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Abstract 

 

Algorithmic fairness is an umbrella term encompassing the way in which machine-learning 

models classify information and ultimately make decisions sans human intervention. This 

literature review seeks to break the field into its sub-components and delve into the research 

being done in each. Outside of explaining the big-picture state of research, particular attention 

will be given to the current methods for defining, and then realizing fairness constraints through 

key algorithms at each stage of the machine-learning workflow. The associated trade-offs 

involved in increasing the perceived “fairness” of an algorithm from a social and mathematical 

perspective, as well as the different contexts with which fairness manifests itself will be 

addressed. Application areas and existing case studies will be discussed to convey the real-world 

impacts decision-making algorithms are increasingly involved in across a range of domains. 

 

 

Introduction 

 

Algorithmic fairness is a concept revolving around the usage of computer programs to make 

equitable, bias-free decisions across a host of application areas. The definitions of “fairness” 

which are sought are extremely variable and can take on different meanings depending on the 

context they are being considered in. For example, an algorithm may reasonably be expected to 

minimize any sort of discrimination stemming from the race of an individual being evaluated 

when it comes to a decision of whether or not to issue a credit card. However, the same situation 

raises a different question of fairness along a different “axis”. The question of which outcome is 

“worse” between a qualified applicant being denied a credit card (false negative) or an 

unqualified applicant being given a credit card (false positive) is not one which can be readily 

answered despite both of these scenarios undoubtedly violating some aspect of fairness either for 

the applicant or bank involved. 

There exists a fundamental relationship among the satisfaction of an imposed fairness condition 

and the accuracy of the decision-making model which is central to the concept of “maximizing 

fairness” while giving up as little prediction accuracy as possible. The mathematical relationship 

between these fairness and accuracy can often be modelled along a Pareto curve – reducing the 

task to an optimization problem of finding the points along such a curve which provide the 

highest overall accuracy and fairness along both axes. 

The review will also address some of the underlying reasons discrepancies in fairness arise – 

looking into the inherent bias of training-set data in particular. Various methods have gained 

popularity in addressing this concerns including the notion of “bolt-on fairness” ie. applying 

filters to the algorithm after it has produced an initial result, and simply restricting the type of 

information an algorithm can use to produce a decision by redacting information such as gender, 

age, etc. The trade-offs among these and other approaches need to be well-understood and 

contrasted to effectively apply them to the impactful decision-making scenarios. 

 

 

 

 

 

 



Algorithmic Fairness 

 

Varying Definitions 

 

Pinning down a particular definition of fairness is an extremely difficult task which ultimately 

comes down to context. From a purely legal standpoint, issues of direct and indirect 

discrimination may arise in the context of algorithmic decision-making. Direct discrimination 

deals with the a “substantially significant” difference in treatment of members of a particular 

protected class (Barocas, 2016). This type of discrimination is less likely to take place in practice 

as algorithmic designers rarely have an expressed intent to harm a particular demographic. The 

second, more common, form of discrimination deals with the indirect impact the decisions of 

such algorithms may have as an unintended consequence. Due to the nature of how underlying 

data impact results of algorithms which are agnostic to common discrimination factors like 

gender or race, this type of discrimination tends to be what becomes evident in research studies 

and real-world examples (such as those of the “Examples” section below). It is clear that the 

concept of “fairness” is specific to the situation, and the next section will explore current 

approaches to making it measurable. 

 

 

Quantifying Fairness 

 

Fairness, as the name suggests, is generally determined by the “amount” of injustice inflicted 

onto a group of interest. In statistical terms, a popular and relatively simple-to-understand 

method for this is using false positive and false negative calculations for evaluating machine 

learning models. A confusion matrix is a tool which represents the 4 main outcomes when 

comparing a machine learning classifier’s output to that of the correct result when running it on a 

labelled testing set. Under the assumption that the space of output results for a model only 

consists of binary “yes” or “no” decisions, the confusion matrix is comprised of the following 

outcomes: 

 

