

pronoun “her” (which would map to “him”) and the possessive pronoun “her” (which would map 

to “his”). 

While the paradigm proposed by Lu et al., (2018) can successfully mitigate direct bias, it 

is less effective when reducing indirect bias. In response to the approach of skipping words that 

refer to proper nouns, Maudslay et al. (2019) propose an alternative called the Names 

Intervention, which explicitly addresses first names and the inherent bias associated with them. 

For instance, by keeping sentences like “Tom … He is a successful and powerful executive” in 

the corpus with no counterfactual counterpart, the stereotypical association between “he” and 

“executive” would persist in the augmented corpus. Therefore, the Names Intervention uses 

bipartite matching to pair the 2500 most common names in the United States Social Security 

Administration (SSA) dataset8 based on frequency and the degree of gender specificity. For 

instance, a common male name such as John may be paired with a common female name like 

Mary, while a more gender-neutral name like Taylor may be paired with a name like Jordan via 

the bipartite matching algorithm. With this variant of CDA, Maudslay et al. are able to mitigate 

not only direct but also indirect bias. 

 
8 https://www.ssa.gov/oact/babynames/background.html 

https://www.ssa.gov/oact/babynames/background.html
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 While the CDA variants described above yield a more balanced corpus, they are only 

applicable to English and other languages with limited morphological inflection. For 

morphologically rich languages, simply swapping gendered words might lead to gender 

disagreement and produce ungrammatical sentences. To tackle this challenge, Zmigrod et al., 

(2019) propose using a Markov random field to infer a new morpho-syntactic tag sequence after 

an intervention on the grammatical gender of a word. By reinflecting entire sentences, this 

variation of CDA produces corpora with higher grammaticality than the naïve swapping 

approach. 

 

3.3.3 Dropout Regularization 

Dropout regularization (Srivastava et al., 2014) is a technique for reducing overfitting when 

training large neural models. By randomly ignoring some units during training, dropout 

regularization helps to prevent neurons from becoming overly reliant on the specialization of 

their neighboring neurons. While it is part of the training process for BERT, it is not applied in 

ALBERT since it has fewer parameters.  

Using the two existing dropout parameters in BERT – one for activation weights, a, and 

another for hidden activations, h – Webster et al. (2020) experiment with increasing the dropout 

values for BERT from the default (i.e., a = 0.1 and h = 0.1) to a = 0.15 and h = 0.20. As a result, 

the gendered correlations between words are reduced correspondingly, with the Terms DisCo 

value decreased from 1.0 to 0.0 and the Names DisCo value increased from 3.4 to 0.7. As for 

ALBERT, introducing dropout values a = 0.05 and h = 0.05 (best results from grid search) leads 

to a substantial decrease in gendered correlations when evaluated on the Winogender (Rudinger 

et al., 2018) challenge set, even though the DisCo values do not reflect the same improvement. 

Nevertheless, Webster et al. conclude that it is valuable to incorporate dropout regularization in 

model configuration since it may help reduce unintended correlations that are not necessarily 

captured in accuracy metrics. 



IV. Gender Bias in Neural Machine Translation 

This section delves into the problem of gender bias in NMT. It first identifies some obstacles for 

machine translation, such as pronoun-dropping and genderless pronouns. It then examines the 

challenge dataset WinoMT, which has become an influential framework for evaluating gender 

bias in machine translation. Lastly, the section discusses various approaches for mitigating such 

bias. 

4.1 Challenges in Machine Translation 

Among the various aspects that make machine translation challenging, the phenomenon of 

pronoun-dropping is one such factor that contributes to the complexity of this task. In a pro-drop 

language like Japanese or Chinese (Wang et al., 2018), pronouns can be omitted when they are 

inferable from the context. Furthermore, the conditions in which this may occur are intricate, and 

the frequency of omission varies from language to language. Spanish, for example, also exhibits 

pro-drop properties, but to a lesser extent than Japanese and Chinese. Therefore, when translating 

from a pro-drop language to a non-pro-drop language like English, NMT models have to infer 

the invisible pronouns from contextual information. Since translation proceeds on a sentence-

level, however, critical contextual cues might simply be unavailable at decoding time to generate 

an accurate translation.  

