
Squash Sport Analytics & Image Processing

Dan Judd
djudd@seas.upenn.edu

Rebecca Wu
rewu@seas.upenn.edu

Dr. Camillo Jose Taylor
cjtaylor@cis.upenn.edu

Spring 2014

1 INTRODUCTION

Squash is a racquet sport played in a similar style room as racquetball. In a squash match there are 2
players that alternate hitting a small, black, rubber ball. A complete match is played as best of 5 games,
where each game is played to 11 points. Points are scored when a player fails to return a shot made by
the opponent.1

The sport of squash is played in over 190 countries by millions of people all over the world.2 Yet to
this day, no one has taken a truly analytical approach to the sport. Data analytics has recently been a
popular topic of conversation in sports, with analytical systems already in place for popular sports like
basketball and baseball.3

Jack Wyant, the head coach of the Penn Varsity Squash team, feels strongly about the need and
value of a sports analytical system for squash. Dan Judd personally identifies with this need as well, as
a former top 20 junior and also a starter on the Penn Varsity Squash team. An analytical system for
squash would directly benefit squash players by analyzing their game performance and revealing possible
areas of improvement.

Under the guidance of our advisor Dr. Camillo Jose Taylor, an A-level squash player, our project
team has made the first efforts towards meeting this need by developing computer programs to read in
video footage of squash games, perform automatic detection and motion-based tracking of the moving
players, and output useful data analysis for squash players. Our project undertakes the technical, behind-
the-scenes analysis and lays the foundation work for a consumer end-user product to be developed in the
near future.

2 PROJECT OVERVIEW

The project is comprised of two main parts that each produces its own set of output:

1. Motion-based multiple object tracking

2. Coordinate-based data analysis

1”Rules of Squash.” US Squash. http://www.ussquash.com/officiate/online-rules/
2”Squash Sport Info.” Squash Source. http://www.squashsource.com/squash-sport/
3”Conference Agenda.” MIT Sloan Sports Analytics Conference. http://www.sloansportsconference.com/?page id=13335

1

2.1 Motion-Based Multiple Object Tracking

The problem of motion-based multiple object tracking can be further broken down into the following
subproblems:

• Detecting the moving objects (2 players, 1 ball) in each video frame

• Associating the detections to the same corresponding object over time

To detect the moving objects, we start by using a background subtraction function in MATLAB to
isolate the moving pixels from the stationary pixels. The resulting “mask” still contains some degree
of noise and requires further refinement, so morphological operations are used to eliminate any stray
pixels. To differentiate separate objects, we use MATLAB’s “blob analysis” to detect distinct groups of
connected pixels.

To associate detections to the same object from frame to frame, we assign a detection to a corre-
sponding “track” that is continually updated in each frame. Tracks are stored within an array and may
be created or deleted depending on whether there are new, unassigned detections, or detections that
have been repeatedly unassigned past a specified threshold. Assignments of detections to tracks are
made using a Kalman filter, which estimates the motion of each track and determines the likelihood for
a detection to be assigned to a track. Maintaining these tracks allows us to derive the (x, y) coordinates
of the two squash players and create an output .csv file containing a list of these coordinates over the
duration of the video.

2.2 Coordinate-Based Data Analysis

Given the .csv file of (x, y) coordinates, we have implemented two forms of data analysis to return sports
analytics for the squash players:

• Movement analysis

• Creating a heat map

For the movement analysis, we first output the current location on the squash court in real-world
coordinates using the ”T” intersection of the court lines as the origin. Then we provide statistics on how
far each squash player is moving by calculating the distance between every pair of coordinates in the
file using the distance formula:

√
(x2 − x1)2 + (y2 − y1)2. We also provide statistics on how fast each

squash player is moving by calculating the speed using the formula: s = D/t, where D refers to the
distance and t = 1 frame / 120fps ≈ 0.0083 seconds.4

In addition to the above metrics, it is possible to calculate the direction in which the player is
moving by using the trigonometric formula: θ = tan−1(y2−y1

x2−x1
) where θ refers to the angle of the player’s

movement relative to the polar coordinate axes. An output .csv file is created containing the results of
the movement analysis spanning the duration of the video.

For creating a heat map, we use an image of the background of the squash court as a backdrop and
then draw points onto the court representing each player’s location for every frame in the video. Over
time, there will be clusters of points that build up on the screen and reveal where each player tends to
stand and what movements each player likes to make, so they can evaluate their overall movements and
update their strategy accordingly.

This form of analysis is similar to examining the video footage itself, which is currently the dominant
form of instruction used by coaches. However, the heat map carries the additional benefit of seeing the
history of the player’s movement. This heat map image is another one of the outputs from the data
analysis.

4The GoPro camera used to capture footage is set to 120 frames/second.

2

2.3 Summary of Obstacles/Challenges

Some problems have been trickier than others to solve due to unforeseen challenges stemming from the
color of the players’ clothing and the high speed of the ball.

Since the color of some of the squash players’ clothing would at times blend into the background color
of the squash court walls and floor, the blob analysis tool would identify one player as multiple separate
objects rather than one cohesive object. In this case, the challenge is to recognize which objects should
be combined and to ensure that these updated associations are preserved in the tracking system from
frame to frame.

The high speed of the ball has also been an issue because the ball would sometimes outright disappear
for several frames after being hit by a racquet before reappearing again as a rounded blur rather than a
perfectly round object. So not only is the ball entirely missing at times, but it also does not maintain
a constant round shape throughout the video. Both of these issues make it very difficult to detect and
track the ball.

The solutions we have reached for these particular challenges will be explained in more depth in the
following sections.

3 EQUIPMENT/SETUP

Determining the appropriate camera settings to use, the best point of view to shoot from, and the correct
MATLAB functionality to apply has led to an initial trial-and-error period resulting in many failed test
programs and numerous trips to the squash courts to tape new footage. The decisions made during that
period are elaborated in this section.

3.1 GoPro Camera

The camera used to capture video footage of squash games is a GoPro HERO3+ Black Edition Cam-
era, which comes outfitted with a wide-angle lens. It has several options for setting the number of
frames/second (15fps, 30fps, 60fps, 120fps, or 240fps) along with the corresponding image resolution
(4000p, 2700p, 1080p, 720p, or WVGA).5 There is a tradeoff between quantity and quality depending
on the setting:6

• A higher number of frames/second and a corresponding lower resolution results in a larger quantity
but a lower quality of frames. The benefit of having a high number of frames/second is a more
continuous view of the objects’ motion, but the downside is a greater difficulty in accurately
detecting objects because of the lower quality of the image.

• On the other hand, a lower number of frames/second and a corresponding higher resolution re-
sults in a smaller quantity but higher quality of frames. The benefit of having a low number of
frames/second is having greater accuracy in detecting objects, but the downside is a choppier view
of the objects’ motion and difficulty in assigning detections to tracks due to the fewer number of
frames.