- True Positive [TP]: Prediction “yes” matches the correct “yes” label 

- True Negative [TN]: Prediction “no” matches the correct “no” label 

- False Positive [FP]: Prediction “yes” does not match the correct “no” label 

- False Negative [FN]: Prediction “no” does not match the correct “yes” label 

 

The adjacency matrix displaying these figures is has become a popular way to quantify the 

judgement of machine learning models more broadly through its interpretability and easy-of-

application to all kinds of domains and algorithms. The relation to the notion of fairness here 

comes from the matrix being able to convey what each of these rates are when considering only 

the data of a particular group of interest as opposed to the entire population. For instance, if a 

study were interested in a model’s handling of input data regarding Asian-American subjects, the 

confusion matrix for this subset of the population could be computed and compared to the matrix 

for the general population as an indicator of whether the percentages for each of the 4 

occurrences are similar in a statistically significant sense. 

Of course, one of the primary drawbacks here is the need for a structured, labeled data set 

containing information about what the “correct” decision should have been. This poses a varying 



degree of difficulty depending on the context of topic addressed. An example that will be 

explored in the “Examples” section deals with recidivism rates of inmates who may be 

considered for parole with a machine learning model providing input on what risk category they 

will likely be in. Acquiring data for whether granting parole was the correct decision is a process 

which may take years to evaluate – especially since if they do not recidivate upon release (a true 

positive) some reasonable time frame must be established for which to label that person’s correct 

label as “yes”. 

 

 

 

Proposed Enforcement Strategies 

 

Researchers have considered various strategies to mitigate unfairness ranging from imposing 

certain constraints after calculating results to rethinking the way data is fed into machine learning 

models altogether. Some of the popular approaches to the problem and their associated trade-offs 

are outlined below. It is important to keep in mind that for any given scenario, a decision must 

first be made in regard to which of the 4 entries in the confusion matrix is are the source of the 

greatest “unfairness” and harm to the disproportionately affected population in the context of the 

scenario – i.e. whether False Positives or False Negatives are the more damaging statistic to try 

to reduce. The following 3 approaches consider ways to ensure group fairness notations. To 

clarify their intent, a running example will be used with the total population divided into a 

majority and minority group where each individual represents a candidate for a position seeking 

to be hired. 

 

 

Equality of Odds Approach 

 

This approach was described in 2016 by Moritz Hardt, Eric Price, Nathan Srebro and centers 

around the goal of ensuring that if a model has the same error rate for each subgroup being 

studied in the result as they would have individually, then it can be said that it treats each such 

subgroup the same way (Hardt et. al, 2016). This approach is formalized with the following 

equality: 

 

Pr(Ý=1|A=0, Y=y) = Pr(Ý=1|A=1, Y=y), y∈{0,1} 

Ý is the model’s output 

A is 1 for the demographic of interest and 0 otherwise 

Y is the true outcome 

 



 
Figure 1: Equal Odds Illustration (Landeau, 2020) 

 

 

This equality implies that the error rate given either a desirable or undesirable outcome (y=1 vs 

y=0), is the same for both the population of interest and any other population chosen from the 

same (A=1 vs A=0). The Equal Odds constraint is, however, a strong enough guarantee that 

satisfying it can introduce significant decreases in accuracy of the model as a whole. 

 

 

Equality of Opportunity Approach 

 

Given the limitations described in the Equal Odds method, the authors of the paper created a 

weaker constraint which is more realistic to apply in practice. The Equal Opportunity method has 

a similar goal of ensuring that if a model has the same true positive rate for each subgroup being 

studied in the result as they would have individually, then it can be said that it treats each such 

subgroup the same way (Hardt et. al, 2016). This is formally defined as: 

 

Pr(Ý=1|A=0, Y=1) = Pr(Ý=1|A=1, Y=1) 

 

 
Figure 2: Equal Opportunity Illustration (Landeau, 2020) 

 



The key difference translates to the probability of the model producing an incorrect output being 

the same between the group of interest and all other groups – but only if the outcome studied is 

positive or desirable (represented by the Y=1 term).  

