
CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 1

CIS 501: Computer Architecture

Unit 4: Performance & Benchmarking

Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania''
with'sources'that'included'University'of'Wisconsin'slides'

by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood'

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 2

This Unit

•  Metrics
•  Latency and throughput
•  Speedup
•  Averaging

•  CPU Performance

•  Performance Pitfalls

•  Benchmarking

Performance Metrics

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 3 CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 4

Performance: Latency vs. Throughput

•  Latency (execution time): time to finish a fixed task
•  Throughput (bandwidth): number of tasks in fixed time

•  Different: exploit parallelism for throughput, not latency (e.g., bread)
•  Often contradictory (latency vs. throughput)

•  Will see many examples of this
•  Choose definition of performance that matches your goals

•  Scientific program? latency. web server? throughput.

•  Example: move people 10 miles
•  Car: capacity = 5, speed = 60 miles/hour
•  Bus: capacity = 60, speed = 20 miles/hour
•  Latency: car = 10 min, bus = 30 min
•  Throughput: car = 15 PPH (count return trip), bus = 60 PPH

•  Fastest way to send 10TB of data? (1+ gbits/second)

Amazon Does This…

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 5 CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 6

Comparing Performance - Speedup

•  A is X times faster than B if
•  X = Latency(B)/Latency(A) (divide by the faster)
•  X = Throughput(A)/Throughput(B) (divide by the slower)

•  A is X% faster than B if
•  Latency(A) = Latency(B) / (1+X/100)
•  Throughput(A) = Throughput(B) * (1+X/100)

•  Car/bus example
•  Latency? Car is 3 times (and 200%) faster than bus
•  Throughput? Bus is 4 times (and 300%) faster than car

Speedup and % Increase and Decrease

•  Program A runs for 200 cycles
•  Program B runs for 350 cycles
•  Percent increase and decrease are not the same.

•  % increase: ((350 – 200)/200) * 100 = 75%
•  % decrease: ((350 - 200)/350) * 100 = 42.3%

•  Speedup:
•  350/200 = 1.75 – Program A is 1.75x faster than program B
•  As a percentage: (1.75 – 1) * 100 = 75%

•  If program C is 1x faster than A, how many cycles does C
run for? – 200 (the same as A)
•  What if C is 1.5x faster? 133 cycles (50% faster than A)

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 7 CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 8

Mean (Average) Performance Numbers
•  Arithmetic: (1/N) * ∑P=1..N Latency(P)

•  For units that are proportional to time (e.g., latency)

•  Harmonic: N / ∑P=1..N 1/Throughput(P)
•  For units that are inversely proportional to time (e.g., throughput)

•  You can add latencies, but not throughputs
•  Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
•  Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

•  1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
•  Average is not 60 miles/hour

•  Geometric: N√∏P=1..N Speedup(P)
•  For unitless quantities (e.g., speedup ratios)

For Example…

•  You drive two miles
•  30 miles per hour for the first mile
•  90 miles per hour for the second mile

•  Question: what was your average speed?
•  Hint: the answer is not 60 miles per hour
•  Why?

•  Would the answer be different if each segment was equal
time (versus equal distance)?

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 9

Answer

•  You drive two miles
•  30 miles per hour for the first mile
•  90 miles per hour for the second mile

•  Question: what was your average speed?
•  Hint: the answer is not 60 miles per hour
•  0.03333 hours per mile for 1 mile
•  0.01111 hours per mile for 1 mile
•  0.02222 hours per mile on average
•  = 45 miles per hour

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 10

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 11

Mean (Average) Performance Numbers
•  Arithmetic: (1/N) * ∑P=1..N Latency(P)

•  For units that are proportional to time (e.g., latency)

•  Harmonic: N / ∑P=1..N 1/Throughput(P)
•  For units that are inversely proportional to time (e.g., throughput)

•  You can add latencies, but not throughputs
•  Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
•  Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

•  1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
•  Average is not 60 miles/hour

