RV’02 Preliminary Version

Requirements for a Practical
Network Event Recognition Language

Karthikeyan Bhargavan

University of Pennsylvania
bkarthik@seas.upenn.edu

Carl A. Gunter

University of Pennsylvania
gunter@cis.upenn.edu

Abstract

We propose a run-time monitoring and checking architecture for network protocols
called Network Event Recognition. Our framework is based on passively monitoring
the packet trace produced by a protocol implementation and checking it for proper-
ties written in a formal specification language, NERL. In this paper, we describe the
design requirements for NERL. We show how the unique requirements of network
protocol monitoring impact design and implementation options. Finally we out-
line our prototype implementation of NERL and discuss two case studies: checking
the correctness of network protocol simulations and privacy issues in packet-mode
surveillance.

1 Introduction

Runtime monitoring enables a monitor M to observe events created by a
program P and check properties of these events as the program executes. If the
program P can be instrumented to create a program P’ that generates events
internal to P and reports them in a convenient form to M, then the monitor
M can be simplified to take advantage of this “white box” event recognition.
In some circumstances, it is desirable or essential to avoid modification of the
original program by the monitor and make do with “black box” analysis of
the events produced by the monitored program. In this case the ability to
choose what events are monitored falls much more completely on the monitor
M, which must now recognize the events it aims to monitor from possibly
incomplete and low-level events observable from P.

The aim of this paper is to describe some key requirements for event recog-
nition for black box monitoring of packet-mode communication protocols, par-
ticularly protocols built on the Internet Protocol (IP). Such protocols produce

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs



BHARGAVAN AND GUNTER

packets as low-level events but analysis typically focuses on properties de-
rived from collections of packets that are amalgamated to produce high-level
events. We argue that a new language is appropriate for this task and de-
scribe a collection of requirements for the language. Many of the ideas from
runtime monitoring languages can be applied, but our experience shows that
new techniques can substantially improve convenience, clarity, and efficiency.

Black box network monitoring is already a popular technique to study
protocol behavior after deployment. So far, it has been used in primarily three
ways: performance testing, intrusion detection, and surveillance. Performance
testing involves placing monitoring agents at various points in the network that
collect statistics on the packets that pass through them. These statistics are
then correlated to trigger alarms or produce reports when unexpected behavior
is encountered. Intrusion detection systems reconstruct protocol sessions and
match them against a library of “attack signatures”, to see if a malicious user
is exploiting known security holes in the network. Finally, surveillance systems
capture protocol sessions and simply record the emails or files sent between
parties, if they match one of several triggering key-phrases.

We propose to add a fourth runtime verification aspect to network monitor-
ing, which we call Network Event Recognition (NER). For instance, consider
the SMTP [Pos82] protocol that transfers emails across the internet. Every
email has a “From” address that the sender fills in. In addition, SMTP re-
quires a mail envelope that also contains a “MailFrom” field, which usually
has the same address as the From field. Suppose we want to check that these
fields do indeed have the same address for all emails in our local network.
Then the event that we are interested in is FromMismatch, which is triggered
whenever an email’s From and the SMTP MailFrom do not match. In an
event definition language, such as MEDL [LKK™"99], this would be written as

event FromMismatch = EmailSeen when
(EmailSeen.Header .From != EmailSeen.Envelope.MailFrom)

Then, we can compile such a definition to a runtime monitor that analyzes a
packet trace and produces FromMismatch alarms whenever such an email is
seen.

Clearly the above definition still leaves a number of open questions. For
example, how is EmailSeen defined? How are the packets in the packet trace
read into the monitor, and how are emails reconstructued from individual
packets? Is it feasible to run such an analysis on all emails in a network? In
this paper, we shall discuss what would be required to write such an event
definition, and then what would be required for it to run efficiently.

The paper is presented in eight sections. In the second section we define
the concept of Network Event Recognition, including a characterization of the
kinds of events that need to be monitored. In the third section we describe
four principal requirements for a practical implementation of NER. In the
fourth section we describe related work in terms of these requirements. In



BHARGAVAN AND GUNTER

the fifth section we describe our prototype design and implementation based
on the Network Event Recognition Language (NERL). The sixth and seventh
sections provide case studies based on network simulation analysis and packet-
mode surveillance respectively. The eighth section concludes.

2 NER Model

Our monitoring model is based on passive, black-box network monitoring. We
place one monitoring machine on the same broadcast LAN as the hosts being
monitored. The monitor can see only the messages sent between hosts, not the
state at each host. We assume that all the interesting IP traffic on the LAN
can be captured and fed into an analysis engine. This capture and analysis
may be done either on-line, using a packet capture library (such as libpcap),
or off-line, where the captured packets are stored in a trace file as is the case
in network simulations.

The goal of a protocol monitor is to recognize protocol events. At the
lowest, layer, a protocol event is as simple as a packet P has been sent from
A to B. Higher layer data like emails, however, are broken up into several
packets, and some of them may be resent for reliability. So at higher layers,
recognizing complex events like an email E has been sent from U to V may
involve capturing a number of packets, correlating them and putting the data
in these packets together. We call this hierarchical process of recognizing
protocol events at different layers Network Event Recognition (NER).