However, in both the Equal Odds and Equal Opportunity approaches, some limiting factors 

inhibit the goal of truly non-biased results. One limitation is that the data which make up training 

sets will often themselves be disproportionately composed of information about one group over 

another (such as gender). If, for example, females have far less access to X than males and they 

are consequently only represented in 25% of the data then only this percentage will be chosen 

when in an algorithm dealing with X which adheres to the equality constraints given (Landeau, 

2020). Essentially, the equality constraints do not account for bias which is already represented 

in the data given at the onset. In addition, both of the constraint can introduce significant 

decreases in accuracy of the model as a whole – a property which will be explored further in the 

“Trade-Offs” section. 

 

 

Predictive Rate Parity 

 

In 2016, Dieterich, Mendoza, and Brennan published a paper describing a new constraint for 

enforcing a notion of fairness called Predictive Rate Parity. The more popular application of this 

constraint refers to Positive Predictive Rate Parity in particular, which is the idea that among 

each of the groups in the result, the proportion of people with an affirmative label for the topic 

studied (the Y=1 term) is the same (Dietrich et. al, 2016). This is defined as: 

 

P(Y=1|A=0, Ý=1) = P(Y=1|A=1, Ý=1) 

 

 
 

Figure 3: Positive Predictive Rate Parity Illustration (Landeau, 2020) 

 

 

Individual Fairness Approach 

 

Deviating from the group fairness constraints above, a paper by Dwork et. al in 2012 outlined a 

notion of fairness on an individual level. The paper defined this type of fairness as the situation 

where if two individuals being considered are substantially similar by some appropriate metric, 

then the outputs of the classifier for these two individuals is also substantially similar (Dwork et. 



al., 2012). While this formulation has become popular amongst the literature from an abstract 

perspective, the question about determining “substantial similarity” quickly arises as a non-trivial 

problem for implementing such a constraint (Chouldechova, 2018). 

 

A visual representation of the concept of individual fairness is as follows: 

 

 

 

Figure 4: Mapping of Individuals to Illustrate Fairness (Zhong, 2020) 

 

Preservation of fairness at the individual level means that the inequality D(M(X), M(X’)) ≤ 

d(X,X’) is satisfied, where D and d are both metric [distance] functions on the input and output 

spaces respectively, and M is the mapping from an individual data point (like x or x’) to the 

outcome. Figure 4 essentially illustrates the earlier statement of “substantial similarity” and the 

equation involving metric functions quantifies this notion. 

The primary drawback with the above individualized fairness constraint is the difficulty of 

applying it in practice. While the concept of “substantial similarity” is useful in principle, it 

becomes arduous to find suitable metric functions that will correctly provide a sense of how far 

apart two similar inputs ended up being in terms of their output labels after categorization by the 

model (Kim, 2018). A relevant illustrative example is a scenario in which multiple candidates are 

being considered for a job posting: one has an undergraduate degree and two years of experience, 

another has a graduate degree with one year of experience, and yet another has a graduate degree 

with no work experience. A model can take these inputs and return a suggestion on who to hire, 

though delving into this decision, it becomes very context-dependent to determine how far apart 

the candidates are using a metric function as described above – directly making it difficult to 

evaluate if the definition of individual fairness given is preserved. 

 

 

 

 

 

 



Trade-Offs 

 

There exists a fundamental relationship among the satisfaction of an imposed fairness condition 

and the accuracy of the decision-making model. The Impossibility Theorem of Fairness states 

that when considering the various definitions of fairness mentioned above, it generally (outside 

of trivial situations) must be the case that only one of these definitions is satisfied 

(Saravanakumar, 2021). This theorem poses the natural question of which definition to apply 

each time, at which point the context of the problem the classifier is dealing with becomes 

important to establishing which definition can truly lead to an equitable outcome. 

 

Part of the reason for which multiple definitions of fairness cannot be simultaneously satisfied is 

the trade-off which exists between accuracy and fairness metrics. A paper by Susan Wei and 

Marc Niethammer detailed the tools required for estimating a Pareto Front in the context of 

algorithmic bias – essentially a curve formed of points on a fairness-accuracy coordinate grid 

(Wei, 2020). Plotting such a curve shows results in a concave shape shown below in Figure 4. 