•  Geometric: N√∏P=1..N Speedup(P)
•  For unitless quantities (e.g., speedup ratios)

CPU Performance

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 12

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 13

Recall: CPU Performance Equation

•  Multiple aspects to performance: helps to isolate them
•  Latency = seconds / program =

•  (insns / program) * (cycles / insn) * (seconds / cycle)
•  Insns / program: dynamic insn count

•  Impacted by program, compiler, ISA
•  Cycles / insn: CPI

•  Impacted by program, compiler, ISA, micro-arch
•  Seconds / cycle: clock period (Hz)

•  Impacted by micro-arch, technology

•  For low latency (better performance) minimize all three
–  Difficult: often pull against one another
•  Example we have seen: RISC vs. CISC ISAs

± RISC: low CPI/clock period, high insn count
± CISC: low insn count, high CPI/clock period

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 14

Cycles per Instruction (CPI)

•  CPI: Cycle/instruction for on average
•  IPC = 1/CPI

•  Used more frequently than CPI
•  Favored because “bigger is better”, but harder to compute with

•  Different instructions have different cycle costs
•  E.g., “add” typically takes 1 cycle, “divide” takes >10 cycles

•  Depends on relative instruction frequencies

•  CPI example
•  A program executes equal: integer, floating point (FP), memory ops
•  Cycles per instruction type: integer = 1, memory = 2, FP = 3
•  What is the CPI? (33% * 1) + (33% * 2) + (33% * 3) = 2
•  Caveat: this sort of calculation ignores many effects

•  Back-of-the-envelope arguments only

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 15

CPI Example

•  Assume a processor with instruction frequencies and costs
•  Integer ALU: 50%, 1 cycle
•  Load: 20%, 5 cycle
•  Store: 10%, 1 cycle
•  Branch: 20%, 2 cycle

•  Which change would improve performance more?
•  A. “Branch prediction” to reduce branch cost to 1 cycle?
•  B. Faster data memory to reduce load cost to 3 cycles?

•  Compute CPI
•  Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2 CPI
•  A = 0.5*1 + 0.2*5 + 0.1*1+ 0.2*1 = 1.8 CPI (1.11x or 11% faster)
•  B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6 CPI (1.25x or 25% faster)

•  B is the winner

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 16

Measuring CPI

•  How are CPI and execution-time actually measured?
•  Execution time? stopwatch timer (Unix “time” command)
•  CPI = (CPU time * clock frequency) / dynamic insn count
•  How is dynamic instruction count measured?

•  More useful is CPI breakdown (CPICPU, CPIMEM, etc.)
•  So we know what performance problems are and what to fix
•  Hardware event counters

•  Available in most processors today
•  One way to measure dynamic instruction count
•  Calculate CPI using counter frequencies / known event costs

•  Cycle-level micro-architecture simulation
+ Measure exactly what you want … and impact of potential fixes!
•  Method of choice for many micro-architects

Pitfalls of Partial
Performance Metrics

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 17 CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 18

Mhz (MegaHertz) and Ghz (GigaHertz)
•  1 Hertz = 1 cycle per second

1 Ghz is 1 cycle per nanosecond, 1 Ghz = 1000 Mhz
•  (Micro-)architects often ignore dynamic instruction count…
•  … but general public (mostly) also ignores CPI

•  Equates clock frequency with performance!

•  Which processor would you buy?
•  Processor A: CPI = 2, clock = 5 GHz
•  Processor B: CPI = 1, clock = 3 GHz
•  Probably A, but B is faster (assuming same ISA/compiler)

•  Classic example
•  800 MHz PentiumIII faster than 1 GHz Pentium4!
•  More recent example: Core i7 faster clock-per-clock than Core 2
•  Same ISA and compiler!

•  Meta-point: danger of partial performance metrics!

