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1 COMBINING SAFE COERCIONS WITH DEPENDENT TYPES

A newtype in Haskell! is a user-defined algebraic datatype with exactly one constructor; that
constructor takes exactly one argument. Here is an example:

newtype HTML = MkHTML String

This declaration creates a generative abstraction; the HTML type is new in the sense that it is not
equal to any existing type. We call the argument type (String) the representation type. Because a
newtype is isomorphic to its representation type, the Haskell compiler uses the same in-memory
format for values of these types. Thus, creating a value of a newtype (i.e., calling MkHTML) is free at
runtime, as is unpacking it (i.e., using a pattern-match).

However, the Haskell type checker treats the newtype and its representation type as wholly
distinct, meaning programmers cannot accidentally confuse HTML objects with String objects. We
thus call newtypes a zero-cost abstraction: a convenient compile-time distinction with no cost

!In this paper, we use “Haskell” to refer to the language implemented by the Glasgow Haskell Compiler (GHC), version 8.6.
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to runtime efficiency. A newtype exported from a module without its constructor is an abstract
datatype; clients do not have access to its representation.

Inside the defining module, a newtype is a translucent abstraction: you can see through it
with effort. The safe coercions [Breitner et al. 2016] extension to the Glasgow Haskell Compiler
(GHC) reduces this effort through the availability of the coerce primitive. For example, as HTML
and String are represented by the same bits in memory, so are the lists [HTML] and [String].
Therefore, we can define a no-cost operation that converts the former to the latter by coercing
between representationally equal types.

unpackList :: [HTML] -> [String]
unpackList = coerce

However, coerce must be used with care. Not every structure is appropriate for conversion. For
example, converting a Map HTML Int to a Map String Int would be disastrous if the ordering
relation used for keys differs between HTML and String. Even worse, allowing coerce on types
that use the type family feature [Chakravarty et al. 2005] leads to unsoundness. Haskell thus
includes role annotations for type constructors that indicate whether it is appropriate to lift newtype-
coercions through abstract structures, such as Map.

The key idea of safe coercions is that there are two different notions of type equality at play—the
usual definition of type equality, called nominal equality, that distinguishes between the types
HTML and String, and representational equality that identifies types suitable for coercion. Some
type constructor arguments are not congruent with respect to representational equivalence, so role
annotations prohibit the derivation of these undesired equalities.

1.1 Extending GHC with Dependent Types

Recent work has laid out a design for Haskell extended with dependent types [Eisenberg 2016;
Gundry 2013; Weirich et al. 2013, 2017] and there is ongoing work dedicated to implementing this
theory [Xie and Eisenberg 2018].2 Dependent types are desirable for Haskell because they increase
the ability to create abstractions. Indexing types by terms allows datatypes to maintain application-
specific invariants, increasing program reliability and expressiveness [Oury and Swierstra 2008;
Weirich 2014, 2017].

However, even though dependent type theories are fundamentally based on a rich definition of
type equality, it is not clear how best to incorporate roles and safe coercions with these systems.
In the context of GHC, this omission has interfered with the incorporation of dependent types.
To make progress we must reconcile the practical efficiency of safe, zero-cost coercions with the
power of dependent types. We need to know how a use of coerce interacts with type equality, and
we must resolve how roles can be assigned in the presence of type dependency.

1.2 Contribution

The primary contribution of this work is System DR, a language that safely integrates dependent
types and roles. The starting point for our design is System D, the core language for Dependent
Haskell from Weirich et al. [2017]. Though this language has full-spectrum dependent types, it is
not a standard dependent type theory: it admits logical inconsistency and the % : x axiom, along
with support for equality assumptions and type erasure. System DR extends System D with roles,
based on the existing design [Breitner et al. 2016] as it must be realizable in GHC.

Integrating roles with Dependent Haskell’s type system is not straightforward. Unpacking the
point above, our paper describes the following aspects of our contribution:

2 Also, see https://github.com/ghc-proposals/ghc-proposals/pull/102
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To model the two different notions of type equality, we index the type system’s definition
of equality by roles, using the declared roles of abstract constructors to control the sorts of
equivalences that may be derived. In Section 3 we describe how roles and newtype axioms
interact with a minimal dependent type system. In particular, type equality is based on
computation, so we also update the operational semantics to be role-sensitive. Newtypes
evaluate to their representations only at the representational role; at the nominal role, they
are values. In contrast, type family axioms step to their definitions at all roles.