 

 
Figure 5: Sample Pareto Curve w/ Improvements Demonstrated 

 

The key insight from the Pareto Frontier is its depiction of the most favorable points a classifier 

outputs on a spectrum. In Figure 5, taking the x axis to be some quantified scale of fairness and 

the y axis to be the accuracy of the classifier, only points found along the Pareto Frontier are 

worth considering when concerned with fining the “best” possible output. It is the case that for 

any point on the inside of the Pareto Frontier, moving to a point on the Frontier itself will always 

result in a better outcome. In the case of point D, moving directly upward would result in the 

same fairness – yet with greater accuracy, while moving directly to the right till the Frontier 

would result in the same accuracy – yet with greater fairness. As opposed to the strictly 90-

degree movements, it is clear that movement from point D to any other point on the Pareto 

Frontier would constitute an overall improvement, it is a matter of choice for the classifier 

designers which dimension is more important to maximize in the current context. The shape of 

the Frontier is itself indicative of the generally inverse-relationship that accuracy and fairness 

have under the Impossibility Theorem mentioned above – with the highest rates of change in the 

slope of the curve occurring at the extremes along both axes. 

 

 

 



Noteworthy Mitigation Algorithms 

 

The literature organizes attempts at implementing fairness into three categories depending on 

what stage of the ml-model workflow they operate in: pre-processing data, training-

optimizations, and post-processing results. 

 

Pre-Processing and the Reweighing Algorithm 

 

Pre-processing algorithms generally tend to focus on the attributes of the underlying dataset 

being used and address the inherent bias often present in this data before it is fed into any 

machine-learning models. These algorithms methodically remove the information they decide 

may be detrimental to fairness, and the extent of this removal is often controlled by a threshold 

parameter the user can vary (Feldman et. al, 2015). The reason certain bias-inducing data cannot 

simply be removed entirely is two-fold. The first, as described in the “Trade-Offs” section, is the 

inherent loss in accuracy associated with completely leaving out data which is available yet 

chosen to be disregarded. In addition, researchers have repeatedly found that other attributes in a 

dataset being studied tend to act as a proxy for the attributes explicitly removed simply based on 

societal norms or the history of certain marginalized groups. Models often exhibit similarly 

unfair results even after the removal of the attributes which explicitly identify a minority group.  

 

In 2012 Faisal and Calders published a paper detailing the Reweighing Algorithm aimed at 

converting input data into a relatively unbiased dataset through adding weights to “correct” the 

bias in a pre-processing step. The algorithm is shown below. 

 

 

Figure 6: Reweighing Algorithm Pseudocode (Faisal, 2012) 

S represents the relevant sensitive variable studied 

X is an entry of the dataset D 

Class is the target variable (either – or + here) 

 

The essence of the Reweighing algorithm boils down to computing an appropriate weight for 

each entry in the input dataset in order to “equalize” whether or not each entry was favored at 

first. If there was no bias, it is expected that S and Class be independent variables, and so the 

expected joint probability distribution for the instance were the data point was in the b group 

with a + class would be: 

 



 
 

However, the reality is that there is a statistical dependence between the two variables leading to 

a true joint probability distribution for this data point to be: 

 

 
 

The Reweighing algorithm uses these two probability figures to compute an appropriate weight 

for each entry based on the ratio of the two: 

 

 
 

This ratio generally encompasses every permutation of the protected variable S and Class and is 

mathematically equivalent to the calculation on Line 3 of Figure 6. It is important to note that the 

weights being added themselves follow a distribution on which elements exhibiting higher bias 

will have different weights than their counterparts depending on the magnitude of this difference 

between the expected and observed probabilities. Faisal and Calders demonstrated that 

quantifying discrimination by subtracting the product of the weight and frequency of a particular 

permutation part of the protected group (for example, minority) from the product of the weight 

and frequency of a permutation part of the unprotected group (for example, majority) yielded 0 

with this approach, showing the weighed dataset did not exhibit discrimination by such a metric. 

Reweighing has proven to be a useful tool in its ability to maintain the structural integrity of the 

dataset and simply add an additional field to help address discrimination as opposed to 

reformulating the existing labels or throwing away data. 