To highlight the lack of document-level consistency, consider the following excerpt from 

Britney Spears’ Spanish Wikipedia page9 (Webster & Pitler, 2020): “Britney Jean Spears... ∅ 

Adquirió fama durante su niñez al participar en el programa de televisión The Mickey Mouse 

Club (1992).” This sentence contains a dropped subject and a neutral possessive noun, all 

referring to “Britney Jean Spears”, which appears earlier in the text. However, popular NMT 

systems like Google Translate are inclined to use masculine pronouns and produce a translation 

like “He gained fame during his childhood by participating in the television program The 

Mickey Mouse Club (1992).” Moreover, since inference is made in a left-to-right fashion, the 

effect of a mistranslation might cascade and contribute to further mistakes in the translation, 

undermining the overall BLEU score (Saunders & Byrne, 2020). 

Another challenge in translation is the expression of gender. For instance, since 

languages like Spanish and French have a more elaborate grammatical gender system than 

English, these languages differ in their ability to encode gender information (Vanmassenhove et 

al., 2018). While a French speaker may utter either “Je suis heureux” or “Je suis heureuse” 

depending on their gender, the English equivalent would be “I am happy”, which contains no 

gender information about the speaker. Therefore, to produce a grammatically correct translation 

from English to a language like French, a translator has to somehow recover the speaker’s 

 
9 Source: https://es.wikipedia.org/wiki/Britney_Spears.Translation: Retrieved from translate.google.com, Feb 27, 

2019 (Webster & Pitler, 2020). 

 

https://es.wikipedia.org/wiki/Britney_Spears
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gender. On the other end of the spectrum, there exist genderless languages, which do not 

distinguish between grammatical genders. While human translators can often obtain or infer the 

underlying gender from contextual information, most MT systems rely on sentence-level 

statistical dependencies that have been learned from training. As a result, they are less attuned to 

the broader context and often fail to correctly determine the gender trait of the original speaker. 

For instance, the Hungarian pronoun ő can refer to “he”, “she”, or “it” according to the context. 

A case study on Google Translate (Prates et al., 2019) demonstrates that the NMT model is prone 

to translating ő to “she” when it describes a nurse, and to “he” when it describes a CEO, as 

depicted in Figure 4.1. 

 
Figure 9 Translating Hungarian sentences with the genderless pronoun ő into English (Prates et al, 2019). 

In addition, gender-neutral language has become more widely adopted in languages such 

as English. Unlike genderless language, which simply does not differentiate between natural 

genders, gender neutrality refers to word choices that do not presuppose a particular natural 

gender. The use of gender-neutral language, such as the singular they, is both an effort to 

promote inclusivity and avoid word choices that reflect stereotypes baked into gendered 

language; however, this also creates ambiguities that MT systems often grapple to resolve. 

4.2 Evaluation Frameworks 

4.2.1 WinoMT 

To evaluate bias in state-of-the-art machine translation (MT) models, Stanovsky et al. (2019) 

introduce a large-scale multilingual challenge corpus called WinoMT10. WinoMT is built upon 

 
10 https://github.com/gabrielStanovsky/mt_gender 
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the WinoBias dataset (Zhao et al., 2018a) and the Winogender dataset (Rudinger et al., 2018). 

Similar to the coreference resolution task, an accurate translation also depends on correct gender 

identification. A system prone to gender bias might overlook contextual cues (e.g., 

morphological markers) and assign gender – or in the case of the coreference task, resolve 

pronouns – based on social stereotypes. For instance, given the Spanish source sentence “La 

doctora le pidió a la enfermera que le ayudara con el procedimiento”, in which the doctor is a 

woman based on the feminine article (“la”) and the feminine inflection (“-a” in “doctora”), a 

biased MT system might mistranslate the doctor as male. 

Given this parallel between coreference resolution and machine translation, WinoMT is 

constructed as a concatenation of WinoBias and Winogender, with a total of 3,888 sentences. 

The challenge set contains a similar number of sentences with the male and the female gender 

(1826 and 1822, respectively), as well as 240 gender-neutral sentences. Furthermore, the dataset 

is balanced between stereotypical and non-stereotypical gender-role assignments (e.g., a male 

doctor vs. a male nurse).  

The evaluation framework consists of an automatic translation of WinoMT sentences to 

eight target languages, which belong to four different language families (i.e., Romance, Slavic, 

Semitic, Germanic) and embody a wide range of linguistic properties (in terms of word order, 

grammar etc.). To detect and quantify bias in an MT model, denoted M, all sentences in the 

challenge set are first translated into a target language, denoted L, via M, producing a bilingual 

corpus of English and L. An alignment technique called fast_align11 (Dyer et al., 2013) is then 

applied to the bilingual corpus, mapping the annotated English entity (e.g., “the doctor”) to its 

translation (e.g., “el doctor”). In the final step of the pipeline, the gender of each translated 

sentence is extracted via morphological analysis and compared against the gold annotation in the 

English dataset.  