The NER framework can be visualized as in Figure 1. The figure is anno-
tated with terms from the WRSPM software artifact model [GGJZ00]. The
‘World” W is the operational environment, which includes endpoint activities
that spawn network events. The ‘Requirements’ R are properties expected
of the system, such as the requirement that a routing protocol finds paths to
destinations. The ‘Specification’ S denotes the software specification, such as
an [ETF RFC. The ‘Program’ P denotes the implementation of the system.
The ‘Machine’ M is the programming platform. These are related by the idea
that P is built on M to satisfy S, and S is chosen to ensure R given the
operational assumptions in W.

At the bottom in Figure 1 is the interface with the protocol implementation
under test, which is running on a device (DUT). In the case that NER is being
used to monitor a live network, this interface is the ‘wire’ on which the monitor
is ‘sniffing’ (listening) for interesting packets. On the other hand, when NER
is used to analyze network simulations then the interface between the monitor
and the implementation is the simulation trace file.

For each primitive event interface, we need a primitive event capture mod-
ule that can convert network or simulation trace events into a format that can
be understood by the event recognizers. In Figure 1, the IP packet capture
module carries out this task, while in simulation analysis a trace-to-event con-
verter parses the simulation trace and generates events. Meta event recogniz-

3



BHARGAVAN AND GUNTER

Device Under Test Passive Monitor

Higher Layer Higher Layer Usgr
Protocols Protocol 'Event > Behawor_ (W)
Recognizers Checking
(Users) X
Protocol under Test Protocol (P) Functionality (R) &
Event > Conformance (S)

¢ T

Lower Layer Lower Layer Network
Protocols Prgtocol E_vent Behavior (M)
ecognizers :
(Network) 9 Checking

Packe(t Capture
P

i ! !
I ! ! I
I ! ! !
I ! ! I
I ! ! I
I ! ! !
I ! ! |
I ! ! I
I ! ! !
I ! ! I
I ! ! I
I ! ! I
I ! ! I
I ! ! I
! 1 1 1
| I I I
| ) ! ! Recognizers Checking :
I ! ! !
I ! ! !
I ! ! I
I ! ! !
I ! ! !
I ! ! I
I ! ! !
| I I I
I ! ! I
I ! ! !
I ! ! !
I ! ! I
| ! ! !
I ! ! !
I ! ! |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Shared Network (Ethernet)

Fig. 1. Live Monitoring using Network Event Recognition

ers carry out the actual analysis of the stream, and check for the monitorable

properties of interest for the protocol. Finally, some events are classified as

alarms, and must be delivered to the appropriate authorities. For instance,

when an intrusion event is recognized, the administrator may need to be no-

tified. Event delivery can range from writing to a log, sending email to an

administrator, or sending corrective messages to the device under test itself.
There are two kinds of primitive events of interest:

Primitive Network Events These are identified and delivered by the cap-
ture module. For instance, libpcap (tcpdump.org) is an open source tool
that captures IP packets from Ethernet wires and presents them to request-
ing programs, and can be used for live network testing (as the IP packet
capture tool in Figure 1).

Timer Events Another kind of primitive event is the tick generated by a
system clock. Many protocols have specifications and requirements that are
time-bound. This makes it necessary for NER to keep track of the system
clock to recognize events such as timeouts that are often necessary to signify
the absence of an event.

For higher-layer events (also called meta-events), there are four main recog-
nition techniques. Some of these have been studied before [LF98] in the con-
text of event management systems.

Filtering Events have attributes. Filtering recognizes events whose attributes
satisfy a predicate. For instance, recognize all email-related packets, and
throw away the rest.

Correlation Recognizing that events E1 and E2 have both occurred, or that

4



BHARGAVAN AND GUNTER

one of the two has occurred and so on. For instance, recognizing that a
TCP packet contains data D as well as ack A.

Aggregation Recognizing that a sequence (or pattern) of events has oc-
curred. For instance, a typical SMTP session involves naming the sender
S, naming the recipient R, and sending the email E. These three events can
be aggregated into an EmailSent event containing all the information sent.

Abstraction Abstraction is the only technique that reduces the information
content, of events, by enabling the recognition of more general events from
particular ones. For instance, having recognized an email E that contains
a virus, as event VirusEmail(from,to,E), we may want to abstract away
the contents of the email to protect the privacy of the sender, and only
propagate the alarm VirusSent(from,to).

When put together, these techniques allow us to mimic the protocol stack,
and recognize events layer-by-layer up to the protocol of interest. Note that
Aggregation requires that we maintain some state, in order to record that part
of the sequence (or pattern) that has been recognized.

3 Requirements

In this section we consider the problem of programming network event recog-
nizers. For instance, to carry out an NER analysis for SMTP, we would write
a monitoring program that analyzes captured SMTP packet traces and raises
alarms whenever a desired property is violated. This monitoring program
may be written in a general purpose programming language, such as C, or in
a domain specific language that we choose to design. In either case, what are
the programming constructs that we would need to describe the monitoring
program? Are there any additional constraints that guide the way we write
and implement the monitoring specification?