 

 

Training Optimization 

 

In-Process, or Training Opinations are explicit adjustments to the way a machine-learning model 

learns meant to immediately address concerns about discrimination ‘on-the-go’ instead of 

performing specialized pre-processing of training data or post-processing of results. The have 

been many results in the literature which tend towards this goal, though some of the most 

prevalent simply include additional constraints which must be satisfied in addition to the 

traditional minimization of a loss function which takes place. For example, consider the 

following constraints from a paper written in demonstrating this approach (Zafar et al., 2017): 

 



In this convex optimization problem, L(θ) is a loss function being minimized, while the 

additional constraints represent fairness guarantees. These guarantees are: 

 

 
 

The constraints thus enforce that the false positive rate equality the model can allow during 

training. The two formulations are given of the same constraint (which disallow exceeding the 

scalar ε or –ε) since this is a standard form for the convex optimization process. In the case that 

equal false negativity rate made more sense the corresponding constraints could easily be 

adopted. Making the optimization problem above computationally feasible requires the usage of 

additional heuristics and re-formulations but the fundamental goal remains unchanged. 

 

 

 

Post-Processing and Reject-Option Classification 

 

Post-processing algorithms allow a machine-learning model to run as it normally would 

including any sort of bias it has while computing scores for each input between 0 and 1. Scores 

closer to the bounds of that range suggest a fairly strong conviction in the result, though scores 

within some pre-determined distance of 0.5 require further analysis. Post-processing algorithms 

generally work by establishing some threshold for each type of protected group and applying it 

to the score mentioned above as a means of assigning a final classification to that data point.  In 

2012, Faisal Kamiran, Asim Karim and Xiangliang Zhang published an algorithm known as 

Reject-Option based Classification, or ROC (Kamiran et al., 2012). The pseudocode for the 

algorithm is as follows: 

 

 



 

Figure 7: Reject Option based Classification Algorithm Pseudocode (Kamiran et al., 2012) 

 

The critical insight is that the algorithm declares the data points as ambiguous if they satisfy the 

following inequality: 

 

 
P(+|X) is the probability  

Ø is a tolerance value between 0.5 and 1 

 

In the case that the condition is satisfied, the instance is “rejected” and so if it is part of the 

deprived group Xd then it is given a positive label and if not, is given a negative label. It is 

important to note that the tolerance value need not be a fixed scalar and can instead take on a 

different value depending on which protected group the current data point is a part of – a method 

which maintains the necessary flexibility to correct for each group appropriately. 

 

 

 

Significance 

 

Examples 

 

Instances of algorithmic fairness are becoming increasingly common, popular examples 

including Amazon’s Rekognition A.I. recruiting tool, NorthPointe’s Compass recidivism 

prediction system, and the Apple-Goldman Sachs credit card. 

 

The Apple-Goldman Sachs incident deals with applications for credit card limit raises or 

personal loans. A process that was once based on a representative reviewing the applicant’s 

financial history and personal credibility is now almost exclusively offloaded to a model 

converting these parameters into an acceptance/rejection and particular limit based on data the 

institution has access to. While the companies have publicly denied any sort of difference in 

treatment among male and female applicants, the Apple Card’s credit limits were often 

significantly higher for men in spite of comparable income levels (Vigdor, 2019). One of the 

defenses of this situation is that the algorithm making the credit-limit decisions did not ‘see’ the 

gender data associated with each applicant. Despite Goldman Sach’s claim of making use of 

factors like credit score and income level and not explicitly considering gender data in their 

decisions, the situation involves a flaw in approach. The explicit suppression of certain data 

fields and running a classifier produces less favorable results than making use of a mechanism 

for ensuring some degree of fairness would (Johndrow, 2019). Despite the gender data being 

removed from the dataset, implicit bias may still exist based on other fields present so removing 

a field itself isn’t an adequate form of fairness enforcement. 