For the study, Stanovsky et al. use WinoMT to assess four widely used commercial MT 

systems – Google Translate12, Microsoft Translator13, Amazon Translate14, SYSTRAN15 – in 

addition to two state-of-the-art academic models, developed by Ott et al. (2018) and Edunov et 

al. (2018), respectively. In terms of accuracy, which is defined as the percentage of instances in 

which the translation correctly predicts the gender of the entity, most systems perform no better 

than a random guess, with accuracy around or less than 50%. Even though some systems 

perform better on English-to-German translation – with Microsoft Translator achieving 74.1% in 

accuracy, the authors suggest that this could be attributed to German’s similarity to English.  

In terms of the 𝐹1 score, all systems – except Microsoft Translator on German – achieve a 

significantly higher score when translating sentences with male instances than female instances. 

Last but not least, all six systems exhibit inconsistency when evaluating sentences with 

stereotypical and non-stereotypical gender roles. Similar to the performance of Google Translate 

 
11 https://github.com/clab/fast_align 
12 https://translate.google.com/ 
13 https://www.bing.com/translator 
14 https://aws.amazon.com/translate/ 
15 https://www.systransoft.com/ 

https://github.com/clab/fast_align
https://translate.google.com/
https://www.bing.com/translator
https://aws.amazon.com/translate/
https://www.systransoft.com/
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(depicted in Figure 4.1), all systems achieve higher accuracies (and 𝐹1  scores) when translating 

sentences with stereotypical gender role assignments (e.g., a female nurse) than non-stereotypical 

assignments (e.g., a male receptionist). 

 
Figure 10 Performance of Google Translate when translating from English to eight target languages  

(Stanovsky et al., 2019). 

 

As the first large-scale multilingual challenge set for NMT, the WinoMT metrics have 

established a baseline for subsequent studies, including the work by Saunders and Byrne (2020) 

on bias reduction. However, this evaluation framework has several limitations. As a combination 

of WinoBias and Winogender, WinoMT consists solely of artificially created sentences. While 

this creates a controlled experiment environment, it might introduce unintended biases that risk 

interfering with the evaluation process. Furthermore, WinoMT is limited both in size and scope. 

It neither reflects the normal size of a natural language processing task nor captures the range of 

domains machine translation is used in. As a result, the WinoMT challenge set only serves as a 

proxy for detecting and quantifying gender bias in machine translation. 

4.3 Mitigation Techniques 

To test how susceptible MT models are to gender bias, Stanovsky et al. (2019) experiment with a 

“fighting bias with bias” approach in which they prepend adjectives to occupation words in the 

WinoMT dataset. Adjectives like “handsome” and “pretty”, which are often associated with 

gender-specific nouns, may be used to describe stereotypically female or male professions; for 

instance, “The doctor asked the nurse to help her in the operation” would be converted to “The 

pretty doctor asked the nurse to help her in the operation”. While this approach leads to notable 

improvements in languages such as Spanish, Russian, and Ukrainian – with 11.2% increase in 

accuracy for Russian – Stanovsky et al. acknowledge that this technique is limited in scope. Not 

only is this debiasing scheme difficult to be generalized, but it also assumes an accurate 

coreference system that always correctly resolves pronouns. Nevertheless, this experiment serves 

to illustrate how MT systems can be easily influenced by the connotations of words and are 

prone to bias. 

In addition to the experiment described above, this section explores methods that have 

been proposed to tackle gender bias in machine translation. While Section 4.3.1 focuses on 
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techniques derived from mitigation frameworks used on word embeddings and other pre-trained 

models (Section 3.3), Section 4.3.2 discusses a novel, and arguably more efficient, approach that 

involves fine-tuning as opposed to retraining MT models. 