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 19

MIPS (performance metric, not the ISA)
•  (Micro) architects often ignore dynamic instruction count

•  Typically work in one ISA/one compiler → treat it as fixed

•  CPU performance equation becomes
•  Latency: seconds / insn = (cycles / insn) * (seconds / cycle)
•  Throughput: insn / second = (insn / cycle) * (cycles / second)

•  MIPS (millions of instructions per second)
•  Cycles / second: clock frequency (in MHz)
•  Example: CPI = 2, clock = 500 MHz → 0.5 * 500 MHz = 250 MIPS

•  Pitfall: may vary inversely with actual performance
–  Compiler removes insns, program gets faster, MIPS goes down
–  Work per instruction varies (e.g., multiply vs. add, FP vs. integer)

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 20

Performance Rules of Thumb

•  Design for actual performance, not peak performance
•  Peak performance: “Performance you are guaranteed not to exceed”
•  Greater than “actual” or “average” or “sustained” performance

•  Why? Caches misses, branch mispredictions, limited ILP, etc.
•  For actual performance X, machine capability must be > X

•  Easier to “buy” bandwidth than latency
•  Which is easier: to transport more cargo via train:

•  (1) build another track or (2) make a train that goes twice as fast?
•  Use bandwidth to reduce latency

•  Build a balanced system
•  Don’t over-optimize 1% to the detriment of other 99%
•  System performance often determined by slowest component

Benchmarking

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 21 CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 22

Processor Performance and Workloads

•  Q: what does performance of a chip mean?
•  A: nothing, there must be some associated workload

•  Workload: set of tasks someone (you) cares about

•  Benchmarks: standard workloads
•  Used to compare performance across machines
•  Either are or highly representative of actual programs people run

•  Micro-benchmarks: non-standard non-workloads
•  Tiny programs used to isolate certain aspects of performance
•  Not representative of complex behaviors of real applications
•  Examples: binary tree search, towers-of-hanoi, 8-queens, etc.

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 23

SPECmark 2006

•  Reference machine: Sun UltraSPARC II (@ 296 MHz)
•  Latency SPECmark

•  For each benchmark
•  Take odd number of samples
•  Choose median
•  Take latency ratio (reference machine / your machine)

•  Take “average” (Geometric mean) of ratios over all benchmarks

•  Throughput SPECmark
•  Run multiple benchmarks in parallel on multiple-processor system

•  Recent (latency) leaders
•  SPECint: Intel 3.3 GHz Xeon W5590 (34.2)
•  SPECfp: Intel 3.2 GHz Xeon W3570 (39.3)
•  (First time I’ve look at this where same chip was top of both)

Example: GeekBench

•  Set of cross-platform multicore benchmarks
•  Can run on iPhone, Android, laptop, desktop, etc

•  Tests integer, floating point, memory, memory bandwidth
performance

•  GeekBench stores all results online
•  Easy to check scores for many different systems, processors

•  Pitfall: Workloads are simple, may not be a completely
accurate representation of performance
•  We know they evaluate compared to a baseline benchmark

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 24

GeekBench numbers

•  Desktop (4 core Ivy bridge at 3.4GHz): 11456

•  Laptop:
•  MacBook Pro (13-inch) - Intel Core i7-3520M 2900 MHz (2 cores) -

7807

•  Phones:
•  iPhone 5 - Apple A6 1000 MHz (2 cores) – 1589
•  iPhone 4S - Apple A5 800 MHz (2 cores) – 642
•  Samsung Galaxy S III (North America) - Qualcomm Snapdragon S3

MSM8960 1500 MHz (2 cores) - 1429

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 25

Summary
•  Latency = seconds / program =

•  (instructions / program) * (cycles / instruction) * (seconds / cycle)

•  Instructions / program: dynamic instruction count
•  Function of program, compiler, instruction set architecture (ISA)

•  Cycles / instruction: CPI
•  Function of program, compiler, ISA, micro-architecture

•  Seconds / cycle: clock period
•  Function of micro-architecture, technology parameters

•  Optimize each component
•  CIS501 focuses mostly on CPI (caches, parallelism)
•  …but some on dynamic instruction count (compiler, ISA)
•  …and some on clock frequency (pipelining, technology)

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 26