To start, we set the camera to 240 frames/second at WVGA resolution. After inputting the video
into a test program, we realized the number of frames/second was too high because the program was
processing the video at a halting pace and taking far too long to run. The resolution was also too low,
given that we could not even see the ball in the video.

Next, we tried 60 frames/second at 1080p resolution, which solved the problem of seeing the ball but
left large gaps in between frames so that objects appeared to jump from one location to another rather
than moving in a visibly continuous manner.

5”HERO3+ Black Edition Technical Specs.” GoPro. http://gopro.com/cameras/hd-hero3-black-edition#technical-specs
6Handa, Ankur et. al. ”Real-Time Camera Tracking: When is High Frame-Rate Best?” Imperial College London.

https://www.doc.ic.ac.uk/˜ ajd/Publications/handa etal eccv2012.pdf

3

Finally, we tried 120 frames/second at 720p resolution and have found this setting to be a good
compromise between the frame rate and quality of image. The ball is visible most of the time and there
are enough frames to track the objects consistently from frame to frame. This is the setting we have
used to capture the final set of video footage.

3.2 Point of View

In order to simplify the analysis, we have decided to capture video footage in the form of a two-
dimensional flat plane rather than a three-dimensional point of view at the recommendation of Dr.
Taylor. To accomplish this objective, we have the option of capturing video footage from either behind
the court at the ground level or above the court looking downwards. There are various pros and cons of
either viewpoint:

• From behind the court, the main pro is that the entire back wall fits comfortably within the camera’s
viewfinder without including unrelated objects from outside the court boundaries. However, there
are also major cons to contend with, the primary one being that the players would sometimes
overlap and make it difficult to differentiate one player from the other. Additional problems include
shaky footage when the ball hits the glass wall and poor video quality due to smudges on the glass
wall itself.

• From above the court, overlapping players are no longer a problem and there are no visual ob-
structions blocking the camera. But there are still cons that need to be managed since the court
floor has more square footage to fit into the viewfinder than the court wall. To adjust, we have
used a very tall tripod to capture a view of the entire floor. The side effect of this point of view is
the inclusion of more unrelated objects from outside the court such as the bleachers and the outer
walkways. The image distortion created by the wide-angle lens is also slightly more obvious from
this perspective.

The problems associated with the behind point of view are fairly unresolvable, making it an unsus-
tainable choice for our project. On the other hand, the above point of view not only avoids all of the
problems from the behind point of view but also contains only minor issues that we have been able to
resolve through analysis and code. The solutions to these issues will be elaborated upon in the following
sections titled ”Court Boundaries” and ”Lens Calibration”.

3.3 MATLAB Software

All of the programming has been completed using the MATLAB environment, which contains an Image
Processing Toolbox and a Computer Vision System Toolbox that we have drawn upon extensively for
our project.

The Image Processing Toolbox provides the functions needed to implement the first step of object
detection: to convert the input frame into a processed binary mask that will be used for blob analysis.
Morphological operations, such as “imopen” and “imclose” and ”imfill”, use a combination of dilation
and erosion techniques based upon a specified “structuring element” for filtering purposes and noise
reduction.7

The Computer Vision System Toolbox enables the second step of object detection: to perform blob
analysis on the binary mask and then calculate the centroid and bounding box of each distinct group of
connected pixels that has been detected. It also includes the algorithms for the follow-up step of motion
estimation and object tracking. A Kalman filter is used to estimate the motion of objects and assign
them to the appropriate tracks. Finally, the video viewer objects display the program output to the
computer screen.8

7”Morphological Operations.” MATLAB Documentation Center. http://www.mathworks.com/help/images/morphological-
filtering.html

8”Tracking and Motion Estimation.” MATLAB Documentation Center. http://www.mathworks.com/help/vision/tracking-
and-motion-estimation.html

4

4 CODE OVERVIEW - PART 1

In the program written for motion-based multiple object tracking, the main method first initializes the
system objects for displaying the video and storing the tracks that maintain a record of the moving
objects. It then prompts the user to specify the court boundaries on the video display and then uses
this information to filter out the unrelated pixels beyond the squash court as well as to perform lens
calibration on the GoPro camera.

Next, it enters a while-loop that iterates through each frame in the video. Within each iteration the
program calls the native blob analysis tool and implements an algorithm we have designed to refine this
tool’s output. Then it calls upon a host of supporting functions to handle the object tracking and to
update the system objects accordingly. There are 6 separate functions to address each component of
object tracking: the prediction of new track locations, the assignment of detections to tracks, updating
the tracks with assigned detections, updating the tracks with unassigned detections, the deletion of lost
tracks, and the creation of new tracks.

When the loop finally exits after processing each frame in the video, the program outputs a .csv file
containing a record of the (x, y) coordinates for each squash player at every point in time during the
video before terminating.

5 DETECTING THE OBJECTS

This section expands on the the detailed mechanics behind each step in the program and also the decisions
we have made regarding the program design.

5.1 Court Boundaries

To define the court boundaries, a video reader displays the first frame for the user to see. Then the
program uses the “ginput” function to prompt the user to click on 4 points on the screen that designate
the 4 corner points of the squash court. The function returns a 4x2 matrix of the four (x, y) coordinates,
and these are used as the upper and lower bounds for acceptable pixels to process in the remaining video
frames.

Before this functionality had been implemented, the blob analysis tool would pick up on completely
unrelated objects, such as the various bystanders walking through the neighboring walkways of the squash
court. It would even detect Rebecca’s tapping foot as she sat beside the tripod while the video footage
was being captured. After setting the court boundaries, these unrelated objects have no longer been
detected.

In addition to the 4 corner points, the “ginput” function also prompts the user to click on 2 more
points to designate the center of the squash court where the floor lines intersect and the upper right-hand
corner of the court. This information will be used in the next step for the lens calibration.

5.2 Lens Calibration

It is necessary to perform lens calibration for two reasons that affect the output of the first program and
hence the input for the second program:

• To convert the units of measurement for the location coordinates from pixels to feet

• To correct for the slight image distortion caused by the wide-angle camera lens9

9”Wide Angle Lenses.” PhotographyMAD: Tips, Tutorials, and Techniques. http://www.photographymad.com/pages/view/wide-
angle-lenses

5

In order to solve both of these problems, we have applied an affine transformation to the coordinates.
Affine transformation requires using linear algebra to determine the unknown parameters in the following
systems of equations:10

u = cx− sy + tx
v = −sx− cy + ty

The second equation has been modified to include two negative signs, which represent one reflec-
tion across the x-axis and then one reflection across the y-axis for the pixel coordinates (u, v) to be
appropriately transformed into real-world coordinates (x, y).