First, let us consider some general requirements for writing an event rec-
ognizer. A network event recognizer analyzes a trace of primitive packet
events and reconstructs higher-level protocol events, raising alarm events when
anomalies in protocol behavior are detected. The implementation of the event
mechanism may be as sophisticated as method invocation in an object-oriented
language, or as simple as setting a boolean flag in a language like C. For in-
stance, SMTP packets are defined as TCP packets at port 25. One way to
define this is

event SMTP_Pkt = TCP_Pkt when
(TCP_Pkt.srcport
(TCP_Pkt .dstport

25) ||
25)

This definition may be compiled in terms of a boolean variable SMTP_Pkt
which is set to true exactly when the condition on the right hand side is true:
that is when a TCP packet is seen whose source or destination port is set to

5



BHARGAVAN AND GUNTER

25.

In addition, any monitoring language must keep state about the pattern
of events seen so far. A protocol specification, such as SMTP, often comes
with detailed state machine description that each participant must follow. So
programming an SM'TP monitoring program, for instance, involves coding a
chunk of this state machine, where the transitions are triggered by events and
the state is stored in variables. This means, for instance, that a pure logic such
as LTL is probably not well suited to NER, while an EFSM based language
such as Promela is better suited.

Apart from programmability, another essential requirement for practical
network event recognition is fast execution. When NER is used for live network
monitoring, it has to keep up with real network speeds, which can involve
data transfer of 100Mbps or more. If we assume that most packets are a
few kilobytes in size, NER still needs to process tens of thousands of packets
(primitive events) every second. This makes a fast execution environment
necessary. For instance, in [BGK™02], we found that our Java implementation
of Verisim, while adequate for monitoring 5 nodes at the same time, was too
slow for analyzing the large amount of traffic generated by a 50 node network
simulation.

The above requirements demand a basic level of expressiveness and effi-
ciency that would be required in many monitoring contexts. In the follow-
ing sub-sections we describe requirements particular to the network protocol
monitoring domain. These requirements will guide our choice of programming
language and execution environment for NER.

3.1 Packet Format Representation

In the network monitoring context, the interface between the device under test
and the monitor is in terms of packet events. Packets on the network have a
number of fields, such as the source and destination, and the format of these
fields is particular to the protocol under analysis. For instance, the format of
an IP packet is given by the following PacketTypes [MC00] description.

nybble := bit[4];

short := bit[16];

long := bit[32];
ipaddress := bytel[4];
ipoptions := bytestring;

IP_PDU := {
nybble version;
nybble ihl;
byte tos;
short totallength;
short identification;
bit morefrags;



BHARGAVAN AND GUNTER

bit dontfrag;

bit unused;

bit frag_off[13];
byte ttl;

byte protocol;
short cksum;

ipaddress  src;

ipaddress  dest;

ipoptions options;

bytestring payload;
} where {

version#tvalue = 0x04;

options#numbytes = ihl#value * 4 - 20;

payload#numbytes = totallength#value - ihl#value * 4;
}

A TCP packet is an IP Packet in which the payload field is overlayed
(replaced) by another record with fields corresponding to the TCP header
and the TCP data. In turn, and SMTP packet is a TCP packet with the TCP
data overlayed by the SMTP format, and so on.

Therefore, in order to extract and reconstruct the messages sent and re-
ceived by a protocol, a network event recognizer must first capture and un-
derstand packet events. For a natural representation of packet events, a NER,
language must allow each event to have attached with it a record of attribute
fields that mimics the packet format, such as in the above IP_PDU description.
This requirement is specific to protocol monitoring; typical runtime verifica-
tion do not need to deal with such low-level structures and formats.

Suppose a NER language did not allow complex event attributes. In such
a language, we would have to define the single IP packet event as multiple
events corresponding to each field of interest:

event IP_Pkt;

event IP_Pkt_protocol;
event IP_Pkt_src;
event IP_Pkt_dest;
event IP_Pkt_payload;

In addition, every meta-event that is constructed from these events would
have to represent the attributes in an artificial way as in the following, where
the attributes are represented as parameters.

event TCP_Pkt[src][dst] = IP_Pkt when
(src == IP_Pkt_src) &&
(dst == IP_Pkt_dest) &%
(IP_Pkt_protocol == TCP)

In the case that src and dst can range over 50 nodes each, the above definition
actually defines 2500 different events. Any such unnatural representation of

7



BHARGAVAN AND GUNTER

event attributes can seriously affect the performance of the event recognizer,
as was shown in the Verisim case study [BGKT02].

We advocate that events be allowed to have attached attributes with a
C-struct-like format. Even structs, however, are often not adequate since
packet formats can only be expressed in very powerful type systems such as
Packet Types [MCO00]. It would be desirable for a NER language to allow events
to have attributes whose types can be described by Packet Types specifications.

3.2 Layering and Modularity

An important characteristic of network protocols is layering. For instance,
mail users send emails, which are broken up into SMTP commands, which are
in turn transmitted as TCP segments in IP packets which are sent over the
wire. The monitor captures the IP packets; but then it needs to reconstruct
TCP streams, and then to extract SMTP emails from these streams. An event
recognizer thus consists of several layers of protocol analysis with one or more
layers for each protocol itself. This layering makes itself felt in the order in
which events are recognized. For instance, if we write

event SMTP_Pkt = TCP_Pkt when
(TCP_Pkt.srcport == 25) ||
(TCP_Pkt.dstport == 25)

event SMTP_Command = SMTP_Pkt when
(TCP_Pkt.dstport == 25)

then the dependency of the second event upon the first defines a fine layering
between them, even though both are protocol events for the same protocol.
The more pronounced layers correspond to the TCP and SMTP protocols, as
is implied by the SMTP_Pkt event, which cannot be executed until the TCP_Pkt
event has been identified.