In Section 4 we extend the basic system with support for the features of GHC. We start
with a discussion of the interaction of roles with System D’s features of coercion abstraction
(Section 4.1) and irrelevant arguments (Section 4.2).

Supporting GHC’s type families requires an operation for intensional type-analysis as type
families branch on the head constructors of types. Therefore, in Section 4.3 we add a case
expression to model this behavior. Because our language is dependently-typed, this expression
supports both compile-time type analysis (as in type families) and run-time type analysis (i.e.
typecase).

Our type equality includes nth projections, a way to decompose equalities between type
constants. We describe the rules that support these projections and how they interact with
roles in Section 4.4.

Our mechanized proof in Coq, available online,’ is presented in Section 5. Proving safety is
important because the combination of coerce and type families, without roles, is known to
violate type safety.* This work provides the first mechanically checked proof of the safety of
this combination.

Our work solves a longstanding issue in GHC, known as the Constraint vs. Type problem. In
Section 6.1 we describe this problem and how defining Constraint as a newkind resolves
this tension.

Our work sheds new light on the semantics of safe-coercions. Prior work [Breitner et al.
2016], includes a phantom role, in addition to the nominal and representational roles. This
role allows free conversion between the parameters of type constructors that do not use
their arguments. In 6.2 we show that this role need not be made primitive, but instead can be
encoded using irrelevant arguments.

We also observe that although our work integrates roles and dependent types at the level of
GHC'’s core intermediate language, we lack a direct specification of source Haskell augmented
with the coerce primitive. The problem, which we describe in detail in Section 6.3, is that it
is difficult to give an operational semantics of coerce: reducing it away would violate type
preservation, but it quite literally has no runtime behavior. Instead, in 6.4 we argue that our
core language can provide a (type-sound) specification through elaboration.

Although our work is tailored to our goal of adding dependent types to Haskell, an existing
language with safe-coercions, we also view it as a blueprint for adding safe-coercions to dependently-
typed languages. Many dependently-typed languages include features related to the ones discussed
here. For example, some support semi-opaque definitions, such as Coq’s Opaque and Transparent
commands. Such definitions often guide type-class resolution [Brady 2013; Devriese and Piessens
2011; Sozeau and Oury 2008], so precise control over their unfolding is important. Cedille includes
zero-cost coercions [Diehl et al. 2018] and Idris has recently added experimental support for

3https://github.com/sweirich/corespec
4This safety violation was originally reported as http://ghc.haskell.org/trac/ghc/ticket/1496.
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typecase®. Because the design considerations of these languages differ from that of GHC, we
compare our treatment of roles to modal dependent type theory in Section 8.

Our Coq proof is a significant extension of prior work [Weirich et al. 2017]. Our work is fully
integrated—the same source is used to generate the EIgXinference rules, Coq definitions, and
variable binding infrastructure. We use the tools Ott [Sewell et al. 2010] and LNgen [Aydemir and
Weirich 2010] to represent the binding structure using a locally nameless representation [ Aydemir
et al. 2008]. Our code includes over 21k nonblank, noncomment lines of Coq definitions and proofs.
This total includes 1.8k lines generated directly from our Ott definitions, and 7k lines generated by
LNgen.

In the next section, we review existing mechanisms for newtypes and safe coercions in GHC in
more detail and lay out the considerations that govern their design. We present our new system
starting in Section 3.

2 NEWTYPES AND SAFE COERCIONS IN HASKELL
2.1 Newtypes Provide Zero-Cost Abstractions
We first flesh out the HTML example of the introduction, by considering this Haskell module:

module Html( HTML, text, unHTML, ... ) where
newtype HTML = MKHTML String

unHTML :: HTML -> String
unHTML (MKHTML s) = s

text :: String -> HTML
text s = MKHTML (escapeSpecialCharacters s)

instance IsString HTML where
fromString = text

As above, HTML is a newtype; its representation type is String. This means that HTMLs and
Strings are represented identically at runtime and that the MkHTML constructor compiles into
the identity function. However, the type system keeps HTML and String separate: a function that
expects an HTML will not accept something of type String.