The coordinates (u, v) are in terms of the pixels unit of measurement and adhere to the computer
graphics coordinate-axes system where the u variable increases positively in the right-hand direction
while the v variable increases positively in the downward direction. The coordinates (x, y) are in terms
of the feet unit of measurement and adhere to the standard mathematical coordinate-axes system where
the x variable increases positively in the right-hand direction while the y variable increases positively in
the upward direction.

The constants [c, s, tx, ty] are the unknown parameters that need to be determined just once at the
beginning of the program to facilitate the subsequent transformations of the coordinate pairs that will be
stored in the output .csv file. To compute the constants, we use known information about the dimensions
of a standard squash court as well as the coordinates data provided from the “ginput” function in the
previous step.

If the center of the squash court where the lines intersect is marked as (0,0) in real life, that means
the upper right-hand corner is (10.5, 18) since the court is 21 feet wide and 18 feet long past the center
line.11 In addition to this, we have the input coordinate (u0, v0) that represents the center of the squash
court on the computer screen. We can calculate tx and ty by setting x and y to 0 in both equations,
leaving the following relations:

u0 = tx
v0 = ty

Now that tx and ty are known, calculate c and s from the following relations after substituting x and y
for the known coordinates of the squash court:

u1 = c(10.5)− s(18) + u0
v1 = −s(10.5)− c(18) + v0

Input coordinate (u1, v1) corresponds to the upper right-hand corner of the squash court on the computer
screen. With this information, the systems of equations can be solved using linear algebra methods by
defining 2x1 matrix b and 2x2 matrix A. Using matrix division to calculate A\b results in a 2x1 matrix
containing the solutions to the problem of finding c and s.

b =

∣∣∣∣ u1 − u0v1 − v0

∣∣∣∣
A =

∣∣∣∣ 10.5 −18
−10.5 −18

∣∣∣∣
A\b =

∣∣∣∣ cs
∣∣∣∣

Now that all the constant parameters [c, s, tx, ty] are known, if matrix A is updated to contain the

10From discussion with our advisor, Dr. Camillo Jose Taylor.
11”Court Specifications.” World Squash. http://www.worldsquash.org/ws/resources/court-construction

6

parameters then calculating A\b results in a 2x1 matrix containing the transformed coordinates for any
pixel coordinate input.

A =

∣∣∣∣ c −s
−s −c

∣∣∣∣
A\b =

∣∣∣∣ xy
∣∣∣∣

The parameters depend on the last two points that are inputted by the user to the video display, so
the values of the parameters depend on the precise positioning of the camera at the time the footage was
captured and may not be exactly the same for all videos.

5.3 Background Subtraction

Background subtraction is used to isolate moving objects from the background. It outputs a black-and-
white binary mask, where the pixel value of 1 corresponds to the foreground and the pixel value of 0
corresponds to the background. There are two primary methods available for performing background
subtraction:

• The “ForegroundDetector” function is based on Gaussian mixture models. This approach has been
originally proposed by Friedman and Russel in the context of a traffic surveillance system, where
a mixture of 3 Gaussians are used to characterize each pixel. The Gaussians represent the road,
vehicle and shadows, with the darkest component labeled as shadow, the highest variance labeled
as vehicle, and the remainder labeled as the road.12

• The “imabsdiff” function is based on pure image arithmetic, where the absolute difference of pixels
is calculated between two images. Images are represented as arrays of pixels, so a pixel in one array
is subtracted from a corresponding pixel in the same row and column in the other array with the
absolute value of the difference of the pixels recorded in the same row and column in the output
array.

After testing both methods, the “imabsdiff” function has produced a resulting binary mask that is
noticeably better than the results produced by the “ForegroundDetector” function. The binary mask
outputted by the “imabsdiff” function contains fewer holes in the sense that the white regions that
represent the moving objects are more uniformly white without streaks of black within the objects. This
means a better job has been done in recognizing which pixels are part of the foreground rather than the
background.

An explanation for this result could be that the Gaussian model’s focus on characterizing each pixel
as a combination of its intensity in the RGB color space and a mixture of 3 Gaussian variables provides
more variable output. The ”imabsdiff” function is very straightforward in the sense that subtracting
two pixels of the same color and having them cancel each other out means these pixels belong to the
background, and if the pixels do not belong to the background then they alternatively belong to the
foreground.

Since the program tracks the same three objects in each frame with essentially the same color scheme,
it is preferable to use the more deterministic method as it provides more consistent results. It makes
more sense to use the Gaussian model in the context of a traffic surveillance system since the moving
cars are constantly changing shape and color as new cars enter the frame and old cars exit, so in this
case it would be preferable to characterize each pixel as a mixture of components.

12Bouwmans, T., F. El Baf, and B. Vachon. ”Background Modeling using Mixture of Gaussians for
Foreground Detection - A Survey.” Recent Patents on Computer Science 1: 219-237. http://hal.archives-
ouvertes.fr/docs/00/33/82/06/PDF/RPCS 2008.pdf

7

5.4 Morphological Operations

Morphology is a means of processing images based on shapes. In morphological operations, one of the
inputs is a “structuring element” that enables the user to choose the ideal size and shape (line, rectangle,
disk, etc.) of the neighboring pixels so that the operation becomes more sensitive to that particularly
sized shape in the input image. To create the output image, the value of each pixel in the output image
is determined based on a comparison of the corresponding pixel in the input image to its neighboring
pixels.

The two operations that form the foundation of most morphological operations are dilation and
erosion, in which pixels are respectively added or removed from the boundaries of objects in an image.
In a dilation, the value of the output pixel is equal to the maximum value of all the pixels in the input
pixel’s neighborhood as defined by the structuring element. An erosion does the opposite by taking the
minimum value rather than the maximum. Given a binary mask that only contains 1’s or 0’s, a dilation
sets a pixel to 1 if any of the neighboring pixels are 1, and an erosion sets a pixel to 0 if any of the
neighboring pixels are 0.

In the context of our project, applying morphological operations to the binary mask helps to remove
noisy pixels and to fill in any holes that may be present in groups of similar pixels. After trying out
numerous operations in the extensive set of available operations, we have settled on the following formula
of operations:

1. imopen

• This operation involves an erosion followed by a dilation. It first removes any noisy pixels
in the background, such as the rogue squash court lines that have not been successfully
eliminated during the background subtraction process. Next, it focuses on filling in gaps in
the foreground.

• This order of operations is intentional to ensure that the noisy pixels are erased first. Other-
wise, the gaps among the noisy pixels would be filled in first and would further aggravate the
noise rather than reducing it.

• The structuring element is a disk with radius 1 and parameter 4. The parameter defines the
number of periodic-lines that are used to approximate the shape of a disk. We have chosen to
use a disk shape to emphasize shapes with more rounded edges, such as the squash players,
and to erase any linear shapes, such as the court lines.

