
Verisim: Formal Analysis of Network Simulations

Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo Kim, Insup Lee,

Davor Obradovic, Oleg Sokolsky, and Mahesh Viswanathan

Department of Computer and Information Science

University of Pennsylvania

fbkarthik,gunter,moonjoo,lee,davor,sokolsky,maheshvg@saul.cis.upenn.edu

Abstract

Network protocols are often analyzed using simulations. We demonstrate how to extend
such simulations to check propositions expressing safety properties of network event traces in
an extended form of linear temporal logic. Our technique uses the NS simulator together with
a component of the MaC system to provide a uniform framework. We demonstrate its e�ec-
tiveness by analyzing simulations of the Ad Hoc On-Demand Distance Vector (AODV) routing
protocol for packet radio networks. Our analysis �nds violations of signi�cant properties, and
we discuss the faults that cause them. Novel aspects of our approach include modest integra-
tion costs with other simulation objectives such as performance evaluation, greatly increased
exibility in specifying properties to be checked, and techniques for analyzing complex traces of
alarms raised by the monitoring software.
Keywords: Verisim, Formal Analysis, Network, Simulation, Testing, Routing, NS, MaC,
AODV, Temporal Logic, Ad Hoc Networks, Packet Radio, Tuning, Population Abstraction,
Packet-Type Abstraction.

1 Introduction

Network protocols such as routing protocols are diÆcult to test because meaningful experiments
may involve dozens or even thousands of hosts and routers. Developing an adequate testbed would
be prohibitively expensive while experiments involving operational systems may be too risky or
inconvenient. Thus simulations are widely used as a testing technique for both performance and
correctness properties.

The need for validating protocol implementations in simulators has been well recognized. Not
only could an improper implementation of the given protocol lead to incorrect simulation results,
but if it becomes a part of the simulation suite, it could lead to incorrect results for other protocols
simulated with it. Network simulators come with validation test suites for most of the core protocols,
so that modi�ed versions of these protocols can be validated to have the same properties. These
tests compare the performance of a modi�ed protocol with a pre-computed expected performance
chart for the scenario.

There are at least three ways in which testing based only on performance measures is less than
one would like for careful analysis of a protocol: such an analysis may not be able to detect certain
kinds of bugs in the simulator code, it is desirable to have more support for �nding aws in the
protocol itself, and there are aws of interest that are not immediately manifested as performance
problems. Let us consider each of these briey.

1

Simulator code can be buggy. An inherent assumption in the validation tests is that any
signi�cant bug will show up as a performance degradation, but this need not be true. In particular,
a bug may simply alter the overall performance pro�le. If the aim of the simulation is to �nd
the right parameters to include in the standard speci�cation of the protocol, these parameters
may be incorrect because they were learned from a simulation that was incorrectly coded. In
particular, there may be poorer-than-expected performance from a deployed system if it implements
the protocol properly. Assuming this is even discovered, it may be very painful to reconcile the
di�erences and �nd the proper parameters, especially if they have been set in stone by the standard.

Suppose the protocol has a design aw that causes bad performance �gures during simulation.
The performance �gures alone may give only limited information about the nature of the aw. For
a complex protocol that interacts with many other protocols fuller diagnostic information would
be invaluable. Current practice involves searching for the aw by repeated runs of the simulation
as informed by manual inspection of the packet trace or processing by ad hoc shell scripts. A
structured, logical framework for discovering these aws can facilitate such interactive discovery.

There are some properties of protocols that do not relate directly to performance. Suppose
that a routing protocol also has a security requirement that a packet at a node n1 meant for a
neighboring node n2 will never be seen by a third node n3. If this property is violated, the hit on
performance is likely to be very small but one would still like to know if the property is violated
in any of the simulated scenarios. Even if one is only concerned with performance, there are
correctness properties that will impact performance in important circumstances. It may be easier
to �nd these aws by searching for non-performance-a�ecting violations rather than by creating
scenarios in which these aws actually cause performance problems. For instance, routing loops
can degrade performance, but may also occur without signi�cant impact on performance. Since
they are not expected to happen, their occurrence in a simulation would be of interest, even if they
did not impact performance in that particular scenario.

In this paper we describe a tool suite called Verisim which facilitates the analysis of correctness
properties in network simulations. The advantage of Verisim comes from its combination of a
popular network simulator tool, NS [13], with the exible trace-checking component of the MaC
system [17]. Traces are generated using NS (version 2) and analyzed to determine whether they
satisfy desired properties. These properties are expressed using the Meta-Event De�nition Language
(MEDL) used in MaC. MEDL is an expressive language extending Linear Temporal Logic; it is
able to express a variety of important safety properties of the kind network software is expected
to satisfy. With this combination, it is possible to seamlessly integrate exible testing of such
properties into the processes generally used to design and analyze network systems.

We provide an overview of the MaC framework for system analysis, describe its instantiation
in Verisim, and illustrate the application of Verisim to existing simulation code for Ad Hoc On-
Demand Distance Vector routing (AODV), a protocol for routing in ad hoc packet radio networks.
Our case study has two parts, based on code we obtained from the Monarch Group at Carnegie-
Mellon. The �rst part illustrates a basic approach for using Verisim to �nd and correct bugs in the
simulation code; the second part shows how the exibility of Verisim can reduce turn-around time
in debugging.

In the �rst part of our case study we run an NS simulation and create a trace T which is
analyzed for properties AODV is expected to satisfy. The properties are expressed by a MEDL
formula � and the checker produces as its output a metatrace T � of alarms indicating violations of
� by the given trace. Our study revealed several bugs in the simulation code, and we use Verisim

2

to locate each of these and carry out regression testing until they are all removed. The technique
is what we call Repair First Bug (RFB). RFB proceeds by taking the trace and analyzing the �rst
alarm to determine what may have caused it. Assuming that the formula � is properly expressed,
this represents a bug in the simulation code. This bug is repaired and the newly modi�ed program
P1 is again run through the simulation to produce an output trace T1, which is again examined to
�nd a second bug. Assuming that three bugs are found, this process generates a program P3 which
satis�es the property � in the tested scenario. In all, this debugging session required three runs of
the simulation.

In the second part of our case study we illustrate how the exibility of Verisim can be exploited
to improve turn-around time for debugging. In this study we attempt to avoid some of steps
where the simulation was rerun to generate a new trace for continued debugging. The situation is
similar to what one sees in compilers, where an e�ort is made to produce error messages that are as
independent as possible in hope that the several faults in the program can be removed before the
compilation needs to be repeated. This is especially useful for simulations, which may run for long
periods of time (even days), and where analysis may generate vast, incomprehensible metatraces
of alarms. Alarms represent bugs that must be repaired, and it is necessary to repair as many as
possible before rerunning the simulation. The automated techniques used by compilers are largely
inapplicable since errors generated by routing protocols are quite di�erent in nature. We focus
on a mixture of manual and automated techniques we call tuning. The metatrace T � is manually
inspected to �nd bug classes and then the MEDL property � is modi�ed or `tuned' to produce a
formula that ignores one or more bugs recognized in this �rst manual analysis. Verisim then
re-analyzes the original T to produce a new metatrace T , which is inspected for new bugs. Note
that the second step can proceed without rerunning the simulation. This strategy is repeatedly
applied until it becomes desirable to �x a collection of bugs and rerun the simulation.

The paper is divided into seven sections. After this introduction we describe Verisim and its
components, the MaC framework and the NS system. Then, in the third section, we describe
the AODV protocol. Simulator code for this protocol is then analyzed in two case studies in the
fourth section. The �fth section describes abstraction techniques that can be used to improve the
scalability of checking. The sixth section discusses some of the related work, and the seventh section
concludes.

2 Verisim

The need to analyze protocol simulation results beyond performance measures led us to design
an integrated environment for protocol simulation and analysis. The environment, which we call
Verisim, enables us to perform simulations and explore their properties within the same framework.
Rather than developing Verisim components from scratch, we envisioned Verisim as a collection of
tools that have been tried by researchers and developers and proved to be useful in similar contexts.

We designed Verisim within the MaC monitoring and checking framework [18]. The MaC
framework appeared to be a natural choice for the toolset architecture. MaC is designed for
the formal analysis of trace-based executions with respect to user-speci�ed properties. This setup
exactly matches our needs regarding simulation trace analysis. We designed Verisim as an integrated
system that combines the network simulator NS [13] and the checker from an earlier MaC-based
monitoring system for Java programs [17]. The individual tools are described below. A simulation
trace produced by NS is automatically transformed into the input format of the MaC checker.