 

4.3.1 Word Embeddings Techniques 

Inspired by the role of debiased word embeddings in reducing bias in many NLP tasks, Escudé 

Font and Costa-jussà (2019) experiment with a similar approach for NMT. Their methodology 

entails employing different variations of the Global Vectors (GloVe) embeddings for the encoder 

and decoder, and then evaluating each model’s performance with the BLEU metric. For this 

experiment, the encoder and decoder in the OpenNMT Transformer16 architecture are pre-trained 

with either the original GloVe, hard-debiased GloVe (via the debiasing process described in 

Section 3.3.1), or Gender-Neutral GloVe (GN-GloVe; Zhao et al., 2018b), while the Transformer 

model without any pre-trained embeddings serves as the baseline. Furthermore, for each type of 

embedding, three possible cases are tested: using embeddings only for the encoder, only for the 

decoder, and for both the encoder and decoder. 

 The training corpus consists of over 16 million pairs of English-Spanish sentences from 

an amalgam of sources, such as the United Nations17, Europarl (Koehn, 2005), CommonCrawl18, 

and the Workshop on Machine Translation (WMT)19. To assess the effectiveness of word 

embeddings, newstest2013 – a test set of 3000 sentences provided by WMT – is utilized. To 

investigate gender bias in the resulting MT systems, Escudé Font and Costa-jussà develop an 

additional test set with sentences of the pattern “I’ve known {her, him, <proper noun>} for a 

long time, my friend works as {a, an} <occupation>.” in which <proper noun> refers to a proper 

name such as “John” or “Mary”, and <occupation> is selected from a list of professions provided 

by the U.S. Bureau of Labor Statistics. 

When evaluated on the newstest2013 test set, the model with GN-GloVe in both the 

encoder and decoder exceeds the baseline by 0.98 in BLEU score. Meanwhile, to analyze the 

extent of gender bias in these MT systems, Escudé Font and Costa-jussà focus on the translation 

of “friend” – which could be either “amiga” (feminine) or “amigo” (masculine) depending on the 

context. The authors observe that with “him” or “John”, “amigo” is almost always predicted at 

100% accuracy for all models. While most models are able to predict “amiga” based on “her” 

with high accuracy, many struggle when attempting to predict “amiga” based on “Mary”. Among 

the various settings, hard-debiased GloVe – when applied to both the encoder and decoder –

performs best across all scenarios. In addition to “friend”, the translation of occupation words in 

the context of “her” also improves when GN-GloVe is used in both the encoder and decoder, 

especially for technical roles like “criminal investigator”, “heating mechanic”, and “refrigeration 

mechanic”. 

 
16 https://opennmt.net/ 
17 https://conferences.unite.un.org/uncorpus 
18 https://commoncrawl.org/ 
19 http://www.statmt.org/wmt13/ 

https://opennmt.net/
https://conferences.unite.un.org/uncorpus
https://commoncrawl.org/
http://www.statmt.org/wmt13/
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However, similar to the WinoMT evaluation framework, a shortcoming of this study on 

gender bias is that it is limited to the domain of professional occupations. As a result, its findings 

may not be generalizable to other fields in which machine translation is applied. Moreover, the 

study is only concerned with English-Spanish translation, which does not capture the challenges 

of translating languages with different linguistic properties. 

 

4.3.2 Domain Adaptation Techniques 

While popular bias mitigation techniques often involve synthetic gender-balanced corpus or 

debiased word embeddings, Saunders and Byrne (2020) introduce an alternative approach that 

relies on fine-tuning rather than retraining. They argue that not only is it time-consuming to train 

an MT model from scratch, but it also presupposes that the source of bias in a corpus can be 

easily identified and remedied. In comparison, domain adaptation – which relies on a small 

portion of in-domain data to calibrate an NMT model – is much more efficient. By positioning 

bias mitigation as a domain adaptation problem, Saunders and Byrne seek to debias NMT 

models via a small, gender-balanced adaptation set as well as a counterfactual set during fine-

tuning. 

 Similar to prior studies on NLP gender bias (Zhao et al., 2018a, Rudinger et al., 2018), 

the authors use a dataset of coreference sentences containing occupation words to reveal 

potential bias in a system. Based on 194 professions from the US labor statistics, 388 sentences 

are created based on the template “The [Profession] finished {his, her} work”. These sentences 

constitute a handcrafted set that is then manually translated into three target languages, namely 

German, Spanish, and Hebrew, representing three distinct language families. Furthermore, 

Saunders and Byrne develop a set of counterfactual data that is augmented via gender-swapping, 

as described by Zhao et al. (2018a). The authors then use a general NMT model to forward-

translate the gender-swapped English source sentences into corresponding gender-swapped 

target sentences. 