2. imclose

• This operation involves a dilation followed by an erosion. It first focuses on filling in the gaps
in the foreground before moving on to eliminate any remaining noise in the background.

• This order of operations is intentional to ensure that the white pixels in the foreground are
as cohesive and uniformly distributed as possible before taking care of any remaining noise in
the background.

• The structuring element is once again a disk with radius 1 and parameter 4. After trying
various options for the radius and parameter, the smallest radius has still been the best choice
since it happens to apply to more of the shapes in the binary mask.

3. imfill

• This operation fills any remaining holes in the binary mask that have not been reached by
the previous operations. In the context of this operation, holes are defined as the set of
background pixels that cannot be reached by filling in the background from the edge of the
binary mask.

Other morphological operations we have tried were not as effective in eliminating noise and filling in
holes. For example, the first operation we have experimented with is the “bwmorph” operation, which
is supposed to fill isolated interior pixels (individual 0’s that are surrounded by 1’s) with the value of
its neighboring pixels. The reason this has not worked so well is because there have been few instances

8

where there would be only one isolated pixel. It is more common to have a group of isolated pixels, or a
”hole” in the mask.

5.5 Blob Analysis

Before discovering the blob analysis tool, the first attempt at detecting groups of connected pixels involved
experimenting with the “bwlabel” function, which is supposed to find all of the connected components in
a given binary image and then return the number of connected components that have been found, as well
as a matrix containing labels for these connected components. However, this operation has not worked so
well because the issue with the players’ clothes blending into the background leads the operation to think
that each player is actually up to 5-6 separate connected components rather than one single connected
component. Therefore, we have realized that we would need a more robust means to detect “blobs” in
order to obtain more useful results.

The blob analysis tool is contained in the Computer Vision System Toolbox and used to find connected
groups of foreground pixels in a given binary mask. Since the foreground pixels represent the moving
objects that have been isolated from the background, the goal of blob analysis is to determine which of
these pixels can be grouped together as “blobs”, or connected components, to represent distinct objects.
The blob analysis tool then returns two matrices, one containing the centroid coordinates of the detected
blobs and the other containing the bounding box coordinates.

The blob analysis tool takes in a “MinimumBlobArea” parameter that sets the minimum threshold
size for a group of pixels to be deemed a connected component. After experimenting with several
parameter values, we have decided on a minimum size of 300 square pixels. A higher threshold leads to
few or no detected blobs because the squash players are not perfectly segmented from the background
and are thus somewhat fragmented so there are no single groups of pixels that are large enough to meet
this threshold. A lower threshold leads to too many detected blobs because the blob analysis tool would
consider each body part of a squash player to be a separate blob - the arms, the legs, the head, and the
racket all become separate objects.

Due to the constraints created by the “MinimumBlobArea” parameter, the problem of detecting the
2 squash players and the 1 ball has turned into two different problems altogether. There is absolutely no
possible way to detect all 3 objects at once since the ball is significantly smaller than the players. Even
if the minimum threshold size is set to be small enough to detect the ball, the blob analysis tool would
consequently do a poor job of detecting the players.

First we will explain our solution for detecting the 2 squash players, and then we will explain our
separate strategy for detecting the ball.

5.6 Detecting the Players

At a threshold of 300 square pixels, the blob analysis tool is able to group the pixels for each player
into at most 2-3 blobs per player. This is the best result achievable by the blob analysis tool because of
the issue we have faced with the color of the players’ clothing blending into the background leading to
fragmentation.

One of the options we have considered along the way to overcome the clothing issue is to process the
frames in RGB color rather than grayscale. The idea is that we could then match the colors of the pixels
from blobs that are near each other and thus determine that these blobs belong together. However,
images in RGB color are three-dimensional (one dimension for each RGB color - red, green, and blue)
and the blob analysis tool only works on images that are two-dimensional, for example grayscale.13 We
have decided that the benefits of narrowing down the number of blobs to 2-3 blobs per player outweigh
the complexity of matching the colors of the pixels of up to 5-6 blobs per player.

Instead, we have developed our own algorithm for determining which blobs should be combined to
form one single connected component to represent one squash player. This solution helps to overcome

13”Blob Analysis.” MATLAB Documentation Center. http://www.mathworks.com/help/vision/ref/blobanalysis.html

9

the issue with the players’ clothing through analysis and code rather than simply asking the players to
wear darker clothing that would not be confused with the lighter background. The final output will
include a new bounding box matrix and a new centroid matrix.

1. In the first step, we iterate through the bounding box matrix and calculate their exact centers.
The provided information in the bounding box matrix is the (x, y) coordinate of the upper left-
hand corner and the width and height of the box. Therefore, the center coordinate of the box is
calculated as: (x+width/2, y+height/2). The center coordinates are stored in a new matrix named
“centers”.

2. The reason why we go through the trouble of calculating the centers of the bounding boxes rather
than just using the centroids is because the way that MATLAB calculates the centroids as the
center of mass of the pixels is less meaningful for the purposes of combining multiple blobs to
represent one squash player.

• The center of mass of a blob is the mean location of the distribution of the blob’s pixels, but
the distribution of pixels changes notably as a squash player lunges forwards, backwards, and
side-to-side. The calculated center of the blob’s bounding box is less sensitive to the actual
distribution of the pixels and only dependent on the area that the pixels cover, which does
not change quite so much.

• The implication of this effect is relevant for how the centers will be sorted into two separate
lists in a later step of the algorithm. It is necessary for the unit of measure representing
the ”center” of a blob to be as consistent as possible and not so dependent on the player’s
posture at a point in time. When the algorithm later isolates the two centers that are farthest
apart to represent the two different players, it needs to select centers that best represent each
player rather than centers that happen to be farthest apart at a convenient point in time if
the players are lunging in opposite directions.

3. Next, we use a nested for-loop to calculate the least squared distances between each possible unique
pair of centers (xi, yi) and (xj , yj) in the “centers” matrix. These distances are stored in a new
matrix named “leastSquared”, which additionally stores the indices i and j as keys that will be
used to identify exactly which pair of centers have been used to calculate the corresponding least
squared distance.

4. The “leastSquared” matrix is then sorted in increasing order to find the largest least squared
distance. This distance is between the 2 farthest center coordinates on the court, which likely
correspond to 2 different players.

• After determining the center coordinates (x1, y1) and (x2, y2) that have been used to calculate
the largest least squared distance, we now create 2 separate lists, one for each player. The
2 lists are initialized with the center coordinate (x1, y1) placed into List 1 and the center
coordinate (x2, y2) placed into List 2.

• Ultimately, List 1 will contain all the centers of the blobs that should be combined to form
Player 1, and List 2 will contain all the centers of the blobs that should be combined to form
Player 2.