3

Checker

MEDL

OTcl

Instrumented
Protocol: C++

Scenario:

Properties:

MetatraceTraceNS

Figure 1: The Architecture of Verisim

The resulting toolset provides the instantiation of the MaC framework depicted in Figure 1. The
resulting integrated system enables exible formal analysis of network simulations where properties
are expressed in MEDL, the input language of MaC based on temporal logic, and checked on traces
produced by NS.

The use of MEDL allows the users writing a property to be checked to concentrate on what
needs to be checked rather than how to check it. We note that, for simple properties, an ad hoc
implementation of the checker - say, as a Perl script - may be easy to write and faster than a
general-purpose checker. However, the checking algorithm will have to be implemented anew for
every property one wants to check and, as properties become more complex, ad hoc checkers become
more and more error-prone.

2.1 NS Network Simulations

Simulator implementations of protocols under development can provide an idea of how the protocols
behave in a wide variety of network environments. Typically, a protocol and a suite of scenarios
can be generated quickly and the simulation result is then provided as a feedback to the protocol
designer. As such, simulator traces often reveal design aws and potential improvements in the
protocol before a laboratory testbed is even considered. Moreover, the simulator code often serves
as a reference implementation for the protocol.

The development of a custom simulation framework for a single protocol allows the designer
to investigate small topologies and basic characteristics of a new protocol. However, such simu-
lations are limited in their ability to provide data about how a protocol interacts in the larger,
multi-protocol environments where it must eventually operate. An extensible, multi-protocol simu-
lation framework allows protocol designers to layer their protocol implementation at the node level
and analyze its performance and interaction with other protocols. NS [13] is a discrete event net-
work simulator developed by the VINT Project (http://netweb.usc.edu/vint), a collaboration
between UC Berkeley, LBL, USC/ISI, and Xerox PARC, that provides such a framework. The sys-
tem we study in this paper is based on NS, and our case studies use an extension of it by the CMU
Monarch group (http://monarch.cs.cmu.edu) that adds link-layer and physical layer support for
wireless networks.

A block diagram showing the steps in an NS simulation is shown in Figure 2. In order to
carry out simulations using NS, one �rst implements the protocol in C++ using a collection of
simulator constructs. A number of well-known protocols have been implemented for NS and can
be used in simulations of newer protocols. For instance, the NS release provides TCP, UDP, IP,

4

Traffic
Agents

Network
Model

Protocol
Agents

P P P

src/sink src/sink src/sink

NS simulator

Trace:

NS Trace

Instrumented
Protocol Code

Configuration
Parameters:

 OTcl

 OTcl

Scenario

Traffic Model:

Topology:

 OTcl

P: C++

Figure 2: Simulations Using NSv2

and various routing protocols. These protocols are typically implemented as vertical layers on a
node. New protocols may be implemented on top of or in between such pre-existing layers. Next,
one needs to generate a simulation scenario written as a script. A typical NS scenario consists of a
dynamic topology description, a traÆc model, and various protocol con�guration parameters. The
simulator is then compiled with the protocol code and the scenario to produce a protocol-speci�c
simulator. When the simulator is executed, a network model is constructed from the scenario
topology, while data sources and sinks are added according to the traÆc model. Protocol agents
are attached to nodes in the network and their behavior is simulated. The result is a trace of all
the packets produced, transported, dropped in the network, and any other diagnostic information
directly instrumented into the protocol simulator code. This trace is typically used to analyze the
performance of the protocol in terms of metrics like end-to-end delay, queue lengths, bandwidth,
network throughput and goodput. It can also be fed into a visualization tool to help understand
the network scenario and protocol response.

2.2 MaC Monitoring and Checking

Monitoring and Checking (MaC) is a framework for dynamic analysis of safety properties of sys-
tems with a trace-based semantics. The overall framework is depicted in Figure 3. The frame-

CheckerMonitor

Program

Data

Monitoring
Script

Trace

Properties

Metatrace

Figure 3: Overview of the MaC Framework

work includes two main phases: (1) before the system is run, its requirement and implementation

5

speci�cation are used to generate run-time monitoring components; (2) during system execution,
information about the running system is collected and matched against the requirements.

A major task in the �rst phase is to specify requirements formally. In addition, a user identi�es
aspects of the program execution that must be observed and reported in the trace, so that the
desired properties may be checked. This is speci�ed in what we call the monitoring script. The
primary reason for having a separate monitoring script and requirement speci�cation, is to sepa-
rate implementation-speci�c details of monitoring from requirements speci�cation. This separation
helps in extending the framework for di�erent implementation languages and speci�cation for-
malisms, while providing a clean interface to the designer of monitors. In the �rst phase, run-time
components of the MaC framework are generated from a requirement speci�cation and monitoring
script automatically; the monitoring script generates a monitor and the requirement speci�cation
generates a checker.

The run-time architecture of the MaC framework consists of a monitor and a checker [17, 18].
The monitor observes the running program and generates a sequence of events which is then exam-
ined by the checker. The metatrace, which is generated by the checker, contains the timed sequence
of properties that have been violated during the execution, along with additional information about
the system state, which can then be used for the purposes of debugging. Previously, we developed
an implementation of the MaC framework for monitoring and checking of Java programs, called
Java-MaC.

Verisim uses the checker component of Java-MaC, while the monitor component of Java-MaC
is replaced by NS. The checker is based on the Meta Event De�nition Language (MEDL), which
is designed to express properties of traces. MEDL is an extension of linear temporal logic (LTL)
that captures safety properties (see [25] for a precise characterization of MEDL's expressive power).
Safety properties [1] are requirements whose violation can be detected by examining a �nite pre�x
of the execution. Any run-time checking of computation must make decisions about the validity
or faultiness of a trace based on what it has seen so far; hence safety properties are the class of
properties that can be checked dynamically. MEDL also has additional variables that may be used
to record certain aspects of the trace. These variables represent the checker's state when trying to
check if the trace conforms to the property. The presence of auxiliary variables in MEDL allows
users to overcome certain well known limitations in the expressive power of LTL. For example,
within MEDL one can `count' and so it is possible to express things like `RREP should happen
before the 5th occurrence of RREQ'. As in SCR [14], we distinguish between two kinds of data that
make up the trace of an execution: things that are true at some instant during the execution (which
we call events), and facts that hold for a longer duration of time (which are called conditions). For
example, the return from the method SendRequest occurs only at the instant when the control
returns from the method, while a boolean condition like (next hopd == 2) holds for as long as
next hopd does not change its value from 2. The distinction between events and conditions is
important in terms of what the checker can infer about the execution based on the information
extracted by the monitor. The checker assumes that truth values of all conditions remain unchanged
between updates from the monitor. For events, the checker makes the dual assumption, namely,
that no events (of interest) happen between updates.

Based on this distinction between events and conditions, we have a simple two-sorted logic that
constitutes MEDL. The syntax of conditions (C) and events (E) is given in Table 1. Here e refers
to primitive events that are reported in the trace by the monitor; c is either a primitive condition
reported in the trace or a boolean condition de�ned on the auxiliary variables. Guards (G) are

6

Table 1: MEDL Grammar

<C> ::= c <E> ::= e <G> ::= <E> -> <Statements>

| [<E>, <E>) | start(<C>)

| ! <C> | end(<C>)

| <C> && <C> | <E> && <E>

| <C> || <C> | <E> || <E>

| <C> => <C> | <E> when <C>

used to update auxiliary variables that may record something about the history of the execution.

The models for this logic are similar to those for linear temporal logic, in that they are sequences
of worlds. The worlds correspond to instants in time at which we have information about the truth
values of primitive conditions and events. Intuitively, these worlds correspond to the times when
the monitor adds something to the trace. The intuition in describing the semantics of events
and conditions based on such models is that conditions retain their truth values in the duration
between two worlds, while events are present only at the instants corresponding to certain worlds.
The labels on the worlds give the truth values of primitive conditions and events. The semantics
for negation (!c), conjunction (c1 && c2), disjunction (c1 || c2) and implication (c1 => c2) of
conditions is standard. Each condition is associated with two events, one that happens when the
condition becomes true (start(c)) and the other that happens when the condition becomes false
(end(c)). Conversely, occurrences of any two events e1, e2 de�ne an interval of time, and thus
form a condition [e1, e2) that is true from an occurrence of event e1 until the �rst occurrence of
e2. The event e when c is true if e occurs and condition c is true at that time instant. Finally,
a guard e -> stmt, is executed when event e is true; the e�ect of the execution is to update the
values of the auxiliary variables according to the assignments given in stmt. In the assignments,
we follow the common practice to denote by x' the \next state" value of variable x. The formal
semantics for the logic is given in [17, 18].