 To train the general-purpose models, the authors rely on three large corpora of bilingual 

data: WMT19 news task datasets (Barrault et al., 2019) for English-German, United Nations 

Parallel Corpus for English-Spanish, and multilingual TED talks corpus (Cettolo et al., 2014) for 

English-Hebrew. For all three sources, around 11-12% of the datasets are gendered sentences, 

with slightly more sentences involving male entities than female entities. 

 To assess the effectiveness of fine-tuning on the counterfactual data and the handcrafted 

profession data, Saunders and Byrne compare the outcomes against the baseline results from 

WinoMT study (Stanovsky et al., 2019). Adapting the model to a gender-swapped corpus not 

only increases the accuracy for English-German and English-Spanish, but it also decreases the 

difference in 𝐹1 score between translation of male and female entities (denoted ∆𝐺), as well as 

the difference in 𝐹1 score between pro-stereotypical and anti-stereotypical gender role 

assignments (denoted ∆𝑆), for these two language pairs. Even though this trend is promising, the 

improvement is rather subtle and is not replicated for English-Hebrew. 



 31 

 On the other hand, adapting NMT models to the set of sentences focused on occupations 

produces more desirable results. As the handcrafted set is constrained in scope and format, fine-

tuning on this dataset only takes a few minutes on a single GPU, compared to several hours 

required for the counterfactual dataset. While the handcrafted set leads to an 19% increase in 

accuracy from the WinoMT baseline and more substantial improvement in ∆𝐺 and ∆𝑆 than the 

counterfactual set, it results in a drop in BLEU score.  

 This degradation of general translation quality can be attributed to catastrophic forgetting, 

which is the enhancement of in-domain knowledge at the expense of general domain knowledge. 

To overcome this pitfall, Saunders and Byrne (2020) propose using regularized training (Barone 

et al., 2017) and lattice rescoring to minimize the tradeoff. In particular, the lattice rescoring 

approach not only maintains (and sometimes even enhances) the general BLEU score, but it also 

facilitates debiasing and yields better performance on WinoMT metrics. 

Based on these experiments, Saunders and Byrne conclude that domain adaptation may 

be an efficient and effective strategy for reducing gender bias in NMT. The study also illustrates 

that fine-tuning on a small, handcrafted gender-balanced dataset may be more fruitful than a 

counterfactual dataset. Moreover, procedures such as lattice rescoring can be employed to 

preserve the translation quality during fine-tuning, allowing NMT systems to be debiased 

without compromising its overall performance. 

 

4.3.3 Cross-lingual Pivoting Technique 

To address the challenges presented by implicit and ambiguous pronouns, Webster and Pitler 

(2020) propose using a cross-lingual pivoting technique to automatically produce gender labels 

that facilitate pronoun translation.  

This approach is partially inspired by previous work on adding tags to explicitly convey 

the gender of first-person singular pronouns (Vanmassenhove et al., 2018). In particular, 

Vanmassenhove et al. are interested in the translation from English to 10 languages. The target 

languages include French, Portuguese, Italian, Spanish, and Greek – all of which require 

morphological agreement with the gender of the speaker. To train gender-informed NMT 

models, all English source sentences in the parallel corpora are enriched with tags expressing the 

gender of the speaker, as illustrated in “FEMALE Madam President, as a…” When evaluated on 

a male-only and a female-only test set containing first-person singular pronouns, the gender-

informed NMT systems demonstrate the greatest improvement on the female set. In addition, 

among the five target languages with grammatical gender agreement, all (except for Spanish) 

experience an increase in BLEU score when evaluated even on a general test set, as indicated in 

Table 1. This suggests that gender-informed systems not only enhance morphological agreement, 

they also better capture other subtle ways in which gender identity might be manifested, such as 

sentence constructions and word preferences. 
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Table 1 BLEU scores for the 10 baseline (untagged) NMT systems (i.e., EN), and BLEU scores for the 10 gender-

informed NMT systems (i.e., EN-TAG). Statistically significant differences (p < 0.05) are marked by *  

(Webster & Pitler, 2020). 

Building on this approach of incorporating gender information into training datasets, 

Webster and Pitler devise a method to automatically enrich corpora with gender tags. While this 

study primarily focuses on English-Spanish translation, the technique is language agnostic and 

can be extended to other language pairs with different linguistic properties.  