The layering between and inside protocols may be expressed simply in
terms of event dependencies as shown above. However, this would imply
that each monitoring program be a large, flat collection of event descriptions
containing events from several protocols. A cleaner way to deal with this
would be to write separate monitoring modules for each protocol, which could
be stacked one above another in the appropriate order.

There is another reason to wish for a modular structure: we will need to
write many versions of monitoring specifications for each protocol and we will
want to swap one for another.

3.8 Library Compatibility

A network event recognizer must interface with low-level infrastructure that
captures and presents packet traces to it. Therefore, a more pragmatic require-
ment for an NER language is that it must be compatible with these support
libraries.



BHARGAVAN AND GUNTER

In the case of live network monitoring, packets need to be captured from
the network interface, they must be filtered and sent to the appropriate rec-
ognizers, and sometimes IP packets and TCP streams must be reconstructed.
All these functions are available in the form of C libraries, such as libp-
cap (tcpdump.org) and tcpflow (www.circlemud.org/~jelson/software/tcpflow).
In addition, any support libraries that we write: for reading packet traces,
parsing packet formats, maintaining network data structures, and construct-
ing NER events, must be written on top of these libraries in C.

In the case of network simulations, such as those carried out in NS (www.isi.
edu/nsnam/ns), the protocol analysis code is written in C++, and on execution
produces a simulation trace file that has a format specific to NS. We have
written support libraries that parse the NS trace format to construct NER
events. This form of text trace analysis is fastest in a language like Perl or C.
Similar libraries will have to be written for every possible front-end that we
wish to apply NER on.

Therefore, any implementation of a NER language must interface with
these support libraries. In general, there must be a mechanism for tying to-
gether library calls with the event recognizer program, whatever language the
program is written in. Clearly, it would be best if the monitors to be executed
were written in C and linked with these libraries during compilation. Indeed,
we have found that the execution speed drops markedly if the monitoring pro-

gram is written in Java and the library interface consists of text files, or text
sockets [BGK102].

3.4  Model Checking

The previous requirements all serve to increase the complexity of network
event recognizers. Unlike formulae in simple monitoring logics whose mean-
ing is immediately apparent, network event recognizers will consist of several
layers of large state machines with complex events, written with an eye to
execution speed and C-library compatibility. It will be a challenge to write
these recognizer modules correctly, and to understand what they mean.

For instance, to recognize emails sent on a network, we might need mod-
ules for IP, TCP, SMTP, and Internet Mail, layered above each other and
passing reconstructed events between them. If the TCP module does not re-
construct text streams as expected by SMTP, then the entire analysis at the
Internet Mail layer may be incorrect. In addition to incompatibilities between
modules, there may be bugs in the individual modules. While many simple
errors can be avoided by strong type checking, when complex state machines
need to be encoded subtle errors may creep in. We advocate model-checking
the recognizer stack to guard against module bugs and layer incompatibil-
ities. For instance, a model-checker would take the recognizer modules for
IP, TCP, SMTP, and Internet Mail, models for mail senders and receivers,
and a logical property that says that all incorrect emails between senders and

9



BHARGAVAN AND GUNTER

receivers are (correctly) flagged by the Internet Mail module. While model-
checking for a general pupose programming language like C is very difficult,
there have been attempts to model-check stylized programs in subsets of these
languages [Hol00]. We believe it would be simpler to use a NER language that
already has a model-checker for it, or translate our recognizers to such a lan-

guage.

3.5  Transformations

Monitoring a protocol implementation requires that the complete and correct
trace of inputs and outputs to the protocol be available. Often, however, the
trace available (or observed) is incomplete and inaccurate, because packets
get dropped and re-ordered between the device under test and the moni-
tor [BCMGO1]. Suppose a TCP module assumes that it will see all the IP
packets between S and R. If in fact some packets are being dropped, and oth-
ers are not in the right order, the TCP module will be unable to correctly
reconstruct the data stream. However, since packets that reach R will cause
an acknowledgment to be sent back to S, when this acknowledgment is seen,
the monitor can guess that it missed a packet. In this manner, it may be able
to reconstruct portions of the data stream, which might be adequate to find
errors at the SMTP layer. So in the presence of packet trace inaccuracies, we
would like to transform the TCP module to use additional information from
the trace to do the best it can in reconstructing data streams.

In [BCMGO1] we have identified several classes of protocols and moni-
torable properties for which such transformations are possible and proposed
transformation algorithms. So we require that a NER language allow us to
perform such transformations, taking recognizer modules and producing new
recognizer modules that can be plugged in their place. We note that carrying
out transformations on a general purpose programming language, such as C,
would be quite difficult, because the transformation needs to take into account
the powerful features and idiosyncrasies of the language.

3.6 Fxamples

In the previous sections we have described what we reqquire from a network
event recognition language. Now let us look at some examples of events that
we will want to express in such a language. Each of these events is formulated
as a failure of a desired property.