Primitive events sent by the checker may have values associated with them that give detailed
information about the event. For example, an event that represents an update of a monitored vari-
able will have the new value of the variable attached to it. The values may be used in assignments
to auxiliary variables and event de�nitions.

Appendix A gives a complete MEDL script for some of the properties used in the Verisim
analysis that we describe in subsequent sections. Here we use it to illustrate the concrete syntax
of MEDL. The script opens with a script name. The �rst section identi�es primitive events and
conditions that are sent to the checker by the monitor with the keyword import. For example,
import event eventty yields one primitive event, which represents the type of the simulation
event in the example. The next section gives typed declarations of auxiliary variables. The
declaration var int best hc[at][dst] introduces, for each pair of nodes (at, dst), a variable
that represents the best known distance (hop count) between the nodes. Further in the script,
events and conditions are de�ned in terms of other events and conditions and the values of
primitive events and auxiliary variables. For example, we represent an event that happens when a
packet containing routing information about node dst is sent by node at as:
event sendroute[at][dst] = routeinfo[at][dst] when ((value(eventty,0) == 1)

&& (value(src_hc,0) < 255));

7

Here, routeinfo is a previously de�ned event that occurs when routing information is present in
a packet, and the �rst value associated with the last occurrence of event eventty is 1, denoting a
send event. Values of primitive events are accessed by their index, starting at 0. Finally, the script
contains assignments to the auxiliary variables in response to events. For example, event init,
which is the �rst event sent by the monitor, performs initialization of the checker state:
init -> { best_hc[at][dst]' = 0; }.

The checker, which is generated automatically from the MEDL script, evaluates the events and
conditions described in the script, whenever it reads an element from the trace. There can be
dependencies between di�erent events and conditions. For example, an event e1 that is de�ned
in terms of an auxiliary variable that is updated by event e2, must be evaluated after e2 and the
variable have been updated. In order to evaluate events and conditions in a consistent order, we use
a DAG data structure that implicitly encodes this dependency and has additional information that
allows for fast evaluation of the events and conditions. A very important feature of our checking
algorithm is that evaluates events, conditions, and guards on a need basis. This is particularly useful
when checking simulations of network protocols. The requirements for a network protocol typically
impose constraints on every pair of nodes in the network. However, a simulation event, such as
a packet arrival, a�ects only a few of the nodes and thus only a small subset of the constraints
may be violated. The evaluation algorithm re-evaluates only those events and condition that are
a�ected by the incoming data.

The remainder of this paper deals with the validation of Verisim as a test harness for network
simulations. To carry out this validation, we perform a case study based on a new protocol currently
being standardized by IETF in the Manet Working Group. We present the protocol in the next
section, along with some of the properties it is expected to satisfy. For this study, we selected
simulation code written by the Monarch group at CMU, one of the research groups working on
Manet protocols. As with any complex software, the version of the Monarch code we study has some
bugs. We show how to �nd several of these using Verisim in a simulation of modest complexity.1

Our �rst analysis focuses on the use of Verisim as a debugging aid, demonstrating the kinds of
bugs that can be found. Our second study focuses on the strategy for using Verisim for debugging,
focusing on eÆcient means for analyzing metatraces to �nd collections of independent bugs. The
aim of the �rst study is to determine whether Verisim is useful while the aim of the second is to
determine whether re�nements in methodology can make it more useful.

3 AODV Routing

This section describes the AODV routing protocol [21, 22] which we used in our case study. The
�rst part provides a short description of the protocol. The second part discusses some of its
requirements|properties that are expected to hold in AODV implementations.

3.1 AODV Protocol

The Ad Hoc On-Demand Distance Vector (AODV) routing protocol is used in packet radio net-
works. A packet radio network consists of a collection of mobile nodes whose link connectivity

1We reported these bugs when we found them so they could be removed from subsequent versions of the Monarch

simulator code.

8

frequently changes due to the node movement. Because of dynamic connectivity and a typically
low link bandwidth, AODV establishes routes `on-demand' (that is, only when they are needed).

A route to a destination d contains the following �elds:

next hopd: Next node on a path to d.

hop cntd: Distance from d, measured in the number of nodes (hops) that need to be traversed to
reach d.

seq nod: Last recorded sequence number for d.

lifetimed: Remaining time before route expiration.

The purpose of sequence numbers is to track changes in topology. Each node maintains its own
sequence number. It is incremented whenever the set of neighbors of the node changes. When a
route is established, it is stamped with the current sequence number of its destination. As the
topology changes, more recent routes will have larger sequence numbers. That way, nodes can
distinguish between recent and obsolete routes.

When a node s wants to communicate with a destination d, it broadcasts a route request (RREQ)
message to all of its neighbors. The message has the following format:

RREQ(d; hops to src; dest seq no; s; src seq no):

Argument hops to src determines the current distance from the node which initiated the route
request. The initial RREQ has this �eld set to 0, and every subsequent node increments it by 1.
Argument dest seq no speci�es the least sequence number for a route to d that s is willing to accept
(s usually uses its own seq nod for this purpose). Argument src seq no is the sequence number of
the initiating node.

When a node t receives a RREQ, it �rst checks whether it has a route to d stamped with a
sequence number at least as big as dest seq no. If it does not, it rebroadcasts the RREQ with
incremented hops to src �eld. At the same time, t can use the received RREQ to set up a reverse
route to s. This route would eventually be used to forward replies back to s. If t has a fresh enough
route to d, it replies to s (unicast via the reverse route) with a route reply (RREP) message which
has the following format:

RREP(hops to dest; d; dest seq no; route lifetime):

Arguments hops to dest; dest seq no; and route lifetime are the corresponding attributes of t's route
to d. Similarly, if t is the destination itself (t = d), it replies with

RREP(0; d; big seq no;MY ROUTE TIMEOUT):

The value of big seq no needs to be at least as big as d's own sequence number and at least as big
as dest seq no from the request. Parameter MY ROUTE TIMEOUT is the default lifetime, locally
con�gured at d. Every node that receives a RREP increments the value of the hops to dest packet
�eld and forwards the packet along the reverse route to s. When a node receives a RREP for some
destination d, it uses information from the packet to update its own route for d. If it already has a
route to d, preference is given to the route with the bigger sequence number. If sequence numbers

9

are the same, the shorter route is chosen. This rule is used both by s and by all of the intermediate
forwarding nodes.

The above preference rule is important for propagating error messages. In addition to the
routing table, each node s keeps track of the active neighbors for each destination d. This is the set
of neighboring nodes that use s as their next hopd on the way to d. If s detects that its route to d
is broken, it sends an unsolicited RREP message to all of its active neighbors for d. This message
contains hops to dest = 255 (in�nity), and its dest seq no is one more than the previous sequence
number for that route. Such arti�cially incremented sequence number forces the recipients to accept
this `route' and propagate it further upstream, all the way to the origin of the route.

3.2 AODV Properties

Routing protocols are often compared based on performance statistics like speed of convergence,
amount of bandwidth and memory needed for control data, and so on. However, the quality of the
results produced by di�erent protocols may vary. For instance, it is unfair to compare a slow routing
protocol that always �nds shortest routes with a really fast protocol that sometimes creates routing
loops. This is why it is important to know what kind of correctness attributes a given protocol
provides when comparing its performance to other protocols.

Our study focuses on analyzing correctness of AODV implementations. This can be studied
from two angles: correctness with respect to the requirements and correctness with respect to the
standard.

Requirements are high-level properties that a protocol is supposed to satisfy. They are usually
not protocol speci�c, in the sense that a same requirement property usually makes sense in the
context of many di�erent protocols. A common requirement for a routing protocol is Loop Freedom:
Computed routes never contain loops. It turns out that in the case of AODV it suÆces to prove
a simple invariant in order to guarantee loop freedom [5]. The loop freedom invariant is described
in Table 2. Other typical routing protocol requirements are optimality of the computed routes,
convergence to valid routes, etc.

Table 2: AODV Requirement: Loop Freedom

Loop Invariant: Along every AODV route to a destination d, pair (�seq nod; hop cntd) strictly
decreases in the lexicographic ordering.

A protocol standard is a document which gives basic guidelines on how to implement a pro-
tocol. Its purpose is two-fold|it ensures interoperability between di�erent implementations and
it (supposedly) ensures satisfaction of the requirements. The standard helps the implementors by
describing a particular way in which the requirements are supposed to be satis�ed. Since each
protocol has its own standard speci�cation, properties that describe the standard will be much
more protocol-speci�c than the properties that describe the requirements.