Even in this small example, the Haskell programmer benefits from the newtype abstraction.
The module exports the type HTML but not its data constructor MkHTML. Accordingly, outside the
module, the only way to construct a value of this type is to use the text function, which enforces
the invariant of the data structure. By exporting the type HTML without its data constructor, the
module ensures that the type is abstract—clients cannot make arbitrary strings into HTML—and
thereby prevents, for instance, cross-site scripting attacks.

Naturally, the author of this module will want to reuse functions that work with Strings to also
work with values of type HTML—even if those functions actually work with, say, lists of Strings.
To support this reuse, certain types, including functions (->) and lists [], allow us to lift coercions
between String and HTML. For example, suppose we wish to break up chunks of HTML into their
constituent lines. We define

linesH :: HTML -> [HTML]
linesH = coerce lines

Shttps://gist.github.com/edwinb/25cd0449aab932bdf49456d426960fed
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Using Haskell’s standard 1ines :: String -> [String] function, we have now, with minimal
effort, lifted its action to work over HTML. Critically, the use of coerce above is allowed only when
the MKHTML constructor is in scope; in other words, linesH can be written in the Html module but
not outside it. In this way, the author of HTML has a chance to ensure that any invariants of the
HTML type are maintained if an HTML chunk is split into lines.

2.2 Newtypes Guide Type-Directed Programming

Newtypes allow more than just abstraction; they may also be used to guide type-directed program-
ming. For example, the sorting function in the base library has the following type.

sort :: Ord a => [a] -> [a]

The Ord type class constraint means that sorting requires a comparison function. When this function
is called, the standard comparison function for the element type will be used. In other words, the
type of the list determines how it is sorted.

Suppose our application sometimes must work with sorted lists of HTML chunks. For efficiency
reasons, we wish to partition our sorted lists into a region where all chunks start with a tag (that is,
the '<' character) and a region where no chunk starts with a tag. To that end, we define a custom
Ord instance that will sort all HTML chunks that begin with < before all those that do not.

instance Ord HTML where
MKHTML left ‘compare‘ MKHTML right
| tagged left == tagged right = left ‘compare‘ right

| tagged left = LT
| otherwise = GT
where

tagged ('<':_) = True

tagged _ = False

Now, when we sort a list of chunks, we can be confident that the sorting algorithm will use
our custom comparison operation. The validity of this approach vitally depends on the generative
nature of newtypes: if the type-checker could confuse HTML with String, we could not be sure
whether type inference would select our custom ordering or the default lexicographic ordering.

Newtypes can also be used to locally override the behavior of the sorting operation. For example,
the newtype Down a, defined in the Haskell base library, is isomorphic to its representation a, but
reverses the comparison in its instance for Ord. Therefore, to sort a list in reverse order, use coerce
to change the element type from a to Down a, thus modifying the comparison operation used by
sort.

sortDown :: forall a. Ord a => [a] -> [a]
sortDown x = coerce (sort (coerce x :: [Down al))

More generally, GHC’s recent DerivingVia extension [Blondal et al. 2018], based on coerce,
uses newtypes and their zero-cost coercions to extend this idea. This extension allows programmers
to effectively write templates for instances; individual types need not write their own class instances
but can select among the templates, each one embodied in a newtype.

2.3 The Problem with Unfettered coerce

We have shown that functions and lists support lifting coercions, but doing so is not safe for all
types. Consider this (contrived) example:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 101. Publication date: August 2019.
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type family Discern t where
Discern String = Bool
Discern HTML = Char

data D a = MkD (Discern a)

The Discern type family [Chakravarty et al. 2005; Eisenberg et al. 2014] behaves like a function,
where Discern StringisBool and Discern HTML is Char. Thus,aD String wraps a Bool, while
aD HTML wraps a Char. Being able to use coerce to go between D String and D HTML would be
disastrous: those two types have different runtime representations (in contrast to [String] and
[HTML]). The goal of roles is to permit safe liftings (like for lists) and rule out unsafe ones (like for
D).