5. The following step is to iterate through the “centers” matrix and to calculate for each coordinate
(xc, yc) the least squared distance D1 between coordinates (xc, yc) and (x1, y1), and the least
squared distance D2 between coordinates (xc, yc) and (x2, y2).

• If D1 < D2, meaning coordinate (xc, yc) is closer to Player 1 rather than Player 2, then
coordinate (xc, yc) is added to List 1 for Player 1.

• This is repeated until all of the center coordinates are effectively sorted as belonging to either
Player 1 or Player 2.

• A check is performed to ensure that the same coordinate cannot be included in both List 1
and List 2.

10

6. Next, each list of coordinates is converted into a “box”, or a list of 4 new coordinates that represent
the 4 corners of the bounding box. To accomplish this, we iterate through List 1 and find both
the minimum x-coordinate and maximum x-coordinate, as well as both the minimum y-coordinate
and maximum y-coordinate.

• These 4 coordinates are the 4 corner points of the single bounding box that will be drawn
around Player 1.

• The same steps are repeated for List 2 to obtain the 4 corner points that define the single
bounding box that will be drawn around Player 2.

• The bounding box matrix is reset to reflect the information for the 2 newly formed bounding
boxes that are a combination of the smaller bounding boxes.

7. For the last step, the new center coordinates are calculated for the 2 new bounding boxes and then
stored in their own new matrix. The centroids matrix is reset to have the same values as this new
centers matrix.

Now that the bounding box matrix and the centroid matrix have both been updated to reflect their
new values as determined by the algorithm, the process of detecting the two squash players is subsequently
complete.

5.7 Detecting the Ball

Since the morphological operations are mostly designed to process images using shapes of a minimum
size and not a maximum size, there is no way to easily filter out the largest blobs in one line of code using
existing MATLAB functions. Thus we have taken a completely different approach towards detecting the
ball that does not involve depending on morphological operations. In this case, the goal is to find the
smallest and roundest object in a given binary mask.

1. The first step is still to perform background subtraction on the input frame to create a binary
mask that segments the foreground from the background. Now we use the “bwlabel” operation
that did not work so well before in the blob analysis section but this time serves the purposes well
for detecting the ball.

• The reason why the ”bwlabel” operation had been so ill-suited for detecting the squash players
is because the previous goal had been to obtain cohesive blobs through combining smaller ones
that are meant to represent the same squash player.

• However, combining multiple blobs is no longer the goal and the new idea is to eliminate any
blobs whose area in square pixels are too large to possibly be the ball.

• Therefore, using the “bwlabel” operation is sufficient for obtaining a list of the smaller blobs
in the binary mask.

2. After applying the “bwlabel” operation, we iterate through the resulting outputted list of blobs
and then perform a check to find the blobs that have an area greater than 150 square pixels. For
each blob that exceeds this minimum size threshold, we set the blob’s pixel values to a value of
0 in order for the pixels to become a part of the background rather than the foreground. This
essentially erases the blobs from the binary mask. In the context of detecting the ball, filtering out
the largest blobs reduces the amount of noise so that it is possible to focus on finding the smallest
blobs.

3. The “regionprops” function is then used to find the area and perimeter of each of the remaining
blobs that have not yet been eliminated. This information is used to calculate the roundness of each
blob using the algebraic equation: (4π∗Area)/(perimeter2). Finally, the blob with the maximum
roundness is found using a simple maximum algorithm. This blob should be the one that best
represents the squash ball.

11

4. To finish, the new centroid is set as the center of the blob’s bounding box rather than the center
of mass of the blob.

Although the ball sometimes changes shape from frame to frame, at times even appearing as a blur,
it is still the object with the highest degree of roundness in the frame compared to any of the other
blobs. Therefore, this targeted approach of narrowing down the blobs according to their size and then
seeking out the blob with the highest degree of roundness adequately counteracts this problem of the
inconsistent shape.

As for the issue with the ball outright disappearing in some of the frames, we rely upon the predicted
location that is determined by the Kalman filter during the process of tracking the objects. The predicted
location is based on the history of the velocity of the object and calculated using a stochastic process
that models the motion of the ball.

5.8 Defining the Bounding Boxes and Centroids

The thought process for determining how the bounding box and the centroid should be defined is hinged
upon the question of what the best representation for a squash player should be from an overhead,
downwards point of view.

Bounding boxes could be drawn in a variety of ways to encompass any of the following combinations:

• Only the head of the person

• Only the head and torso of the person (no arms or legs)

• The entire person, excluding the squash racket

• The entire person, including the squash racket

These combinations may be achieved either by editing our algorithm for combining the blobs or
by using additional morphological operations to erode each blob even further until it fits the given
description.

We have decided that including only the head of the person is not the best idea because the head
lunges forward, backward, and side-to-side too often to be a good candidate for tracking. This argument
also applies for including only the head and torso of the person.

The question now becomes whether to exclude or include the squash racquet. Excluding the squash
racquet would result in a bounding box that moves more predictably since it does not change shape quite
so much every time the player hits the ball. However, this would not necessarily be the most accurate
representation of the player’s movement because the ball makes contact with the racquet and not the
arm or torso of the player. Therefore the squash racquet is relevant and should be included within the
bounding box.

Centroids are more limited in possibility and could be calculated in only two different ways:

• The center of mass of the region of pixels

• The center of the bounding box

The center of mass is not a good choice because it moves around more than the center of the bounding
box would as the player lunges around and swings the racquet back and forth. The center of mass is
calculated from the mean distribution of the region of pixels, but the distribution of pixels can change
dramatically. The center of the bounding box only changes with the size of the box and is therefore a
more stable measure.

12

6 TRACKING THE OBJECTS

A “track” is a structure representing a moving object in a video. It contains different fields that are used
to determine the assignment of detections to tracks, the termination of tracks that may no longer exist,
and the display of the tracks to the screen. These fields represent the state of a tracked object at a point
in time:

• id: the integer id of the track

• bbox: the bounding box of the track

• kalmanFilter: the object used for motion prediction

• age: # of frames since the track was first detected

• totalV isibleCount: # of total frames in which the track was detected

• consecutiveInvisibleCount: # of consecutive frames where the track was not detected

The tracks are stored in an array, and their fields are continually updated from frame to frame to
reflect their new values.

6.1 Track Maintenance

After the objects are detected in each frame of the input video, there are a number of possibilities for
how the array of tracks will be updated. An object detection may be assigned to an existing track,
which is then updated to reflect the most recent bounding box, the new predicted motion, and the new
frame counts for age and visible count. Otherwise, an object detection may also remain unassigned from
any existing tracks. However, if it has previously been detected before, its associated track will still be
updated to reflect the new frame count for the invisible count since the object has not been assigned for
that frame.