The core part of a protocol standard describes what kinds of events can occur and how are nodes
supposed to handle them. Network protocols usually represent reactive systems, which means that
every action is carried out in response to an event. Although the standard is written in natural
language, one can typically extract the state machine that it is trying to express. For example, the

10

state machine corresponding to an AODV process is shown in Appendix B. Tomonitor conformance
with such a state machine, we convert it to a monitoring speci�cation that gets triggered every
time a network event of interest happens. The monitoring speci�cation attempts to keep track of
the state of the protocol, and checks that the events generated by the protocol are correct with
respect to the state machine.

MEDL, with its explicit notion of events, and its notion of explicit state transformations, proves
to be a very practical language for expressing properties of network protocols. Events include, but
are not limited to, packet receipts and timeouts. When an event occurs, the state of the protocol is
updated and possibly new packets and timers are generated. Table 3 shows some of the properties
that test adherence to the AODV standard. These properties were generated from the state machine
description in Appendix B. Notice how each property contains an event in its description (denoted
by a phrase of the form when. . . or if. . .). We should point out that the set of standard properties
listed in Table 3 is not complete|satisfying all of the properties still does not guarantee adherence
to the standard. In particular, there are a number of properties about the timing of protocol
events that our state machine, and consequently our monitoring speci�cation, does not express.
It is generally not feasible to capture the whole standard as a single set of checkable properties.
Size and complexity of the standard impose practical limitations on this task. Another limitation
is the expressive power of the logic in which the properties are stated, as well as the complexity
of checking procedures. For instance, we can only express and check safety properties, but it is
conceivable that a standard may include liveness properties as well. Finally, standards sometimes
prescribe implementation details whose satisfaction can not be checked by observing protocol runs.
Completeness is not essential, since our goal is �nding errors, not showing correctness. The richer
the set of properties, the more kinds of errors can be detected.

Table 3: AODV Standard Properties

Property Name Property Description

Monotone Sequence Numbers A node's own sequence number never decreases.

Destination Stops When a packet (RREQ, RREP or data) reaches its destination,
it should not be forwarded.

Correct Forwarding If a packet addressed to d (RREP or data) is forwarded, it is
forwarded along the best unexpired route to d seen so far.

Destination Reply When the destination replies to a route request,
the value of the hops to dest �eld of the reply should be 0.

Node Reply When a node sends a route, it sends the best unexpired route
seen so far.

RREQ Sequence Number When a node initiates a route request for a destination d,
the requested sequence number should either be 0,
or the last sequence number recorded for d (seq nod).

Detect Route Error If a node detects a broken route, it should use
dest seq no = 1 + (its own) seq nod in the unsolicited RREP.

Forward Route Error When a node forwards an unsolicited RREP, it should forward
the same sequence number that it received.

11

4 Checking AODV Simulations

In this section, we analyze AODV simulations using Verisim. Verisim generates a large meta-
trace of property violations. We use bug-repairing and tuning to discover errors in the protocol
implementation.

4.1 AODV properties in MEDL

Our �rst task is to translate properties given in section 3.2 in MEDL. Generally, all properties are
constructed to capture deviations of the observed behavior from the ideal (correct) behavior. In our
framework, observable behavior of a routing protocol is the sequence of packets exchanged between
the nodes. Based on the packet sequence, our MEDL property constructs the ideal system state
and compares it to the observed system state. For instance, if a RREP packet heading towards a
node u is forwarded from node v to node w, the observed routing table at v has next hopu = w.
However, by monitoring the history of RREP messages received at v, we can see whether v was
indeed expected to have such a route to u.

To give an example, recall the Loop Invariant property from the previous section. Consider
some three di�erent nodes: at , nxt and dst . Assume that the node at has a route to dst through
its neighbor nxt :

next hopdst (at) = nxt :

Let (s(at); h(at)) be the sequence number and the hop count that node at has for the destination
dst (similarly (s(nxt); h(nxt)) for the node nxt). The Loop Invariant property says:

(s(at) � s(nxt)) ^ (s(at) = s(nxt)) h(at) > h(nxt)):

Therefore, the property is violated exactly when the following holds:

(s(at) > s(nxt)) _ (s(at) = s(nxt) ^ h(at) � h(nxt)):

Table 4 shows a MEDL alarm that detects this violation in the state of the nodes, as reconstructed
from observed events.

Table 4: Loop Invariant in MEDL

alarm LoopInv[at][nxt][dst] =

start((at!=nxt) && (at!=dst) && (nxt!=dst) &&

(best_next[at][dst] == nxt) &&

((best_seq[at][dst] > best_seq[nxt][dst]) ||

((best_seq[at][dst] == best_seq[nxt][dst]) &&

(best_hops[at][dst] <= best_hops[nxt][dst]))))

The auxiliary variables: best_seq, best_next, and best_hops keep track of the sequence
number, next hop and hop count of a node's current route to the destination dst . We compare the
states of nodes at and nxt to check if the loop invariant is being violated.

This will be our general strategy for translation|we �rst encode the ideal state machine in
terms of auxiliary variables; then we convert the desired state invariants, and properties of the

12

outputs into alarms by negation. Table 5 shows AODV properties and their corresponding MEDL
alarm names. Appendix A gives the complete MEDL scripts for many of these properties.

Table 5: MEDL Alarms

Property MEDL alarm

Monotone Sequence Numbers MonSeqNo
Destination Stops DestStops
Correct Forwarding CorrectFwd
Destination Reply DestRep
Node Reply NodeRep
RREQ Sequence Number ReqSeqNo
Loop Invariant LoopInv
Detect Route Error DetectRErr
Forward Route Error FwdRErr

4.2 AODV Simulation Case Study

We consider an implementation of AODV written by the CMU Monarch Project(http://monarch.
cs.cmu.edu) for the network simulator NS. This code was used primarily for performance analysis
of AODV in comparison with other routing protocols for mobile, ad hoc networks [9]. In order to
carry out this comparison, a number of large random scenarios were constructed as well.

The Monarch implementation is based on the �rst version of AODV [21], and is known to have
bugs|because of incomplete speci�cation in the standard, and due to programmer errors. The
code is already instrumented to produce a packet trace for every packet generated, forwarded and
dropped by the protocol. We use Verisim to analyze NS simulations of this code on a small network
scenario S with 5 nodes, as shown in Figure 4.

Topology: There are 5 nodes initially arranged as in Figure 4 (Phase I). Then node 5 starts moving
away from the network, causing the wireless links to break after 2.5s (Phase II). 30s into the
simulation, node 5 heads back towards node 1. At 55s it is within the range of node 4 (Phase
III), at 70s it is in the range of nodes 2,3, and 4 and �nally it is in the range of 1,2, and
3 (Phase IV).

TraÆc Model: Nodes 1,2 and 3 are constant bit rate (CBR) sources for node 5. They send a total
of 1000 packets of size 512 bytes each, one packet every 0.1s.

AODV parameters: We use the optimal AODV con�guration computed by the Monarch group.
The con�guration involves parameters like route timeout intervals and the number of times
a request should be re-tried.

When the AODV protocol is simulated on scenario S, NS generates a trace T . The initial
fragment of a typical trace is shown in Table 6. When a packet send or receive event happens at a
node N, there is a line in the trace with the format:

13

5

2

1

3

4

5

1

11

2

2 2

3

33

4 4

4

5

5

Phase I Phase II

Phase III Phase IV

Figure 4: Scenario S

<send/recv> <time> _N_ RTR --- <Link Layer info> ------- <IP info> <AODV info>

For instance, the third line of the trace tells us that at time 0.0, node 3 broadcast an
AODV REQUEST, for destination 5, with hop count 0 and broadcast id 1. Moreover, node 3's current
sequence number is 1, and the last sequence number it heard from the destination (5) is 0. This
request eventually reaches the destination 5, through node 4. The last line of the trace is node 5's
REPLY to the request which it unicasts to node 3, via node 4.

4.3 Repair First Bug

We start with Monarch code for AODV (P), and simulate it using NS for the scenario S to produce
the trace T (Table 6). Verisim then checks whether T satis�es the AODV properties �, and produces
a meta-trace T � of property violations (alarms). This meta-trace generation is then repeated, on
succeeding versions of P . Statistics on the alarms found in these meta-traces are shown in Table 7.
We show the results for a representative set of AODV properties. The last column in the table
contains the total number of violations of all the properties (including the ones not shown). The
MEDL speci�cation for these selected AODV properties is given in Appendix A.