Using large corpora of English and non-English (e.g., Spanish) Wikipedia pages, the 

multi-lingual pivot extraction pipeline consists of three stages:  

1. Page Alignment: pairs of pages in English and Spanish with the exact same title 

are identified. 

2. Sentence Alignment: pairs of sentences that express approximately the same 

meaning are identified. This process involves translating sentences in the Spanish 

page to English, and then performing bipartite matching over these English 

translations and sentences from the English page. In addition to being a one-to-

one mapping, each pair must share either a noun or verb, and the edit sentence is 

at most one half of the sentence length. 

3. Pronoun Tagging: for each sentence pair, perform alignment over the tokens to 

identify cases of dropped and gender-neutral pronouns (e.g., Spanish possessive 

pronoun su). Use the gender of the English pronoun (i.e., she. her, he, his) as a 

label for the ambiguous target pronoun.  

For example, given the English20 and Spanish Wikipedia21 articles on “Mitsuko Shiga” 

(obtained via Page Alignment), the labeled sentence produced by Pronoun Tagging is “Ø/She 

Publicó numerosas antologas de su/her poesa durante su/her vida, incluyendo Fuji no Mi, Asa 

Tsuki, Asa Ginu, y Kamakura Zakki.” 

Finally, to account for the potential disparity in representation by gender in Wikipedia 

(Wagner et al., 2016), masculine examples are down-sampled to obtain a gender-balanced 

dataset, which consists of 79,240 prodrop and 187,224 possessive examples. This dataset is then 

employed to fine-tune BERT (Devlin et al., 2019), a state-of-the-art pretrained language model. 

To assess the effect of cross-lingual pivoting, the authors use two types of input – single 

 
20 https://en.wikipedia.org/wiki/Mitsuko_Shiga 
21 https://es.wikipedia.org/wiki/Mitsuko_Shiga 

https://en.wikipedia.org/wiki/Mitsuko_Shiga
https://es.wikipedia.org/wiki/Mitsuko_Shiga
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sentences (denoted Sentences) and full sentences of up to 128 tokens (denoted Contexts) – to 

compare the performance of a baseline NMT model, a contextualized NMT model (in which 

Contexts is employed), and an NMT model augmented with fine-tuned BERT. 

As the baseline, a Transformer (Vaswani et al., 2017) trained on WMT’1322 Spanish-to-

English data achieves an 𝐹1 score of only 31-51% for feminine pro-drop instances. By masking 

the position of each dropped subject position (Devlin et al., 2019), the authors show that a non-

fine-tuned BERT model achieves better 𝐹1 scores than the baseline when producing gender 

predictions, particularly for feminine examples. Nevertheless, it is still prone to 

misclassifications, including predicting a masculine tag for the Spanish sentence: “Ø Adquirió 

fama durante su niñez al participar en el programa de televisión The Mickey Mouse Club 

(1992).” about Britney Spears. After training BERT over the gender-tagged dataset (generated by 

cross-lingual pivoting), the fine-tuned model demonstrates an improvement of over 20% in all 

instances, with a new 𝐹1 score of 92% for both masculine and feminine pronouns.  

To enhance machine translation quality, this fine-tuned BERT gender classifier can be 

integrated into the standard NMT architecture. In this study, all Spanish sentences containing a 

dropped or gender-neutral pronoun are annotated with gender tags predicted via BERT. For 

example, the Spanish sentence about Britney Spears is now extended to “Ø Adquirió fama 

durante su niñez al participar en el programa de televisión The Mickey Mouse Club (1992). <c> 

<FEM>”, wherein <c> serves as a separator. As depicted in Table 2, incorporating gender tags 

into an NMT system leads to an 8.8% improvement in F1 score for feminine pronouns, 

surpassing the overall performance of both the baseline model and the contextualized MT model. 

 
Table 2 BLEU score and prediction accuracy by gender on the WMT’13 Spanish-to-English test set  

(Webster & Pitler, 2020). 

 

 

 
22 http://www.statmt.org/wmt13/translation-task.html 

http://www.statmt.org/wmt13/translation-task.html


V. Conclusion 

As artificial intelligence (AI) technology becomes increasingly integrated into various facets of 

society, the potential of algorithmic tools to perpetuate and amplify social bias has received 

rapidly growing scrutiny (Mehrabi et al., 2019). As one of the most prominent subfields of AI 

research, NLP also grapples with the issue of algorithmic bias. Many NLP tasks, including 

machine translation, have diverse use cases ranging from law, finance, and healthcare to 

consumer applications. However, like other AI systems trained on human-generated data, NLP 

and MT models are also susceptible to human-like stereotypes and biases. 