If a track has just been newly created for a new object detection, it will not display the object’s
bounding box at first. The bounding box of an object will only be displayed after the object has been
tracked for a minimum number of frames, or when the visible count exceeds a certain threshold. This
preventative measure is to minimize noise from tracks that are created, exist for a brief amount of time,
and then quickly deleted afterwards. An example of when this sort of noise might occur is if a track
has been created but then marked invisible for most of the frames in its lifespan and then consequently
becomes deleted.

When a track is continually unassigned for multiple frames in a row and the invisible count conse-
quently exceeds a certain threshold, the track is then deleted. This is because the object associated with
the deleted track has not been seen for a while and is thus assumed to have left the field of view of the
camera.

6.2 Predicting New Locations of Existing Tracks

Before evaluating the detection objects in the input frame, we use a Kalman filter to predict the next
location of each existing track. The Kalman filter calculates the predicted centroid and then shifts the
associated bounding box of the track so that its center is equal to the predicted location. Hence, these
steps preserve our chosen definition of a centroid since it is still made to be the exact center of the
bounding box.

The Kalman filter is an estimator used to calculate the solution to a stochastic process without having
precise knowledge of the underlying dynamic system.14 It predicts the state of the dynamic system from

14”Estimate System Measurements and States Using Kalman Filter.” MATLAB Documentation Center.
http://www.mathworks.com/help/dsp/ref/dsp.kalmanfilter-class.html#bt0lhkw-3

13

a series of incomplete and noisy measurements, such as when the object is not detected or when the
object is confused with another similar moving object. The stochastic process that is implemented is
defined by the following equations:15

xk = Axk−1 + wk−1

zk = Hxk + vk

In these Markov chain equations, it is only necessary to know the immediate prior state of the system
to assess the current state. To define the variables in the first equation, x is the state of the stochastic
process, k is the kth step of the process, A is the state transition matrix, and w is the process noise.
In the second equation, z is the measurement equation that takes measurement xk as an input, H is
the measurement matrix, and v is the measurement noise. The values of matrices A and H are the
following:15

A =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
H =

∣∣∣∣∣∣∣∣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣
In our project, the Kalman filter implements a motion model of constant velocity. The alternative
option available is implementing a motion model of constant acceleration. We have selected the model of
constant velocity because the overhead point of view means that the only velocity that matters is parallel
to the floor in the x-direction, and the only acceleration parallel to the floor would be wind resistance -
which is minimal in an enclosed, indoors environment. Constant acceleration would only apply if there
was a behind point of view instead because the acceleration in the y-direction would then be the constant
force of gravity.16

Obviously implementing a motion model of constant velocity is not a perfect representation of the
moving objects either, since objects typically do not move with constant velocity.17 We have adjusted for
this imperfect assumption by setting the motion noise parameter, which specifies the amount of allowed
deviation from the ideal motion model. Increasing the motion noise parameter leads the Kalman filter
to depend more on incoming measurements rather than its internal state. For our project, we have
configured the motion noise to be [100, 25] to rely more heavily on incoming measurements of location
and velocity.

When an object temporarily happens to be missing in a frame, there is no current measurement avail-
able for the object so the Kalman filter calculates the predicted centroid based solely on the information
from the previous state of the object.

This motion prediction step is important for the next step of assigning detections to tracks, since
the Kalman filter’s predictions and confidence levels are used to determine the likelihood of each object
detection being assigned to a track. The confidence levels indicate the confidence of the Kalman predic-
tions for the centroids.

15”Predict or Estimate States of Dynamic Systems.” MATLAB Documentation Center.
http://www.mathworks.com/help/dsp/ref/kalmanfilter.html

16”Newton’s Law of Universal Gravitation.” The Physics Classroom. http://www.physicsclassroom.com/class/circles/u6l3c.cfm
17”Instantaneous Velocity: A Graphical Representation.” Boundless Education. https://www.boundless.com/physics/

kinematics/speed-and-velocity/instananeous-velocity-a-graphical-interpretation

14

6.3 Assigning Detections to Tracks

The way that an object detection is assigned to one of the existing tracks is by calculating the “cost” of
assigning the detection to each existing track and then selecting the track with the minimum cost. The
cost is calculated as a function of:

• The Euclidean distance between the track’s predicted centroid and the detection’s actual centroid

• The confidence of the Kalman prediction - which is outputted by the Kalman filter

Basically, the contributing factors of the cost function show that a detection is more likely to be
assigned to a track based on how closely the centroid of the detection matches the Kalman filter’s
predicted centroid of a track. The higher the confidence level of the prediction, the greater the likelihood
of assignment.

After the cost of assignment is calculated for each possible pair of (existing track, object detection),
the results are stored in a m x n cost matrix, where m is the number of tracks and n is the number
of detections. This cost matrix will be the first input for the function that we use to solve the track
assignment problem, which entails finding the optimal pairings between tracks and detections that will
minimize the total cost.

Next, a cost of not assigning any detections to a track is selected. This particular cost of non-assigment
essentially helps to determine whether or not it makes sense to create a new track for a detection that
may possibly be for a new object, rather than assigning the detection to a corresponding existing track
if it is not a new object. The consequences of assigning an object to the wrong track would be corrupted
data analysis.

The cost of non-assignment measure is set through trial and error. If the cost is set too low, there
is a greater tendency towards creating a new track which may lead to track fragmentation where there
may be multiple tracks that are associated with the same object. On the other hand, if the cost is set
too high then there is a greater tendency towards assigning detections to existing tracks which may lead
to the opposite problem where there may be one single track that is associated with multiple moving
objects. This cost of non-assignment will be the second input for the function that we use to solve the
track assignment problem.

After trying out several values we have chosen a cost of non-assignment of 40. Lower values of this
parameter have resulted in multiple bounding boxes drawn over the same player, whereas higher values
have resulted in no bounding boxes at all. A cost of non-assignment of 40 results in one bounding box
and one track, per player.

Finally, the “assignDetectionsToTracks” function takes in the two inputs - the cost matrix and the
cost of non-assignment - to solve the assignment problem and then returns three outputs that will be
used to update the tracks array:

• The assignments of detections to tracks

• The unassigned tracks

• The unassigned detections

6.4 Updating Assigned Tracks

Once an object detection has been assigned to an existing track, the track needs to be updated to reflect
the detection’s current information. First, we correct the track’s location to the object detection’s actual
location. Next, we store the new bounding box that is based on the object’s actual location. Finally, the
frame counts also need to be changed: the total visible count is incremented by 1, the age of the track
is incremented by 1, and the consecutive invisible count is reset to 0.

15

6.5 Updating Unassigned Tracks

If an existing track has not been assigned a detection for a certain frame, the frame counts for that track
will still be changed so that the age of the track is incremented by 1 and the consecutive invisible count
is incremented by 1.