Step I

The �rst meta-trace T � contains 220 alarms, and the initial fragment is as shown in Table 8. This
alarm trace has 4 DestRep alarms, 43 instances of LoopInv, 54 DetectRErr alarms, and 38 instances
of NodeRep. Incidentally, the �rst alarm in T � is raised at the last event of T shown in Table 6.

14

Table 6: Typical Trace T

s 0.000000000 _1_ RTR --- 0 AODV 52 [0 0 0 0 0] ------- [1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 1]] (REQUEST)

s 0.000000000 _2_ RTR --- 0 AODV 52 [0 0 0 0 0] ------- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)

s 0.000000000 _3_ RTR --- 0 AODV 52 [0 0 0 0 0] ------- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)

r 0.000519784 _2_ RTR --- 0 AODV 52 [20 0 ffff 1 800] --- [1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 1]] (REQUEST)

r 0.000535386 _3_ RTR --- 0 AODV 52 [20 0 ffff 1 800] --- [1:255 -1:255 32 0] [0x2 0 1 [5 0] [1 1]] (REQUEST)

r 0.002002991 _1_ RTR --- 0 AODV 52 [20 0 ffff 3 800] --- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)

r 0.002006118 _2_ RTR --- 0 AODV 52 [20 0 ffff 3 800] --- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)

r 0.002014489 _4_ RTR --- 0 AODV 52 [20 0 ffff 3 800] --- [3:255 -1:255 32 0] [0x2 0 1 [5 0] [3 1]] (REQUEST)

s 0.002360210 _4_ RTR --- 0 AODV 52 [20 0 ffff 3 800] --- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 1]] (REQUEST)

r 0.002689325 _1_ RTR --- 0 AODV 52 [20 0 ffff 2 800] --- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)

r 0.002700822 _4_ RTR --- 0 AODV 52 [20 0 ffff 2 800] --- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)

r 0.002708053 _3_ RTR --- 0 AODV 52 [20 0 ffff 2 800] --- [2:255 -1:255 32 0] [0x2 0 1 [5 0] [2 1]] (REQUEST)

s 0.002777804 _4_ RTR --- 0 AODV 52 [20 0 ffff 2 800] --- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [2 1]] (REQUEST)

r 0.003439172 _2_ RTR --- 0 AODV 52 [20 0 ffff 4 800] --- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 1]] (REQUEST)

r 0.003449342 _5_ RTR --- 0 AODV 52 [20 0 ffff 4 800] --- [4:255 -1:255 31 0] [0x2 1 1 [5 0] [3 1]] (REQUEST)

s 0.003449342 _5_ RTR --- 0 AODV 44 [0 0 0 0 0] ------- [5:255 3:255 32 4] [0x4 1 [5 2] 600] (REPLY)

Table 7: RFB Alarms

Meta-trace DestRep DetectRErr NodeRep LoopInv Total alarms

T � 4 54 38 43 220

T
�
1

0 54 38 43 216

T
�
2

0 48 39 44 206

T
�
3

0 0 0 0 1

Table 8: Typical Meta-trace T �

Time: 0.003449342s, Alarm DestRep raised at 5 for dest 5

best route at 5 for 5: <seqno: -1,hc: -1,next: -1>

observed route at 5 for 5: <seqno: 2,hc: 1>

Time: 0.004823314s, Alarm DestRep raised at 5 for dest 5

best route at 5 for 5: <seqno: 2,hc: -1,next: -1>

observed route at 5 for 5: <seqno: 3,hc: 1>

Time: 2.567054284s, Alarm DetectRErr raised at 4 for dest 5

best route at 4 for 5: <seqno: 3,hc: 1,next: 5>

observed route at 4 for 5: <seqno: 3,hc: 255>

Time: 2.567054284s, Alarm DetectRErr raised at 4 for dest 5

best route at 4 for 5: <seqno: 3,hc: 1,next: 5>

observed route at 4 for 5: <seqno: 3,hc: 255>

15

The �rst alarm is a DestRep at destination 5, which means that the implementation is not setting
the initial hop-count value in an RREP correctly. All four instances of the alarm in T � indicate
that the initial value has been set to 1. So we go into the code and correct this simple o�-by-one
error, changing the initial hop-count from 1 to 0. This produces a new implementation P1, which
we use to produce a new trace T1, by running the simulation again.

Step II

We run Verisim on T1 and � to produce the second meta-trace T �
1
. T �

1
has 216 alarms, and is the

same as T � except that the DestRep alarms have been eliminated. The �rst alarm in the trace is a
DetectRErr at node 4, where the node 4 is sending an unsolicited RREP, saying that the destination
5 is unreachable. However, the sequence number in the RREP is not 1 more than the best sequence
number at 4. This leads us to suspect that the implementation fails to increment the sequence
number at 4 before sending the unsolicited RREP. Looking at other DetectRErr alarms in the trace
con�rms this bug. We repair P1, to eliminate this bug and produce the third version of our code,
P2.

Step III

As before we analyze P2 through Verisim to produce T2 and T
�
2
. T

�
2
has 206 alarms, of which

44 alarms are due LoopInv, 48 are DetectRErr alarms, and 39 are NodeRep alarms. Some of the
DetectRErr alarms we detected before are gone, but a number of alarms remain. Interestingly, the
NodeRep alarms and the LoopInv alarms increase by 1. This is because in the old trace, when
the incorrect route errors are received by nodes, the MEDL formula assumes they are ignored.
However, in the new trace, the generated route errors have the correct hop-count, so � recognizes
that they will be acknowledged by the recipients. This leads to more errors being recognized.

The �rst alarm is a NodeRep at node 3, which advertises a route with hop-count 2 for the
destination 5 even though it no longer has a route to the destination. It is in e�ect advertising
outdated routes. We conclude that the conditions that check whether an RREP should be sent are
buggy and that routes are not deleted properly in the code. Indeed we �nd, when we look at the
code, that the RREP generation code has multiple errors in it. We need to change 3 conditional
expressions in the code, to make it conform to our properties. Finally, we again run Verisim on
this new implementation P3 to produce a trace T3 and meta-trace T �

3
.

Step IV

The fourth meta-trace just contains one alarm, which is raised because of an unexpected bu�ering
event at a lower layer protocol in the simulation. Essentially, a packet pn received at node 3 is
bu�ered at a lower layer while the protocol responds to an older packet po. However, our MEDL
formula, which does not model lower layer protocols, assumes that pn has already been seen and
processed by the protocol, causing the alarm. As such, T3 is `correct' with respect to the AODV
properties that we modeled in MEDL.

16

4.4 Tuning

The previous section demonstrated the repair �rst bug technique for bug-hunting, involving new
simulations every time a bug was discovered. In this section, we demonstrate tuning for MEDL,
which allows us to discover multiple bugs in every simulation run. We �rst simulate P with S to
get T , which is analyzed with the MEDL formula � to get the meta-trace T �. As before, we start
our analysis by looking at T �. However, when we �nd a bug, we tune our MEDL formula � instead
of repairing the protocol code P . After this tuning, we re-run the checking part of Verisim on T
along with the new MEDL formula to generate the next meta-trace. The alarm statistics for tuning
are as shown in Table 9. The MEDL script for the properties in the table is included, along with
the tuning modi�cations, in Appendix A.

Table 9: Tuning Alarms

Meta-trace DestRep DetectRErr NodeRep LoopInv Total alarms

T � 4 54 38 43 220
T �1 0 54 38 43 216
T �2 0 0 38 50 166
T �3 0 0 21 0 30

Step I

As before the �rst alarm in T � is a DestRep at destination 5, which initializes the hop-count in the
RREP to 1. This probably means that the code is initializing a node's self-hop-count to 1 instead
of 0. So we modify the alarm DestRep to check whether a node ever emits a hop-count other than
1 (instead of 0). Then we run Verisim on T and this new MEDL formula �1 to get the meta-trace
T �1 . All the DestRep alarms disappear in the new meta-trace which validates our assumption and
identi�es the �rst bug in the code.

Step II

The second meta-trace T �1 has 216 alarms and is the same as T � except that the DestRep alarms
no longer appear. After looking at the meta-trace, we guess that the �rst alarm, DetectRErr, is
because a node that discovers a route error fails to increment the destination sequence number.
As before, we can modify the alarm DetectRErr to ignore this case. However, according to the
meta-trace, route error information still seems to propagate through the network. This means that
the implementation of the route error packet handler must be incorrect, but in a way that allows
the route error to be propagated. So, in order to ignore alarms related to the route error messages,
we modify the route error packet handling routine in the MEDL formula as well. Note that by
making this modi�cation, we are making the MEDL formula `incorrect'|we are changing the ideal
state so that it becomes the same as the observed state. This change generates the third version,
�2, which is used to produce the meta-trace T �2 . Indeed, T �2 seems to not have the kinds of
DetectRErr alarms and follow-up alarms as noticed before.