Request-Response An SMTP command C was followed by an incorrect
response . This means that the mail server is not following the protocol
correctly.

Safety Three nodes running a routing protocol have formed a forwarding
loop N; =+ Ny — N3 — Nj. Such loops in routing protocols are highly
undesirable as they cause unnecessary and heavy usage of bandwidth and

10



BHARGAVAN AND GUNTER

computing resources, while being difficult to detect.

Intrusion A host H has sent a sequence of packets < pi,...,p, > that
matches the signature of a well known attack on a Linux firewall. Such
attack signatures are widely and effectively used in network intrusion de-
tection systems.

On the other hand, there are several kinds of events that we will not
consider. While some of these may technically be within the scope of Network
Event Recognition we do not require our system to be optimized for them.
Examples of such events are

Quality of service The number of TCP packets seen between the host-port
pairs (S,SP) and (D, DP) in the last T seconds is more than N. Such
congestion events are important for network management.

Anomaly The packet traffic sent by host H is different from yesterday. These
are used in anomaly-based intrusion detection.

Performance In the network simulation of a mobile wireless network less
than half the packets sent were successfully delivered to their destinations.
This might indicate poor performance of the routing protocol.

While these kinds of network events are useful in expressing and detecting un-
expected errors in protocol implementations, our primary focus is on detecting
protocol events that can be explicitly and formally specfied.

4 Related Work

Event recognition and analysis has sbeen studied extensively in several con-
texts, including network monitoring. The earliest reference to runtime verifi-
cation for network protocols was in the Overseer project [PF76] that described
a monitoring system for a pre-Internet network. The SCAN proposal [SFG™]
extended the Overseer idea for Active networks, but was never implemented.

More recently, Network Intrusion Detection Systems [Gro01], that check
for malicious user activity in the network, are gaining popularity. Intrusion
detection languages, such as Bro [Pax99] are good candidates for network
event recognition since they already have efficient implementations and can
monitor packet traffic at high speeds. On the other hand, protocol specifi-
cation languages, such as Promela [Hol91] are very expressive: they allow us
to define protocol events and state machines with ease, and often have so-
phisticated analysis tools. Protocol implementations, however, are typically
written in programming languages, such as C, or in specialized languages such
as Prolac [KKM99].

An alternative is to look at network event recognition as a testing prob-
lem. Our network simulation analysis can be seen as a form of test trace
analysis, which is traditionally carried out by specialized languages such as
GIL [ORD96], or by fast text analysis languages like Perl (www.perl.com). In

11



BHARGAVAN AND GUNTER

addition, there are several runtime verification logics and languages, such as
MEDL [LKK™*99], which are geared towards testing programs at run-time.

To pick one of the above languages for NER, we must first consider each
of the requirements that we have put forward in the previous section:

* In which languages can we easily express protocol state machines?
Promela, C, Prolac, Perl, MEDL

* Which languages can be compiled to executable monitors?
Bro, C, Prolac, GIL, Perl, MEDL

* Which languages have support to handle packet formats?
Bro, C, Prolac, (primitive support in Promela, Perl)

* In which languages is it easy to express modularity and layering?
Promela, C, Prolac (to some extent in Perl, MEDL)

* Which languages are compatible with the C libraries for network monitoring
and simulation analysis?
Bro (for libpcap), C, Perl (through C interface)

* Which languages lend themselves to easy analysis and transformation?
Promela, GIL, MEDL

We note that while C seems to satisfy almost all the requirements, it is only
to a certain extent. For instance, one can see that C can be used to express
state machines, but it may not be very easy to write them. Similarly, while C
functions can be used as modules, the interfaces between them are not very
clean. Moreover, C programs are not strongly typed and so are susceptible
to simple errors. However, a number of these limitations may be addressed
by providing libraries and programming interfaces. Indeed, C is said to have
good library compatibility and packet format representation only because the
support libraries for monitoring are already written in C. The same would be
true for Bro and Prolac if libraries were made available for them. In fact, any of
these three languages could be chosen and enhanced with pre-processors, type-
checkers and libraries to be effective monitoring languages. However, carrying
out analyses and transformations on these languages will not be easy.

On the other hand, there are the logic-based, analyzable languages such as
MEDL and Promela, which are easy to write and read. We could extend these
languages with efficient compilers, and packet format support. The key issue
to consider is the effort involved in modifying these languages for our purpose,
compared to the effort required to design a new domain specific language with
its own compiler and analysis tools.

5 Prototype Implementation

Our prototype implementation consists of a domain specific Network Event
Recognition Language, NERL. NERL programs are translated to C, and then are
compiled along with the support libraries to generate fast executable monitors.

12



BHARGAVAN AND GUNTER

In addition, NERL programs can be translated to Promela models and model-
checked for desired properties using SPIN [Hol91]. The architecture of the
implementation is as shown in Figure 2.

Recognizer Program

NERL & Promela

Model Check

\

C

Support Libraries

Monitor Execution

Fig. 2. NERL Implementation

The language NERL is inspired by the runtime verification logic MEDL.
MEDL is an event definition language that allows simple state variables to
store the pattern of events seen so far. To satisfy our requirements, we need
to make several extensions to the language. In NERL, events are allowed to
have packet-like attributes, which can be defined using C-struct definitions. A
NERL recognizer consists of multiple, layered monitoring modules that com-
municate through events. Each module runs a state machine that is triggered
by input events and produces higher-layer events or alarms. To express state,
we include additional data structures such as tables, records, and bytestrings.
In this way, NERL is designed to be modular and expressive enough to handle
protocol state machines and packet events.