 

In the infamous NorthPoint Compass algorithm, proprietary algorithms use information about a 

convicted offender’s gender, crime and extensive personal information to generate a prediction 

of how likely the offender will recidivate (repeat his/her behavior) if they were to be released on 

parole – a data point presented to the presiding judge during the trial. Northpoint’s Compass 



algorithm was found to severely discriminate against African American defendants giving them 

higher “risk-of-repeat-offense” scores than their white counterparts for largely similar crimes and 

historical risk profiles (Angwin, 2019).  

 

Amazon’s Rekognition tool was another instance of algorithmic decision-making comes with a 

resume-filtering algorithm which would remove many of the time requirements and guesswork 

from the recruiting process by providing managers with only the select few resumes which pass 

the algorithm’s screening methods. Amazon’s resume-screening project yielded massively 

disproportionate suggestions favoring white male hires over women with similar or even more 

suitable qualifications (Dastin, 2018). This instance demonstrated the significant impact a 

training dataset with pre-existing bias can have on the classification process of a trained model 

on test data. Because the technical employees at Amazon and Amazon Web Services have 

historically been white men with college degrees in engineering fields, and this was the 

population which the algorithm used as a guide for what to look for in promising candidates who 

would fit well into the company, it unsurprisingly showed heavy discrimination against women 

in particular. 

 

 

 

Costs of Ignoring Fairness 

 

The costs of ignoring fairness in algorithmic decisions is extremely impactful to the livelihood of 

the afflicted when considering that more and more decisions are being offloaded to machines. 

While it may sound like a semi-theoretical and complex notion (which to some extent – it is), 

algorithmic fairness is an area of research which is rapidly increasing in relevance to the 

everyday livelihood of ordinary people. It is worthwhile to highlight the particular ways in which 

unfair decisions can impact the lives of the masses. The examples in the previous section range 

from depriving a qualified applicant a chance to get a job they are interested in to significantly 

affecting an individual’s freedom. These are by no means the only examples where bias has been 

uncovered in the output of widely used classifiers. An article published in Science found that an 

algorithm used in medical systems disproportionately recommended white patients with similar 

health conditions to patients of color for getting treatment (Ledford, 2019). The algorithm 

categorized patients into higher or lower tiers of risk based on their expenditure on healthcare 

related costs from the most recent year on record in the patient’s medical profile – which while 

well-intentioned – turned out to highlight the discrepancy between the average medical expenses 

for patients in each of these subgroups despite having the same chronic health problems. The 

unwillingness to issue referral for advanced care by the algorithm imposes very real risks to the 

livelihood of the protected sub-population in this instance. 

It is clear that corporations, governments and universities alike are investing capital and working 

hours into developing machine-learning based algorithms to improve facets of their operations. 

Researchers and independent interested parties are increasingly providing evidence of concrete 

situations in which the decisions of classifiers have caused profound harm to particular subsets of 

the population. This isn’t to say that algorithms for such tasks do not have a future – though it is 

clear they need to be fundamentally re-evaluated through the lens of fairness and their 

assumptions and goals made clear from the onset instead of acting as a black box for decision-

making. 



Looking Forward 

 

Developing Approaches 

 

Research is underway on a variety of novel approaches towards mitigating the unfairness risk 

which underlies current models – particularly in the “types” of learning implemented. 

 

Causal-Related Learning 

One of the main challenges with enforcing fairness deals with the ambiguity surrounding what 

actually causes the discrimination. ‘Causal models’ are those which demonstrate an ability to 

study how data are generated and the effects of interventions on outputs (Kusner, 2020). Current 

machine learning models tend to highlight correlations between some set of variables in their 

input data yet struggle with explaining the underlying reason behind these connections – the 

well-known correlation versus causation dilemma. The work regarding causal models has been 

broken into three primary tests which hint at causal relationships among training data and a 

classifier’s outputs. 