Therefore, to control the use of coerce, all datatype and newtype parameters are assigned one
of two roles: nominal and representational.® In a nominally-roled parameter, the name of the type
provided is material to the definition, not just its representation. The one parameter of D is assigned
a nominal role because the definition of D distinguishes between the names String and HTML.
We cannot safely coerce between D String and D HTML, because these two types have different
representations. In contrast, the type parameter of list has a representational role; coercing between
[String] and [HTML] is indeed safe.

Roles are assigned either by user annotation or by role inference [Breitner et al. 2016, Section 4.6].
The safety of user-provided role annotations is ensured by the compiler; the user would be unable
to assign a representational role to the parameter of D.

2.4 Representational Equality

The full type of coerce is Coercible a b => a -> b. That is, we can safely coerce between two
types if those types are Coercible. The pseudo-class Coercible (it has custom solving rules and is
thus not a proper type class) is an equivalence relation; we call it representational equality. We can
thus coerce between any two representationally equal types. Representational equality is coarser
than Haskell’s standard type equality (also called nominal equality): not only does it relate all pairs
of types that are traditionally understood to be equal, it also relates newtypes to their representation
types.

Crucially, representational equality relates datatypes whose parameters have the relationship
indicated by the datatype’s parameters’ roles. Thus, because the list type’s parameter has a repre-
sentational role, [ty1] is representationally equal to [ty2] iff ty1 is representationally equal to
ty2. And because D’s parameter has a nominal role, D ty1 is representationally equal to D ty2 iff
ty1 is nominally equal to ty2.

In addition to the lifting rules sketched above, representational equality also relates a newtype
to its representation type, but with this caveat: this relationship holds only when the newtype’s
constructor is in scope. This caveat is added to allow the Html module to enforce its abstraction
barrier. If a newtype were always representationally equal to its representation, then any client
of Html could use coerce in place of the unavailable constructor MKHTML, defeating the goal of
abstraction.

2.5 Design Considerations

The system for safe-coercions laid out in Breitner et al. [2016] is subject to design constraints that
arise from the context of integration with the Haskell language. In particular, safe coercions are

The implementation in GHC supports a third role, phantom, which behaves somewhat differently from the other two. We
ignore it for the bulk of this paper, returning to it in Section 6.2.
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Grammar
term/type variables x
constants F, T
roles R := Nom | Rep
application flags v s= R|+
terms, types a,b,A,B == x|x|F|Ax.b|ab’|IIx:A.B
contexts r w= O|T,x:A
signatures ) = @|SU{T:A@R}|ZU{F:A@ R where p ~; a}
patterns p z= F|paxR

Fig. 1. Syntax of core language

considered an advanced feature and should have minimal interaction with the rest of the language.
In other words, Haskell programmers should not need to think about roles if they never use coerce.

This separation between types and kinds was not present in the first design of a role system
for Haskell [Weirich et al. 2011]. Due to its complexity, that first system was never integrated
into GHC. Instead, by keeping roles separate from types, Breitner et al. [2016] simplified both the
implementation of coerce (i.e., it was easier to extend the compiler) and the language specification,
as programmers who do not use coerce need not understand roles.

Keeping types and roles separate imposes two major constraints on the design of System DR.

e First, the type checking judgment should not also check roles. In the system that we present in
the next section, the type checking judgment I' F a : A does not depend on the role-checking
judgment Q F a: R. The only interaction between these two systems is confined to checking
the role annotations on top-level axioms. (In contrast, in the first version of the system, type
and role checking occurred together in a single judgment.)

e Second, the syntax of types and kinds should not include roles. In the first version of the
system, the kinds of type constructors included role information for parameters. However,
this means that all users of higher-order polymorphism must understand (and choose) these
roles. Instead, Breitner et al. [2016] does not modify the syntax of kinds, safely approximating
role information with the nominal role when necessary.

In practice, the loss of expressiveness due to this simplification has not been significant and roles
have proven to be a popular extension in GHC. However, we return to this discussion in Section 8,
when we compare our design with the framework provided by modal dependent type theory.