Moreover, several transformations and analyses can be carried out on pro-
grams in this specialized language. NERL is strongly typed, and has a type-
checker that can check for simple mistakes. In addition, NERL modules can
be translated to Promela and model-checked for simple errors. Finally, we
argue that it will be much easier to define transformation functions on this
restricted language, rather than a full-fledged programming language.

The NERL compiler consists of a parser, type-checker and translator writ-
ten in OCaml. It parses an event recognizer written using the NERL syntax,
type-checks it, and then translates it into a reactive C program that is trig-
gered by input events and prints out output events as they occur. Since the
target of the compiler is C, this program can access the support libraries, such
as libpcap, satisfying the library interface requirement. The choice of C as a
monitoring environment also gives us a performance boost in comparison with
languages such as Java.

13



BHARGAVAN AND GUNTER

6 Verifying Routing Protocol Simulations

Verisim is a tool that was designed for the formal analysis of network sim-
ulations [BGK*02]. The first version of the tool used MEDL as the event
processing engine. The current version, Verisim v2, uses NERL for the event
recognition instead.

The case study that we describe in this section is the simulation of the
wireless routing protocol AODV. Suppose there are a number of nodes (lap-
tops) with wireless connections in a large convention hall. The wireless range
of each node is limited, so a node A may not be able to exchange data with
node B. However, if there is a node C between them that is willing to route
(forward) data between A and B, then A and B can establish a connection.
In general, there could be more than one node in the path between A and B.
The aim of the AODV routing protocol is to enable such paths to be formed
and maintained between nodes that are not within each other’s range.

The simulation scenario we shall consider for AODV is from the CMU
Monarch group (monarch.cs.cmu.edu). Consider a site of size 1500 x 300 meters
with 50 nodes constantly moving at 20 meters per second. There are 150
data connections transmitting four 64 byte packets every second. FEach of
the nodes runs AODV, and the protocol attempts to provide paths for all
these connections. The simulation is run on the network simulator NS. The
simulation and our subsequent analyses were carried out on a dual Pentium-
ITT 550Mhz Xeon processors machine with one gigabyte of memory. The OS
was Red Hat Linux 7.2 with the 2.4.9-13 SMP Kernel. We used NS version
2.1b6, and the simulation itself required about 5220 seconds to complete and
generated 6,446,316 packet events.

We have earlier tried to analyze this trace using MEDL [BGK'02], which
implements event recognizers in Java. A naive effort to use MEDL to check a
relatively simple property on this trace was prohibitively time-consuming. We
estimate that the time required to check this property, at each node and for
each destination (2500 relations), after each of the 6,446,316 input events, is
more than 100 days based on extrapolating a 4-day run of the MEDL analysis.
After using a number of optimizations, such as using grep to specialize the
trace to only 5 nodes (25 relations), we could bring the analysis time for
Monotone Sequence Numbers down to 51 seconds. We failed to carry out
the analysis for all 50 nodes together, but we estimate that we could have
carried out several 5-node analyses to check the complete trace in around
50,000 seconds. This kind of piecemeal analysis would not, however, work for
more complex properties where more than 5 nodes may interact to cause an
output event.

A central reason for our inability to carry out the MEDL analysis for all 50
nodes was the lack of a natural representation for packet events in MEDL. For
instance, the Routeinfo event which signifies that a packet has some AODV
routing information is expressed in MEDL as

14



BHARGAVAN AND GUNTER

event Routeinfol[at] [dst] = Pkt when
((value(atnode,0)==at) &&
(value(src,0)==dst) &&
(value(pktty,0) > 0))

This event definition is expanded for every value of at and dst (50 each) to
2500 event definitions. This is because complex event attributes were not easy
to assign. In NERL, the same event is expressed as the following single event
definition.

event Routeinfo = Pkt OccurredWhen
(Pkt.pktty > 0)
WithAttributes {
Routeinfo.at := Pkt.atnode;
Routeinfo.dst := Pkt.src;
};

A second reason for the performance limitation of the MEDL analysis is
that MEDL is written in Java and is meant to interact with a running Java
program through a socket interface. Instead, we were using it to interact
with a network simulation written in C++, through a large trace file (around
1GB). The support libraries for reading and parsing the simulation trace are
best written in C. The NERL recognizer for AODV is compiled to a C function
which interfaces with this C support library. This library compatibility, along
with the C vs. Java speedup, increases the monitor performance significantly.

We re-ran NERL on the trace, and we could process the complete trace for
all 50 nodes, for all the AODV properties in 675 seconds. We found 708,727
errors. These errors were due to 3 significant (known) bugs in the simulator
code, which were causing nodes to update their routing tables incorrectly.