17

Step III

T �2 has 166 alarms, of which 50 are LoopInv alarms and 38 are NodeRep alarms. Both DestRep
and DetectRErr have been eliminated. Observe that the LoopInv alarms have increased because
the modi�ed MEDL state allows more alarms to be identi�ed. As before, we look at the meta-trace
and conclude that the way replies are generated in the protocol code is incorrect. In particular,
even when a node has lost a route, it keeps its hop-count around and when an RREQ is received, it
incorrectly replies as if it has a route. We imitate this behavior by changing the MEDL formula to
assume the same by allowing hop counts to stay even after the route has been lost. We run Verisim
on this formula �3 and generate the fourth meta-trace T �3 .

Step IV

The new meta-trace T �3 still has 30 alarms, with 21 NodeRep alarms that are diÆcult to interpret.
Essentially, at this point, too much information has been �ltered out of the trace to make any good
guesses about the origin of the errors. So we go back to the code to repair the three bugs detected
above. When we look at the code for the RREP generation, we realize that the implementation has
multiple bugs causing it to behave highly unexpectedly. These bugs explain the alarms remaining
in T �3 . We repair P to produce a new implementation Pf ., which is analyzed through Verisim to

produce T �f . T
�
f has a total of 1 alarm due to a packet bu�ering event at a node.

4.5 Analysis

We discovered 3 errors in the AODV implementation, which altogether required rewriting 18 lines
of the Monarch code. Of these, the RREP generation problem is particularly interesting. This error
causes the AODV implementation to actually form loops, which we detected in our simulation.
In general, loop formation is diÆcult to detect by other analyses. Indeed, our previous manual
analyses of AODV simulations failed to detect the existence of loop or the RREP generation bugs
that cause it. The automation provided by Verisim was crucial to detect and wade through property
violations in the simulation.

It must be emphasized that the intuition that allows one to tune MEDL formulas is highly
protocol speci�c. One must have a good understanding of the protocol, and conduct a manual
analysis of the meta-trace before the faults that caused the errors can be guessed. It is often the
case that there are several useful ways to tune a formula. We have demonstrated that Verisim is
exible enough to allow our guesses to be validated without even re-running the simulation, let
alone looking at or modifying the code.

5 Abstractions and `O�-The-Shelf' Simulations

In order to see how well our techniques scale up to simulations usually analyzed to measure the
performance of a network protocol, we applied our techniques to the largest trace made available by
the CMU Monarch group [9]. This `O�-The-Shelf' (OTS) trace was generated by AODV simulation
on a site of size 1500�300 meters with 50 nodes constantly moving at 20 meters per second. There
were 150 data connections transmitting four 64 byte packets every second. The simulation and
our Verisim analyses of the trace were carried out on a dual Pentium-III 550Mhz Xeon processors

18

Table 10: Results of MonSeqNo Property on Trace

Exp Trace Property Time Rate
[# of events] [size in bytes] (in secs) (time/events/prop)

A T [6; 446; 316] � [1; 476; 638] > 4 days N/A
B T [6; 446; 316] F�(�) [14; 543] 51; 045 0:54�s
C E� (T) [706; 753] � [1; 476; 638] > 4 days N/A
D E� (T) [706; 753] F�(�) [14; 543] 5; 440 0:53�s
E P�0(T) [631; 253] F�0(�) [145; 178] 85; 012 0:93�s
F P�(T) [69; 411] F�(�) [14; 543] 556 0:55�s
G E� (P�(T)) [6; 812] F�(�) [14; 543] 51 0:55�s

Table 11: Results of LoopInv Property on Trace

Exp Trace Property Time Rate
[# of events] [size in bytes] (in secs) (time/events/prop)

H P�(T) [69; 411] F�(�) [75; 508] 8064 1:54�s
I E� 0(P�(T)) [48; 735] F�(�) [75; 508] 5912 1:61�s

machine with one gigabyte of memory. The OS was Red Hat Linux 6.1 with the 2.2.12-20 SMP
Kernel. We used NS version 2.1b1 and MACSware 0.99 implemented in IBM JDK 1.1.8 for Linux
and running on the JVM. The NS simulation itself required about 5220 seconds to complete and
generated 6,446,316 events. This is much larger than the traces analyzed by Verisim in the previous
section, which all had less than 10,000 events. A naive e�ort to use Verisim to analyze MonSeqNo,
a relatively simple property, on this trace was prohibitively time-consuming. We estimate that the
time required to check the desired relationship after each of 6,446,316 events between each pair
of nodes (2500 relations) to be more than 100 days based on extrapolating a four-day run of the
analysis. On the bright side, errors with MonSeqNo were detected in the �rst 4 days of analysis.
More signi�cantly, there are a number of optimizations that will �nd an error with considerably less
e�ort. The results of analyzing the OTS simulation with various optimizations for the MonSeqNo
(called �) property are given in Table 10. Two additional optimizations were tested on the LoopInv
(called �) property, and these results are provided in Table 11. The OTS trace is called T in the
tables. The naive analysis is Experiment A, recorded in the �rst line of Table 10.

The experiments measure the e�ects of various abstractions that one may perform on either
the trace or the property to make the analysis feasible, while also �nding errors in the code. There
were two abstractions that we chose to apply: population abstraction and packet-type abstraction.
Population abstraction focuses only on a small set of nodes, while ignoring the others. We can
apply this abstraction to either the property being tested or to the trace. For example, when
applied to the property MonSeqNo, it would mean that we check that only certain nodes satisfy
the MonSeqNo property. When we apply this to the trace, we prune the trace to consist of only
events sent or received by these nodes. In our case study, we looked at two population abstractions.
In one we focused on packets at nodes 6 through 10 for the destinations 6 through 10 (25 relations).
We call this �. In the other population abstraction, called �0, we also considered only packets at
nodes 6 through 10, but we let the destination be any of the 50 nodes (250 relations). The result of

19

applying the population abstraction � to a formula ' is denoted by F�('). When the population
abstraction is applied to a trace T , we denote it by P�(T). Population abstraction is applied to
either the property or the trace in Experiments B, D, E, F, G, H, I of Tables 10 and 11.

In packet-type abstraction, we prune the trace to include only events that directly a�ect the
property we are interested in. For example, for the MonSeqNo property, this abstraction (denoted
by E�) when applied to the trace, removes all events except for the sendroute[at][dst] event.
The corresponding abstraction for the LoopInv property (denoted by E� 0), removes a di�erent set
of events from the trace. In experiments C,D,G, and I a packet type abstraction was applied.

It is important to make the distinction between population abstractions and packet-type ab-
stractions. These two classes of abstractions have essential di�erences that one needs to be aware of
when interpreting results of the abstracted simulations. Packet-type abstractions, if applied prop-
erly, are complete. This means that all errors from the original trace will still exist in the abstracted
trace. Because of this, it is generally always useful to perform packet-type abstractions. They will
more than likely improve the performance, while producing the same result as checking the original
trace. In contrast, population abstractions can miss errors. This can happen if an error occurs
outside the observed population. However, this is not very likely to happen with network protocols
where all nodes run identical processes. Generally, both population abstractions and packet-type
abstractions are sound|every error present in the abstracted simulation indicates an error in the
original simulation. Formally, if we use the notation T j= ' to indicate that a trace T satis�es a
formula ', the following will hold for every event-type abstraction � and a population abstracton
�:

T j= ' () E� (T) j= '

T j= ' =) P�(T) j= '

T j= ' =) T j= F�(')

Our case study revealed two things: linear growth in complexity and signi�cant bene�ts from
abstractions. First, the time taken to process the trace depends only linearly on the length of the
trace and the size of the formula; this can be seen from the fact that the last column of our tables is
nearly constant. The reason why the rates in Table 11 are three times more than those in Table 10
is because the property of LoopInv is more complicated and has a 3 alternations between && and
||. Second, abstractions can signi�cantly improve the time taken in performing the analysis. For
example, after applying both population and packet type abstractions, the time for the analysis went
from more than 4 days (Experiment A) to 51 seconds (Experiment G). Moreover, this optimization
did not excessively compromise our ability to discover bugs in the trace: the alarms associated with
nodes 6 to 10 that would have been generated had we analyzed the entire trace are still generated
when we test the much smaller trace we get after applying the abstractions.