6.6 Deleting Lost Tracks

Tracks will be deleted if they have too a consecutive invisible count that is too high exceeds a certain
threshold. Even if the consecutive invisible count is 0, a track could still be deleted if the difference
(age - total visible count) also exceeds the threshold since this means that the track has been counted
as invisible numerous times.

6.7 Creating New Tracks

New tracks are created when there is an object detection that is not assigned to any existing track. We
assume that these detections are new moving objects that have not been seen before. Our algorithm to
combine blobs greatly reduces the likelihood of unnecessarily creating new tracks because it minimizes
the amount of noise in the frame and ensures that there is only one blob and one track created for each
squash player.

6.8 Displaying Tracking Results

After track maintenance is completed, the tracks are displayed to the screen. The bounding boxes from
each track are drawn in both video players - one that displays the original video input and one that
displays the binary mask.

7 SPORTS ANALYTICS

Now that the video footage has been processed and the objects have been detected and tracked, the
output .csv file of the (x, y) coordinates of the squash players will be evaluated by another program that
will create another output analytics file.

7.1 Industry Overview

As previously mentioned in the introduction, sports analytics is already established in some sports such
as basketball and baseball. The statistics provided by these analytics are used by coaches to inform
players how to improve their game. The statistics are also available to the mass public, who even create
formulas that weight certain statistical metrics that are deemed most important.

The National Basketball Association uses statistics such as effective field goal percentage (shooting
percentage), turnovers per possession, offensive rebounding percentage, and number of times getting
to the foul line.18 Some innovators are attempting similar precision technique analysis tools such as
94Fifty’s ”smart basketball” that uses a bluetooth enabled accelerometer and gyroscope system to report
acceleration, impulse, spin, and more. The software then computes technical attributes such as ball
handling ability, shot arc, shot speed, shot backspin, etc.19

18Meehan, Jeff. ”Back to the Basics: Four Factors in Basketball.” Sports Analytics Blog. http://sportsanalyticsblog.com/
articles/back-to-the-basics-four-factors-in-basketball

19”Learn More: 94Fifty Smart Sensor Basketball.” 94Fifty. http://shop.94fifty.com/pages/learn-more

16

The Major League of Baseball uses statistics such as batting average, number of home runs, number
of strikes, plate appearances, and contact rate.20 Innovative software is also being developed in this space
to use broadcast provided footage in order to track motions of the baseball and players and determine
statistics regarding individual plays.21

7.2 Squash Overview

Squash game strategy is highly dependent on court positioning, player speed, and the player’s ability to
make and retrieve shots.

Court positioning is important because an ideal positioning on the court can greatly reduce the
amount of distance that players need to travel and therefore ensures that they tire less quickly. A key
strategy called ”dominating the T” gives a squash player quick access to any part of the court in order
to retrieve the opponent’s shot. This strategy involves moving towards the intersecting red lines in
the center of the court after returning a shot and taking control over this ideal location to be better
positioned to retrieve subsequent shots.

Player speed is essential for covering a greater court area and also for recovering quickly after making
a shot. A player that has good agility would be able to return a well-placed shot and then quickly reverse
directions for the next one. The opponent’s goal is to place the ball in a region that is far in distance
from the player as well as in an area that is in the opposite direction of the player’s momentum, so being
quick on their feet is important for players to execute a good play or risk losing the point. Another
possible consequence of not moving quickly enough is accidentally causing an interference violation and
potentially losing the point.

The ability to make and retrieve shots is crucial for winning points from both offensive and defensive
perspectives. Shot placement on the front wall is directly associated with scoring. If the opponent fails
to return a shot, the player who delivered the final shot wins the point. A player that is highly skilled
at making powerful shots and also adept at receiving them maximizes the likelihood of winning points
and winning the overall squash match.

7.3 Squash Analytics

In light of the fact that a Google search for ”squash analytics” yields no relevant results, it is clear that
there is much room for development in terms of advancing sports analytics for squash. Based on the
above overview for squash, the sport’s game strategy can be quantified on a similar level to any other
sport with established sports analytical systems.

After consulting with Jack Wyant, the head coach of the Penn Varsity Squash team, we have a good
sense for which statistics would be the most beneficial for analyzing squash performance. Some of the
desired analytics include:

• average location on the squash court

• average distance traveled

• average speed of the player

• hit rate (percentage of shots retrieved)

• scoring ability (percentage of winning shots)

• total number of shots made

20Rosen, Jacob. ”Roundup: Baseball stats and salaries, basketball, and more.” Sports Analytics Blog. http://
sportsanalyticsblog.com/articles/roundup-baseball-stats-and-salaries-basketball-and-more

21Perry, Dayn. ”Innovative ’player tracking’ has arrived, and it is beautiful.” CBS Sports. http://www.cbssports.com/
mlb/eye-on-baseball/24462312/video-innovative-player-tracking-has-arrived-and-it-is-beautiful

17

7.4 Project Scope

We have defined the scope for our data analysis to focus on the first three metrics in the above list
of analytical metrics: average location, average distance traveled, and average speed. These analytical
metrics are focused on the movements of the players rather than the ball. Our coordinates data is good
for this form of analysis since our program’s mechanism for detecting and tracking each squash player is
fairly consistent.

We have also included a calculation for the direction of movement to provide analytics on which
direction a player is traveling at every point in time, measured in degrees relative to the court lines. This
additional calculation would be simple to perform since the required data is the same as for calculating
the first three metrics. Information about movement direction may be useful for determining player
agility.

We will leave the remaining analytical metrics for future work since they are focused on the movements
of the ball and require accurate location information about the ball. However, our mechanism for
detecting and tracking the ball is not yet on the level of consistency necessary to perform reliable
analysis.

8 CODE OVERVIEW - PART 2

In the program written for coordinate-based data analysis, the main method first opens the .csv file
containing the (x, y) coordinates data created by the first program. Then it creates four n x 2 matrices
to store the location data and the calculated metrics, which will be referenced later on at the end of the
program when creating the output .csv file.

The program begins parsing through the file of coordinates. It maintains a variable ”prevCoordinate”
to store the previous location coordinate for the purposes of calculating the analytical metrics. In each
iteration, the program inputs the current pair of coordinates along with the previous pair of coordinates
into one method to perform the movement analysis and a second method to create and build the heat
map.

The method for movement analysis uses the two coordinate inputs to calculate the three desired
metrics: distance traveled, the speed of the player, and the direction of the player’s movement. The
method then returns these analytics data points to be saved in their respective n x 2 matrices as well as
to be recorded in the output file.

The method for building a heat map uses the coordinate input for the current state to draw a point
representing the current location of the player onto an image representation of a squash court that has
been drawn by the program. One point will be drawn onto the same image in each iteration so that
together the drawn points will give a visual of each player’s path over time. The image is continually
updated until the file reader terminates.