The first deals with counterfactuals – which studies whether changing a particular data point 

from the past would change the output of the model (Kusner, 2020). Researchers can tweak 

individual parameters and determine which ones have a measurable effect on the model’s output 

and conclude whether these results are in line with what they expect. For example, if changing 

the gender of an applicant consistently resulted in different outputs in a context where this factor 

should not matter, counterfactual fairness would not be satisfied. Another approach deals with 

the sensitivity of a model’s results to variables which cannot be adequately measured or 

controlled for. Though not every variable to a model can be studied thoroughly, a sensitivity 

analysis can inform an approximate proportionality between causes and effects. The third test 

deals with the impacts of so-called ‘interventions’ to study potential ripple effects in the future 

that are tied to the alteration of a variable being trained on – in particular impacts which arise a 

couple of steps away from a direct cause-effect relationship (Kusner, 2020). 

 

 

Fair Adversarial Learning  

Adversarial-trained neural networks are generally composed of a source of data called a 

generator and an adversarial model (Wadsworth, 2018). The generator fabricates data samples 

(independent of any real data) and the discriminator determines whether the samples are “fake” 

or not – feedback which the generator uses in a loop to improve its outputs (Pessach, 2021). The 

idea is to maximize the predictor’s outcome accuracy while also minimizing the discriminator’s 

ability to predict the protected attribute. A similar version may also include a second 

discriminator – the first decides whether generated samples are real like above and the second 

decides whether the sample is a part of the “privileged group” or not. This modification 

introduces the second layer to the feedback loop and has shown promising improvement in 

reducing biases (Xu, 2018). 

 

 

Fair Sequential Learning 

Sequential learning is based on the necessity for dealing with streams of real-time data as 

opposed to having an entire training dataset in advance. These systems pose a challenge since 



decisions need to constantly be made after processing each new data point that will preserve a 

notion of fairness, as the state of the model will influence the way new streaming data is handled 

in the future. An attempt at tackling this scenario was made in 2018 by Hoda Heidari and 

Andreas Krause with the introduction of time-dependent individual fairness metrics which 

required a model’s decisions to be consistent over time (Heidari, 2018). The solution was based 

on the principle that similar data points which were introduced to the model at a similar time 

should have similar outcomes given to them. The enforcement of this idea was carried out with a 

post-processing mechanism for maintaining the consistency among predictions and the 

effectiveness of the method was validated with trials on sample data sets (Heidari, 2018).   

 

 

Milestones to Reach 

 

Although perfect fairness is generally regarded to be infeasible, it is important to highlight 

fairness milestones which future research will be able to consistently implement. One of the 

major obstacles is the lack of representative datasets for most topics of study. Often the method 

of data collection is subject to some sort of bias or the data simply do not include adequate 

information about all of the possible protected groups – for example, a lack of African American 

women applicants to a particular job posting – meaning the model will not have a sense of how 

to treat such an application. Another, more logistical issue, involves creating some sort of 

standard for fairness enforcement. With the many notions of fairness used in different contexts, it 

is difficult to say with any real certainty whether or not a particular algorithm has been shown to 

be fair. It may satisfy one definition while completely failing a preserving a different “type” of 

fairness. While this is an imposing problem, some effort towards standardizing fairness 

guidelines would be a significant improvement over the highly segmented approach currently 

taken. 

 

 

 

 

Other Dimensions of Interest 

 

Algorithmic Ethics 

 

Algorithmic ethics is an emerging field of study which attempts to address what constitutes 

“acceptable” data-usage from a more philosophical standpoint – a question growing in 

importance with the rise of big-data processing capabilities. There is much discourse in academic 

publications about what sort of ethical standards algorithms must meet, and whether they should 

be expected to be the same or stricter as those for human decision-makers. An influential paper 

in the Big Data and Society journal outlined six key concerns that future work in algorithmic 

fairness needs to be able to address in order to establish a strong ethical basis (Mittelstadt et al., 

2016). They are depicted as follows: 

 



 

 

Figure 8: Six Ethical Concerns for Algorithms (Mittelstadt, 2016) 

 

The epistemic concerns group here refer to the underlying data on which classifiers are trained. 

Inconclusive evidence deals with the notion that every machine-learning model, regardless of the 

statistical thresholds of error and other error-reduction mechanisms, will always be based on data 

that is not fully representative and produce conclusions which are uncertain.  