 This thesis homes in on the issue of gender bias in machine translation. In the first 

section, it not only provides an overview of technical concepts such as word embeddings and 

neural networks that have revolutionized the field of MT, but it also introduces evaluation 

metrics such as BLEU and METEOR that can offer insight into the overall translation quality. 

The paper then presents a literature survey of gender bias in NLP and explores studies on bias in 

tasks like coreference resolution. In the subsequent section of the paper, we investigate gender 

bias in the context of machine translation. In addition to delineating some unique challenges with 

translation, we explore recent efforts to recognize and reduce translation errors associated with 

gender stereotypes. To analyze potential gender bias, researchers not only rely on performance 

metrics like the BLEU score but have also devised evaluation frameworks such as the WinoMT 

challenge set (Stanovsky et al., 2019); in the meantime, mitigation techniques such as domain 

adaptation (Saunders & Byrne, 2020) and cross-lingual pivoting (Webster & Pitler, 2020) have 

shown noteworthy improvements and laid important foundation for future research in this 

direction. 

 Nevertheless, the study of gender bias in machine translation – and NLP at large – is still 

a relatively nascent field. The following subsection outlines some challenges and possible future 

directions for this line of research. 

5.1 Future Work 

First and foremost, the term “bias” lacks a coherent and consistent definition in NLP literature. 

By surveying 146 papers on bias in NLP, Blodgett et al. (2020) conclude that the concept of 

“bias” is underspecified, and many papers fail to elucidate why the behavior described as “bias” 

is harmful, to which groups of people, and in what concrete ways. As a result of this 

terminological imprecision, many studies that claim to analyze “bias” in NLP differ not only in 

their motivations but also their metrics for determining progress (Maudslay et al., 2019). As an 

area for future work, Blodgett et al. (2020) emphasize that it is critical for NLP researchers to 

clearly articulate their definition of “bias” and engage with relevant literature outside of NLP to 

illuminate the downstream impact of such system behaviors. 

 Secondly, as a general shortcoming of work in this field, most studies focus exclusively 

on binary genders. This is a layered problem not only due to the distinction between natural 
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gender and grammatical gender in linguistics, but also because the concept of gender itself is 

complex and cannot be captured in a one-to-one correspondence with linguistic gender (Cao & 

Daumé III, 2020). As suggested by Tomalin et al. (2021), current NLP research often conflates 

linguistic and sociological gender. For instance, most gender-balanced datasets in the field 

(including some we discuss in this thesis) are only balanced with respect to the male/female 

dichotomy. As non-binary gender identities become more widely recognized and embraced, it is 

important to develop gender-inclusive language systems that offer users the flexibility to self-

identify their preferred pronouns. As groundwork in this direction, Sun et al., (2021) demonstrate 

that a Transformer model can be trained with auto-generated corpora to produce gender-neutral 

English sentences (e.g., with singular they) with less than 1% word error rate.  

 In addition to creating adaptable models that can support various expressions of gender in 

English, future work should also explore advancing gender-inclusive models in non-English 

languages. In languages with concord systems that assign gender to parts of speech beside the 

noun (e.g., verbs, adjectives, determiners), further research is needed to ensure morphosyntactic 

agreement during mitigation processes such as counterfactual data augmentation. Furthermore, 

future work in this direction should account for the disparate ways in which non-binary gender is 

encoded in a language, which is shaped both by social and cultural contexts as well as by the 

morphological complexity of a language. For instance, genderless languages and languages with 

grammatical genders differ in their ability to convey gender-neutrality, and languages like 

Spanish might require morphological or lexical innovations to expand the expressiveness of the 

language (Savoldi et al., 2021).  

 Finally, to reveal the presence of bias in MT (and other NLP) systems, many studies rely 

on synthetic challenge sets (e.g., WinoMT) that are limited in scope and diagnostic power. They 

neither prove the absence of gender bias in a model (Rudinger et al., 2018) nor embody the 

diverse range of real-world scenarios that could introduce bias into a system. To develop a more 

holistic understanding of the issue, future studies would need to investigate the interplay between 

multiple identity categories (e.g., gender, race, socioeconomic background) and adopt an 

interdisciplinary approach to address the problem of bias in machine translation. 
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