6 Related Work

While there has been a great deal of research on the formal veri�cation of communication systems,
these e�orts have generally been limited in two respects. First, they generally prove properties of
the protocol and therefore may not be helpful in �nding problems in protocol implementations.
Second, few e�orts have focused on multi-party protocols like routing, where proving a property
of a �xed number of routers limits the scope of the proof drastically. [15] describes a method for
studying behavior of multi-party protocols (such as PIM-SM) in `stressful' conditions. (See [5] for
a general discussion of verifying routing protocols.) These two problems are partially addressed by

20

the Verisim strategy of analyzing trace runs from simulations. First, the simulation code is closer
to the implementation code and therefore the Verisim tests are more likely to reveal problems with
the deployed system. Second, the ease of creating simulations makes it possible to test a large
variety of con�gurations, thus partially addressing the problem that all con�gurations cannot be
tested. In any event, Verisim analysis is complementary to both static and dynamic analysis, so
it can be useful as long as it is convenient. Integration with NS contributes to this objective since
simulations created for other reasons like performance analysis can easily be subjected to Verisim
analysis as well.

A large body of related research work concentrates on automated generation of test oracles
from the requirements. A general methodology for doing this is discussed in [24], together with
examples in Real Time Interval Logic (RTIL) and Z. Papers [7, 6, 8] describe a trace analysis tool
for LOTOS requirements, while [12] describes a similar tool for Estelle requirements. Generating
test oracles for Graphical Interval Logic (GIL) is discussed in [11, 20]. An equivalent problem
for a safe fragment of Linear Temporal Logic is discussed in [16]. This fragment is expressively
similar to the requirements language of Verisim. However, an important feature that distinguishes
Verisim from most of the above work is its focus on integration of simulation and testing. Another
toolset that follows this idea is the simulation and monitoring platform MTSim [10], based on
the graphical real-time speci�cation language Modechart. An advantage of Verisim is that instead
of using formal models, it uses o�-the-shelf network simulators already designed for prototyping,
performance evaluation and other purposes.

There is similarity between Verisim formal analysis of protocol simulations and network In-
trusion Detection Systems (IDS's). IDS's aim to detect anomalies in network traÆc to enable
operators to discover problems or trigger automated responses. Examples include Next-generation
Intrusion Detection Expert System (NIDES) [2], which performs both statistical analysis and rule-
based signature analysis on audit records and Event Monitoring Enabling Responses to Anomalous
Live Disturbances (EMERALD) [23], which detects malicious activity through and across large
networks. Although IDS's often focus on detecting statistical anomalies like unusual volumes of
certain kinds of traÆc, at least some are able to check properties of the kind we describe in MEDL.
Although we are not aware of any e�orts to do so, such systems could perhaps be used in the way
we have used Verisim to produce metatraces as a debugging aid for analyzing simulations. For
instance, the rule-based analysis language (P-BEST language) [19] used in [2, 23] is as expressive
as MEDL.

Additional information about related work can be obtained from [4], which describes a taxonomy
for logical analysis of networks and uses this to classify some of the literature. A survey of tools
used in the Verinet project (including Verisim) can be found in [3].

7 Conclusion

We have demonstrated an integrated system called Verisim consisting of a network simulator and a
logic-based checker for traces of events. This combination provides a exible approach to studying
correctness properties of network simulations. We have shown the usefulness of the tool by demon-
strating how it can �nd aws in non-trivial simulator code. We have also shown how its exibility
can be exploited through the concept of tuning to improve the turn-around time in debugging.
We believe that the approach is practical and scalable and can be used as a productive adjunct to
standard network protocol engineering practices.

21

Acknowledgments

We would like to express thanks to Mike Berry and Sampath Kannan for their early involvement
in this project. We are also grateful to the Monarch group at CMU for making their code available
to us; clearly this open code generosity was important to our study. This research was partially
supported by: ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466, DARPA Contract F30602-
98-2-0198, NSF CCR-9619910, ONR N00014-97-1-0505 (MURI), NSF CCR-9988409, NSF CISE-
9703220, and DARPA ITO MOBIES F33615-00-C-1707.

References

[1] B. Alpern and F. B. Schneider. De�ning liveness. Information Processing Letters, 21(4):181{
185, October 1985.

[2] Debra Anderson, Thane Frivold, and Alfonso Valdes. Next-generation intrusion detection
expert system (NIDES) : A summary. Technical report, SRI, May 1995. SRI-CSL-95-07.

[3] Karthikeyan Bhargavan, Carl A. Gunter, and Davor Obradovic. An assessment of tools used
in the verinet project. Technical Report MS-CIS-00-15, University of Pennsylvania, 2000.
http://www.cis.upenn.edu/verinet/papers/tool-assessment.ps.

[4] Karthikeyan Bhargavan, Carl A. Gunter, and Davor Obradovic. A taxonomy of logical network
analysis techniques. Technical Report MS-CIS-00-14, University of Pennsylvania, 2000. http:
//www.cis.upenn.edu/verinet/papers/taxonomy.ps.

[5] Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal veri�cation of stan-
dards for distance vector routing protocols, February 2000. http://www.cis.upenn.edu/

~hol/papers/rip.ps.

[6] G.v. Bochmann and O. Bellal. Test result analysis with respect to formal speci�cations. In
Proc. 2-nd Int. Workshop on Protocol Test Systems, Berlin, pages 272{294, October 1989.

[7] G.v. Bochmann, D. Desbiens, M. Dubuc, D. Ouimet, and F. Saba. Test result analysis and
validation of test verdicts. In Proc. Workshop on Protocol Test Systems (IFIP), 1990.

[8] G.v. Bochmann, R. Dssouli, and J.R. Zhao. Trace analysis for conformance and arbitration
testing. IEEE Tr. on Soft. Eng., 15(11):1347{1356, November 1989.

[9] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A perfor-
mance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the
Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking,
October 1998.

[10] Monica Brockmeyer, Farnam Jahanian, Constance Heitmeyer, and Bruce Labaw. A exible,
extensible environment for testing real-time speci�cations. In Proceedings of the IEEE Real-
Time Technology and Applications Symposium (RTAS), 1997.

[11] Laura K. Dillon and Q. Yu. Oracles for Checking Temporal Properties of Concurrent Systems.
In Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations of Software Engineering

22

(SIGSOFT'94), volume 19, pages 140{153, December 1994. Proceedings published as Software
Engineering Notes.

[12] S.A. Ezust and G.v. Bochmann. An Automatic Trace Analysis Tool Generator for Estelle
Speci�cations. Computer Communication Review, 25(4):175{184, October 1995. Proceedings
of ACM SIGCOMM 95 Conference.

[13] Kevin Fall and Kannan Varadhan. ns Notes and Documentation. The VINT Project, February
2000.

[14] Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*: A toolset for
specifying and analyzing requirements. In Proc. of COMPASS, 1995.

[15] Ahmed Helmy and Deborah Estrin. Simulation-based `STRESS' Testing Case Study. In Sixth
International Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), July 1998.

[16] L. J. Jagadeesan, A. Porter, C. Puchol, J. C. Ramming, and L.G.Votta. Speci�cation-based
testing of reactive software: Tools and experiments. In Proceedings of the International Con-
ference on Software Engineering, May 1997.

[17] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath Kannan, Insup Lee, and
Oleg Sokolsky. Formally speci�ed monitoring of temporal properties. In Proceedings European
Conference on Real-Time Systems, 1999.

[18] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M.Viswanathan. Runtime assurance based on
formal speci�cations. In Proceedings International Conference on Parallel and Distributed
Processing Techniques and Applications, 1999.

[19] Ulf Lindqvist and Phillip A. Porras. Detecting computer and network misuse through the
production-based expert system toolset (P-BEST). In Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy, Oakland, California, May 1999.

[20] T.O. O'Malley, D.J. Richardson, and L.K. Dillon. EÆcient Speci�cation-Based Test Oracles.
In Second California Software Symposium (CSS'96), April 1996.

[21] Charles Perkins. Ad hoc on-demand distance vector (AODV) routing. Internet-Draft Version
00, IETF, November 1997.

[22] Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance vector routing. In
Proceedings of the 2nd IEEE Workshop on Mobile Computer Systems and Applications, pages
90{100, February 1999.

[23] Phillip A. Porras and Peter G. Neumann. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In National Information Systems Security Conference, 1997.

[24] D.J. Richardson, S. Leif Aha, and T.O. O'Malley. Speci�cation-Based Oracles for Reactive
Systems. In 14th International Conference on Software Engineering, May 1992.