After the program finishes evaluating each coordinate in the input file, it uses the data stored in the
matrices to calculate the average location, the average distance traveled, and the average speed of the
player. The final output .csv file will contain all of the data in the matrices from the entire duration of
the video footage, as well as the average statistics calculated at the end.

9 MOVEMENT ANALYSIS

Given the two input coordinates, in terms of feet, we now have the object’s current location as well as
its past location from the immediate prior state. The calculation of the analytical metrics is a relatively
straightforward process. As mentioned previously in Section 2.2, the formulas used in the calculations
are the following:

18

• Distance traveled: D =
√

(x2 − x1)2 + (y2 − y1)2

• Speed of player: s = D/t, t ≈ 0.0083 seconds

• Direction of movement: θ = tan−1(y2−y1

x2−x1
)

However, the main challenge we have faced is a result of some inconsistencies that only occur infre-
quently in the mechanism for detecting and tracking the player. For a few brief stints in the video, the
bounding box temporarily shifts from encompassing the entire body of the player to encompassing only
the head.

The implications of this tracking error is that the centroid of the associated track shifts dramatically
from the center of the body to the center of the head. Consequently, in the span of less than a second
(≈ 0.0083 seconds), the movement analysis errantly determines that the player has traveled much further
than it has actually moved in reality. So even though this tracking error may occur only a few times,
the data analysis becomes corrupted.

To counter this problem, we have decided to reduce the noise by lowering the frequency of the input
and only measuring the locations of the players every couple of frames. In addition to this strategy, we
have also set a maximum distance threshold so that the program does not consider distance values that
further exceed this threshold and are likely erroneous.

10 CREATION OF HEAT MAP

To create the heat map, the first step is to construct a new background image of the squash court
since the video frame does not reflect the real proportions or orientation of an actual real-world court.
The u x v dimension of the video frame is 1280 x 720 pixels with the court turned sideways, in the
counterclockwise direction. So the court is 1280 pixels in horizontal length and 720 pixels in vertical
width.

To create the background image of the squash court, we create a new blank image and draw a new
squash court that maintains the same length to width ratio as well as the same vertical orientation as
an actual court. The true x x y proportion of the court is 32 x 21 feet, or 32 feet in vertical length and
21 feet in horizontal width.

To find the correct pixel dimensions for the new image that we aim to create, we consider the fact
that the computer frame has a maximum vertical range of v =720 pixels and thus set a relation that
finds the corresponding horizontal width, u, in pixels in the same proportion as an actual court:

720

u
=

32

21

The new horizontal width, u, turns out to be approximately 473 pixels.

Since the origin in the video frame is in the top left-hand corner of the image and the origin for the
actual court is at the intersecting court lines, the real-world coordinates can be converted back into pixel
values (u, v) using the following relations:

u = 10.5 +
473

21
x

v = 18− 720

32
y

The ratios
473

21
and

720

32
are used to adjust for the difference in scale.

19

With these pixel values, we plot one red circle and one blue circle onto the new image to represent
each player’s location. Originally a white canvas, the replicated image of the squash court is eventually
populated with additional circle points after processing each frame of the input video.

It is important to note that we have made a key assumption that it is safe to assume that the center
of each bounding box is accurate enough to represent each player’s location for that particular frame.
This is certainly an approximation, albeit one that we believe is accurate enough given the limitations
of the technology.

11 FUTURE WORK

Our project has tackled a significant issue head-on by addressing the need for quantitative data analysis
for the sport of squash. It is hard to reconcile the fact that squash coaches still rely on the same methods
of instruction that they have depended on for the past decade, even while other sports are advancing
forwards in terms of analytics innovation.

Jack Wyant is wholeheartedly involved in the squash program at Penn and has lamented that he can
merely ”throw his hands in the air” when coaching without the use of analytics, and he wishes he could
have hard statistics to show to the team.

Going forward, there is significant work that can be further done for this product to be fully adopted
and supported by U.S. Squash, as they indicated they would:

1. First of all, our algorithms must be able to handle clothing of all colors. Currently, it is difficult
for the code to detect players if they are wearing a white shirt. This is because during background
subtraction, we are subtracting one white pixel from another which results in a value of 0. Therefore
the shirt will incorrectly be categorized as the background and will therefore not be displayed as
part of the squash player in the binary mask.

2. The ball tracking capabilities need to be improved. What is so challenging is that the ball is not
visible for much of the time, even after applying separate morphological operations specifically
oriented towards detecting the ball. Future experiments should utilize a high speed camera that
is specifically designed for capturing fast-moving objects and thus has the capacity to acquire the
correct input.

3. There is more analysis that can be done from successful ball tracking. It would then not only be
possible to determine analytical metrics such as the hit rate and scoring ability of a player, but
also to figure out the type of shot that the player has hit. With that information we could then
determine a player’s shot quality.

For example, if we determine that a player hit a straight drive, then we know where exactly it
should land on the court to be a ”good shot.” Hence, we could quantify the quality of a shot that
a player has hit and use this measure to keep track of quality improvements. This kind of analysis
would be immensely useful for any squash player.

4. An even more difficult challenge is automatically determining when a point has ended and when
a point has started. Currently, we have recorded a large quantity of video such that each video
only contains footage for one individual point. Ideally, a program should be able to take one long
video of an entire squash game and automatically determine when a point has started and when
the point has ended.

5. Finally, a more refined system for data input and output would be necessary to package the
product for end-consumers. What we have produced already has impactful analysis. However, to
commercialize it, it will need a functional user interface. For this future product, we envision for
recorded video to be automatically integrated and then with the resulting analysis emailed to the
user when the computation has finished.

20

12 APPENDIX

Figure 1: The ”ginput” function prompts the user to input 6 coordinates → 4 to designate the court
boundaries, 1 to designate the court center, and 1 to designate the upper right-hand corner of the court.

Figure 2: Our blob analysis algorithm draws a single bounding box around each squash player, while
ignoring the unrelated objects around the court.

21

Figure 3: The background subtraction creates a binary mask of the original frame, which is used to
detect the players. Note that the ball is not visible in this mask because the mask has been created
specifically to find the players, not the ball, using the morphological operations ”imopen”, ”imclose”,
and ”imfill”.

Figure 4: From this heat map, here is some example analysis: you can see that Player 2 (marked by blue
circles) is clearly standing too far back in the court after receiving the serve. Ideally, Player 2 should be
standing at the ”T”, the place where the two red lines connect, so that there is less distance to travel
when retrieving the next shot. Any coach would be able to look at this imagery and offer players the
advice that they must stand at least a few feet further up on the squash court. This advice alone could
significantly reduce how tired players feel during a match, thus improving their performance significantly.

22