7 Privacy Issues in Packet-mode Surveillance

When monitoring is used to reconstruct high-level network events, such as
emails and web sessions, a number of privacy issues crop up. This is even more
so in the case of surveillance systems, such as the FBI’s Carnivore [SCHP*00],
whose primary purpose is to capture data, such as email and web sessions, as-
sociated with a suspect for whom a warrant has been issued. The expectation
of privacy for users of the network is typically expressed in terms of a mon-
itoring policy or warrant that defines what kinds of data are allowed to be
captured.

However, it is debatable (and often controversial) whether a closed source
monitoring system actually respects the monitoring policy. Moreover, even if
it does not intentionally violate user privacy, an incorrectly encoded protocol
monitor may inadvertently collect private data. To address this problem,
we have proposed OpenWarrants [BG02]: an open source surveillance system
based on NERL as an event recognition engine. Given a specification of data

15



BHARGAVAN AND GUNTER

that is to be collected, called a warrant, the OpenWarrants system uses NERL
recognizers to filter a packet stream and deliver exactly the warranted data.
OpenWarrants currently handles email warrants. In this section, we describe
the OpenWarrants system and show how the layering, modularity, and formal
analysis features in NERL are brought into play.

To execute OpenWarrants, the user must specify an email warrant that
consists of at least the following information

o Aggregation Level: High-level events of interest, such as SMTP messages,
or Internet Message Headers, and NERL modules to recognize them.

* Identification: A NERL recognizer that identifies emails covered by the war-
rant.

To aggregate SMTP data, or Internet Message Headers [Cro82], we write
NERL recognizers for these protocols. Because of the layered nature of net-
work protocols, we need to identify protocol events at each layer as shown in
Figure 3. Large IP packets in the Internet are sometimes broken down into

IMH IMH Mail Header Recognition
1 A

SMTP SMTP SMTP Mail Recognition

TCP Stream Reassembly

TCP

TCP
P IP L/ IP IP Fragment Reassembly
f \ / |

IP Packet Buffer

Fig. 3. Aggregation: Recognizing Emails

fragments, which are reassembled at the destination. An accurate IP monitor
must therefore implement a state machine that collects and reassembles 1P
fragments, to generate an IP packet event. TCP monitors must similarly keep
track of sequence numbers and acknowledgments to reconstruct the TCP data
sent. The NERL suite already contains recognizer code for the [P and TCP
protocols.

For OpenWarrants, we need to add recognizer modules for SMTP and
Internet Message Headers (IMH). The SMTP recognizer collects SMTP com-
mands sent across a TCP session, reconstructs the SMTP dialogue, and recog-

16



BHARGAVAN AND GUNTER

nizes successful email transmissions. It then produces high-level events such
as MailAccepted, indicating that an email was successfully delivered. The
IMH modules parse Internet message headers, producing IMHMessage events
that contain header fields as attributes.

Then, the NERL identification module IdentMail specifies which email
events are covered by the warrant. IdentMail takes as input the events pro-
duced by the SMTP and IMH recognizers, and produces the MailIdentified
event when the corresponding email is covered by the warrant. For instance,
the Mailldentified event may identify joe@foo.com’s email by looking at
the message header fields and the SMTP envelope. The following rule accepts
messages where joe@foo.com sends or receives the message or appears in TO,
CC, or FROM header fields.

event Mailldentified = (MailAccepted &
IMHMessage) OccurredWhen
(MailAccepted.envelope.from ==
"joe@foo.com") ||

(MailAccepted.envelope.to == "joe@foo.com") ||
(IMHMessage .header.to == "joe@foo.com") ||
(IMHMessage.header.cc == "joe@foo.com") ||
(IMHMessage .header.from == "joe@foo.com")

Note how such a module definition is an easy-to-read, precise and executable
representation of the monitoring policy. Compare it with an equivalent C
program that would express this warrant. Moreover, one can see how aggre-
gation and identification really validate the layering and modularity require-
ments that we set for NERL. They make the architecture of the OpenWarrants
system clean and simple to implement.

Designing aggregation modules is the subtle part of this kind of surveil-
lance monitor. To study our ability to do this correctly in OpenWarrants
we looked for open source information about SMTP recognizers in Network
Intrusion Detection Systems (NIDSs). We were unable to find rules for recon-
structing SMTP messages in Snort (snort.org), the most popular open source
NIDS. Another system, Altivore provides filter rules written in C and claims to
imitate Carnivore. We also tried to conjecture the kind of rule used in a NIDS
like BlackICE, based on survey reports [Gro0Ol] and online documentation.
We coded these in NERL as Recognizers A and N, and our own OpenWar-
rants version as Recognizer 0. Recognizer A is a transcription of the rule from
Altivore for capturing complete emails with no recognition of message head-
ers. Recognizer N is a more sophisticated stateful analysis like a NIDS might
use. Recognizer 0 is the corresponding module from OpenWarrants. Each
recognizer analyzes SMTP message events and attempts to identify emails
associated with a suspect.