[25] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software Systems. PhD
thesis, University of Pennsylvania, December 2000.

23

A The MEDL speci�cation of AODV properties

To illustrate the use of MEDL in speci�cation of AODV properties, we show a complete MEDL
script that contains all the properties that are discussed in the paper. These are the MonSeqNo,
DestRep, DetectRErr, NodeRep and LoopInv properties.

ReqSpec AODVSpec

/* imported events: packet fields */

import event atnode, fordest, src, src_seq, src_hc, dest, dest_seq, bcastid;

import event prev, next_hop, init, eventty, pktty, pkt_rcv;

/* state variables for each pair of nodes */

var int best_seq[at][dst], best_hc[at][dst], best_next[at][dst];

/* packet with routing information is detected */

event routeinfo[at][dst] = pkt_rcv when

((value(atnode,0)==at) && (value(src,0)==dst) &&

(value(pktty,0) > 0))

/* packet with routing information is received by node at */

event recvroute[at][dst] = routeinfo[at][dst] when ((value(eventty,0) == 0) &&

(value(src_hc) < 255));

/* a better route is received by node at */

event recvbetter[at][dst] = recvroute[at][dst]

when ((value(src_seq,0) > best_seq[at][dst]) ||

((value(src_seq,0) == best_seq[at][dst]) &&

(value(src_hc,0) < best_hc[at][dst])));

/* route error received */

event recverr[at][dst] = routeinfo[at][dst] when ((value(eventty,0) == 0) &&

(value(pktty,0) == 2) &&

(value(src_hc,0) >= 255));

/* received route error means that route is broken */

event recvbettererr[at][dst] = recverr[at][dst] when

when (value(src_seq,0) > best_seq[at][dst]);

/* packet with routing information is sent by node at */

event sendroute[at][dst] = routeinfo[at][dst] when ((value(eventty,0) == 1) &&

(value(src_hc,0) < 255));

/* route error sent */

event senderr[at][dst] = routeinfo[at][dst] when ((value(eventty,0) == 1) &&

(value(pktty,0) == 2) &&

(value(src_hc,0) >= 255))

/* initial route error packet is sent by node at */

event sendiniterr[at][dst] = senderr[at][dst]

when (best_hc[at][dst] < 255);

/* increased sequence number is sent by destination dst */

event sendincseq[at][dst] = sendroute[at][dst]

when ((dst == at) &&

(value(src_seq,0) > best_seq[at][at]));

24

/* Alarm: sequence number sent by a node has decreased */

alarm MonSeqNo[at][dst] = sendroute[at][dst]

when ((dst == at) &&

(value(src_seq,0) < best_seq[at][at]));

/* Alarm: destination's reply has wrong hop count */

alarm DestRep[at][dst] = sendroute[at][dst] when

((dst==at) &&

(value(src_hc,0) > 0));

/* Alarm: unsolicited route error message does not have

incremented sequence number */

alarm DetectRErr[at][dst] = sendiniterr[at][dst] when

(value(src_seq,0) != best_seq[at][dst]+1);

/* Alarm: node does not send best route */

alarm NodeRep[at][dst] = sendroute[at][dst] when

((dst != at) &&

((value(src_hc,0) != best_hc[at][dst] + 1) ||

(value(src_seq,0) != best_seq[at][dst])));

/* Alarm: loop invariant is violated */

alarm LoopInv[at][nxt][dst] =

start((at!=nxt) &&

(at!=dst) &&

(nxt!=dst) &&

(best_next[at][dst] == nxt) &&

((best_seq[at][dst] > best_seq[nxt][dst]) ||

((best_seq[at][dst] == best_seq[nxt][dst]) &&

(best_hops[at][dst] <= best_hops[nxt][dst]))))

/* initialization: reset all state variables */

init -> {

best_seq[at][dst]' = 0; best_hc[at][dst]' = 0; best_next[at][dst]' = 0;

}

/* new route established: update checker state */

recvbetter[at][dst] -> {

best_seq[at][dst]' = value(src_seq,0); best_hc[at][dst]' = value(src_hc,0);

best_next[at][dst]' = value(prev,0);

}

/* route error received: update checker state */

recvbettererr[at][dst] -> {

25

best_seq[at][dst] = value(src_seq,0);

best_hc[at][dst] = 255;

best_next[at][dst] = 0;

}

/* dst(at) sent a larger sequence number: update checker state */

sendincseq[at][dst] -> { best_seq[at][at]' = value(src_seq,0); }

/* at sent a route error: update checker state */

sendiniterr[at][dst] -> {

best_seq[at][dst]' = value(src_seq,0); best_hc[at][dst]' = 255;

best_next[at][dst]' = 0;

}

End

A.1 Tuning

Step I We change DestRep as follows

alarm DestRep[at][dst] = sendroute[at][dst] when

((dst==at) &&

(value(src_hc,0) != 1));

Step II We change the DetectRerr alarm, and the event-handling conditions for route error packets
as follows

alarm DetectRErr[at][dst] = senderr[at][dst] when

((best_hc[at][dst] < 255) &&

(value(src_seq,0) != best_seq[at][dst]));

event recvbettererr[at][dst] = recverr[at][dst] when

when (value(prev,0) == best_next[at][dst]);

Step III We change the state machine as follows

sendiniterr[at][dst] -> {

best_seq[at][dst]' = value(src_seq,0);

best_next[at][dst]' = 0;

}

recvbettererr[at][dst] -> {

best_seq[at][dst] = value(src_seq,0);

best_next[at][dst] = 0;

}

26

B The AODV State Machine

The AODV Speci�cation [21] is an evolving document published by the MANET working group
at the IETF (http://www.ietf.org). The document describes the various packets and network
events that an AODV process needs to respond to. Here we present the reactive state machine
that an implementation of AODV version 0 is supposed to implement. There are two control
states corresponding to the presence or absence of a route to the destination. In addition, for each
destination AODV keeps track of the best known route: seq no; hop cnt; next hop; and lifetime. An
AODV node runs a state machine for each destination; the state machine for the destination dst
is shown in Table B. We have left out some details of timouts and link error events, which the
protocol needs to handle as well. The state machine presented here captures the major packet
events and their relation to the state at an AODV process.

27

STATE: No Route

Condition Action Next State

TimeOut seq no 0 No Route

Recv from p: dest seq no max(seq no; dest seq no); No Route

RREQ(d; hops to src; dest seq no; s; src seq no) Broadcast RREQ(d; hops to src+ 1;

^ d = dst dest seq no; s; src seq no)

Recv from p: next hop p; hop cnt hops to src+ 1; Has Route

RREQ(d; hops to src; dest seq no; s; src seq no) seq no src seq no;

^ s =dst ^ src seq no � seq no lifetime REV ROUTE LIFE;

Recv from p: next hop p; hop cnt hops to dest+ 1; Has Route

RREP(hops to dest; d; dest seq no; route lifetime) seq no dest seq no;

^ d =dst ^ dest seq no � seq no lifetime route lifetime

STATE: Has Route

Condition Action Next State

TimeOut seq no seq no+ 1; No Route

next hop 0; hop cnt 255

Send to active neighbors:

RREP(255;dst; seq no;

BAD LINK LIFETIME)

Recv from p: next hop p; Has Route

RREQ(d; hops to src; dest seq no; s; src seq no) hop cnt hops to src+ 1;

^ s =dst seq no src seq no;

^ [src seq no; hops to src] is better than lifetime REV ROUTE LIFE

[seq no; hop cnt]

Recv from p: next hop p; Has Route

RREP(hops to dest; d; dest seq no; route lifetime) hop cnt hops to dest+ 1;

^ d =dst seq no dest seq no;

^ [dest seq no; hops to dest] is better than lifetime route lifetime

[seq no; hop cnt]

Recv from p: next hop 0; Has Route

RREP(255; d; dest seq no; route lifetime) hop cnt 255;

^ d =dst seq no dest seq no;

^ dest seq no > seq no lifetime BAD LINK LIFETIME

Recv from p: Unicast from me for s : Has Route

RREQ(d; hops to src; dest seq no; s; src seq no) RREP(hop cnt; d; seq no;

^ d = dst ^ dest seq no � seq no MY ROUTE TIMEOUT)

Recv unicast from p for dst: DATA Send to next hop : DATA Has Route

Recv unicast from p for dst: Send to next hop : Has Route

RREP(hops to dest+ 1; d; dest seq no; RREP(hops to dest; d;

route lifetime) dest seq no; route lifetime)

28