Inscrutable evidence deals with the inevitable difficulty for validation/reproduction of a model’s 

decisions since it is very difficult to determine what the effect of the any particular data point in 

the training set was on the model’s label in a test set.  

Misguided evidence refers to a fundamental limitation of every model in its inability to ever 

produce results which are “better” than the type of data they are based on. Low-quality (many 

factors can indicate this such as size, representability, etc.) training data will place a severe 

limitation on a model’s ability to adhere to fairness definitions and by extension ethical 

expectations.  

The unfair outcomes category that is simple to understand but difficult to address appropriately. 

It simply refers to observed discrimination in the results of an algorithm, even if it only occurs in 

one particular protected group, despite it satisfying various measures of fairness elsewhere. 

Transformative effects is perhaps one of the most difficult of the principles to understand, and 

include activities such as profiling which may not have clearly demonstrable negative effects like 

discrimination against particular groups but may still be ethically questionable in their practices. 

The final principle is Traceability, which refers to the ability of harm or bias caused by an 

algorithm to be traced back to its cause or responsible party.  

These six concerns provide a framework for the study of algorithmic ethics, though it is clear 

that answering whether or not an algorithm can be thought of as ethical is a function of a 

multitude of factors which may be just as difficult to define as to implement in model. 

 

 



Differential Privacy 

 

Differential privacy refers to the security and anonymity of personally identifiable user data 

analyzed or used in machine learning research. The field has increased in popularity due to the 

nature of how classifiers work – if the underlying data belongs to individuals, there is growing 

concern that models can threaten privacy rights. A widely held formulation of privacy is that of ε 

-differential privacy, which is defined as follows: 

 

 

A is the decision-making algorithm 

D1 and D2 are datasets which differ by a single element (the element is not present in D2) 

S is a subset of all possible values A may produce 

ε is a positive real value  

 

This formulation guarantees that in a differentially private dataset the personal information for 

any particular individual in the dataset will not be distinguishable from that of others – and to put 

it another way, any analysis done on the dataset will have effectively the same result whether or 

not that particular individual’s data was using the in analysis (Dwork, et al., 2014). 

 

The notion above refers to datasets in which D1 and D2 differ by only a single datapoint. 

However, it is easily extendable to larger groups of datapoints with the following modification: 

 

 
c is a scalar representing the number of differences among D1 and D2 

 

Satisfying this definition, every group of c items is now (ε/c-differentially private), exemplifying 

the tradeoff between larger-scale privacy and the strength of the guarantee. There are many 

reasons for which differential privacy is useful in an applied context. The randomness embedded 

within the data-collection process that ensures a dataset is differentially private also ensures that 

no post-processing work can be done to reduce the “amount” of privacy the set offers. Another 

extremely important benefit differential privacy offers is the ability to quantify how much 

privacy is lost due to the various processing steps performed. This becomes very useful when 

considering whether multiple computations being done on the data in sequence (modification, 

removal of data, etc.) are directly tied to an increased risk of privacy – i.e. the question of 

whether a composition of actions on differentially-private datasets adequately maintain this 

property. 

These notions make up a small part of the research into differential privacy and the variety of 

attacks and counter-measures researchers are working towards addressing. The field is important 

to develop in tandem with algorithmic fairness (and the depth of available research results points 

to it being well ahead) as it similarly addresses an aspect of machine learning other than the 

over-arching accuracy question – yet no less important for society as a whole. 

 

 



Conclusion 

 

Algorithmic fairness is a complicated yet critical field in the modern age of technology-driven 

decision making. A steadily increasing dependence on machine learning models has moved them 

away from theoretical tools and toward becoming a cornerstone of financial, legal, medical, and 

many other systems which impact society as a whole. This paper analyzed some of the ways in 

which these models must be modified to truly become suited for their emerging role in these 

domains. Fairness in the context of algorithms, much like in the many non-algorithmic scenarios 

it already appears in, is a difficult notion to define and enforce well. Progress in the field has, 

however, steadily brought ways to address to the issues of inequality, discrimination, bias, etc. to 

light, and the research continuing to be done is instrumental to avoiding instances of systematic 

harm inflicted on particular groups which have arisen in the past. 
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