We translated these three NERL recognizers to Promela and analyzed them
using the SPIN model-checker. The SPIN model has three processes: an

17



BHARGAVAN AND GUNTER

SMTP client, an SMTP server, and the translated recognizer. There are two
users in the system: the suspect S and another user U. The client attempts
to deliver a number of emails to the server. Each email can be addressed from
S or U to one or both of S and U. The recognizer attempts to capture emails
that are sent to or from S. The Linear Temporal Logic (LTL) property we
checked asserted that, for all client-server interactions in SPIN, the recognizer
module never captures emails from U to U. Recognizer A fails and SPIN
produces a counter-example: A captures some emails even if they are from U
to U. To find this error, SPIN analyzed 871 states and 3135 transitions to
produce a counter-example with 12 message exchanges. We then attempted
the same proof for recognizer N. Again SPIN provides a counter-example.
The SPIN counter-example has 16 messages and was found after analyzing
1610 states and 9897 transitions. This does not mean that the NIDS rule is
incorrect since it was designed to protect the server not the privacy of users.
Finally, we checked the property for the OpenWarrants recognizer 0. SPIN
model-checked this recognizer and found no errors; it analyzed 2330 states
and 18,689 transitions to reach this conclusion.

This analysis shows that there are subtleties in writing protocol monitors,
and not understanding what a module does can result in undesirable inter-
actions, such as a loss of privacy in a surveillance system. We show how
model-checking is an effective technique to find such interactions. As the pro-
tocol monitoring task gets more complex, having automated analysis tools
becomes an essential requirement.

8 Conclusion

We have described the concept of Network Event Recognition and four re-
quirements for convenient and efficient runtime analysis using NER. We have
sketched a prototype that addresses the requirements by providing efficient
packet format representations, support for layering and modularity, compati-
bility with existing network simulation and monitoring libraries, and support
for formal analysis and automated transformations. The need for these fea-
tures and the ways in which they have been addressed are illustrated by two
case studies, one involving simulation analysis of routing protocols using the
Verisim system, and one involving privacy in packet-mode surveillance using
the OpenWarrants system. These studies show the importance of the re-
quirements and the existence of feasible approaches for addressing them in
significant and non-trivial applications.

References

[BCMGO1] Karthikeyan Bhargavan, Satish Chandra, Peter J. McCann, and Carl A.
Gunter. What packets may come: Automata for network monitoring. In

18



BHARGAVAN AND GUNTER

Proceedings of the Symposium on Principles of Programming Languages
(POPL’01), pages 206-219. ACM Press, January 2001.

[BG02] Karthikeyan Bhargavan and Carl A. Gunter. Network event recognition
for packet-mode surveillance. Submitted for publication, 2002.

[BGK'02] K. Bhargavan, C.A. Gunter, M. Kim, I. Lee, D. Obradovic, O. Sokolsky,
and M. Viswanathan. Verisim: Formal analysis of network simulations.
IEEE Transactions on Software Engineering, 28(2):129-145, February
2002.

[Cro82] D. Crocker. Standard for the Format of ARPA Internet Text Messages.
Technical Report RFC 822, IETF, 1982.

[GGJZ00] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave.

A reference model for requirements and specifications. IEEFE Software,
17(3):37-43, May 2000.

[Gro01] NSS Group. Intrusion detection systems - group test, December 2001.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, 1991. http://cm.bell-labs.com/cm/cs/what/spin/Doc/
Book91.html.

[Hol00] G.J. Holzmann. Logic verification of ANSI-C code with SPIN. pages
131-147. Springer Verlag / LNCS 1885, Sep. 2000.

[KKM99] Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery. A
readable TCP in the Prolac protocol language. In Proceedings
of the ACM SIGCOMM ’99 Conference: Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 3—13,
Cambridge, Massachusetts, August 1999.

[LF98] David C. Luckham and Brian Frasca. Complex event processing
in distributed systems. Technical Report CSL-TR-98-754, Stanford
University, 1998.

[LKK™99] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M.Viswanathan. Runtime
assurance based on formal specifications. In Proceedings International

Conference on Parallel and Distributed Processing Techniques and
Applications, 1999.

[MCO00] Peter McCann and Satish Chandra. PacketTypes: Abstract
specification of network protocol messages. In ACM Conference of
Special Interest Group on Data Communications (SIGCOMM), August
2000.

[ORDY96] T.O. O’Malley, D.J. Richardson, and L.K. Dillon. Efficient
specification-based test oracles. In Second California Software
Symposium (CSS’96), April 1996.

19



BHARGAVAN AND GUNTER

[Pax99] V. Paxson. Bro: A system for detecting network intruders in real-time.
Computer Networks, 31:2435-2463, 14 December 1999. This paper is
a revision of paper that previously appeared in Proc. 7th USENIX
Security Symposium , January 1998.

[PF76] J. R. Pickens and D. J. Farber. = The Overseer: A powerful
communications attribute for debugging and security in thin-wire
connected control structures. In Proceedings of International Computer
Communications Conference, August 1976.

[Pos82] Jonathan B. Postel. Simple Mail Transfer Protocol. Technical Report
RFC 821, IETF, 1982.

[SCHP*00] Stephen P. Smith, J. Allen Crider, Jr. Henry Perrit, Mengfen Shyong,
Harold Krent, Larry L. Reynolds, and Stephen Mencik. Independent
review of the Carnivore system - final report. Technical report, IIT
Research Institute, December 2000.

[SFGT] Jonathan M. Smith, David J. Farber, Carl A. Gunter, Sampath Kannan,
Insup Lee, and Scott M. Nettles. Self-checking active networks (SCAN).
Oauline at http://www.cis.upenn.edu/ jms/SCAN.html.

20