3 A CALCULUS WITH DEPENDENT TYPES AND ROLES

We now introduce System DR, a dependently-typed calculus with role-indexed equality. To make
our work more approachable, we present this calculus incrementally, starting with the core ideas.
In this section, we start with a minimal calculus that contains only dependent functions, constants
and axioms. In Section 4, we extend the discussion to full System DR, including case analysis,
irrelevant arguments, coercion abstraction, and decomposition rules.

System DR is intended to model an extension of FC [Sulzmann et al. 2007], the explicitly-typed
intermediate language of GHC. As an intermediate language, it does not need to specify Haskell’s
type inference algorithm or include features, like type classes, that exist only in Haskell’s source
language.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 101. Publication date: August 2019.
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AE-STAR AE-VAR AE-P1 AE-ABs
T +T x:AeTl I,x:AEB: % I',x:AEa:B
TEx:x TEx:A TEIx:AB: % TEAx.a:1Ix:A.B
AE-Arpp
T'Eb:IIx:A.B AE-TArpP _
F'Ea:A F'Eb:x:AB F'Ea:A Roles (b) = R,R
I'Eba*:B{a/x} TEbad®:B{a/x}
AE-Conv
TEa:A AE-CONST _ AE-Fam _
I'FA=pep B: % T T:A@R € 3 T F:A@Rwherep~p a € X
TEa:B TET:A TEF:A
TEa=gb:A
AE-SuB AE-BETA
TFa=g b:A R <R TFa:B Fa—ha
I'Fa=g b:A TEa =pa:B
AE-P1Cong AE-ABsConG
F|=A1£RA2:* F,x:AlhBlzRBZ:* r,x:A’:blEszlB
I'E (IIx:A;.By) =g (Ix:A3.B;) : % I E (Ax.by) =g (Ax.b,) : (IIx:A.B)
AE-ArpCONG AE-TArrCONG
I'Ea =g b :1Ix:AB I'Fa =r by : IIx:A.B I“_lz a Spap bot A
T'E a; =Nom b2 : A Roles (a;) = R,R Roles (b;) = R,R T E by b : B{ay/x}
I'Fa a = b by :B{lay/x} T E a af =p by bR : B{ay/x}
AE-REFL AE-Sym AE-TRrANS
F'Fa:A I'Eb=gpa:A I'ta=gpa:A I'Ea=gb:A
I'Fa=ga:A IF'ka=gb:A I'ta=pb:A
Roles (a) =R
ROLEPATH;ABSCONST ROLEPATH_—CONST ROLEPATH-TAPP  ROLEPATH-APP _
F:A@R € 3 F:A@Rwherep~p a€Z Roles (a) = R;,R  Roles (a) = Nom, R
Roles (F) = R Roles (F) = R Roles (a b)) =R Roles (a b*) =R

Fig. 2. Typing and definitional equality for core language
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Furthermore, the goal of our design of System DR is to describe what terms type check and how
they evaluate. Like System D from prior work [Weirich et al. 2017], this calculus need not have
decidable type checking for this purpose. Instead, once we have determined the language that we
want, we can then figure out how to annotate it in the implementation with enough information to
make type checking simple and syntax directed. The connection between System D and System DC
in prior work provides a roadmap for this (fairly mechanical) process. Furthermore, this process is
also constrained by implementation details of GHC that are beyond the scope of this paper, so we
do not include an annotated system here.

Therefore, the core calculus that we start with is a Curry-style dependently-typed lambda-
calculus with a single sort *. The syntax is shown in Figure 1. As in pure type systems [Barendregt
1991], we have a shared syntax for terms and types, but, as we don’t require decidable type checking,
there are no typing annotations on function binders. This syntax has been decorated with role
information in two places—applications are marked by flags (v) and declarations of data type and
newtype constants in the signature (2) include role annotations. Application flags are not needed
for source Haskell—they are easily added via elaboration and their presence here is a mere technical
device to make role information easily accessible.

Roles R are drawn from a lattice, with bottom element Nom for Haskell’s nominal role and top
element Rep for the representational role. We use R; < R; to denote the ordering within the lattice.
The operation (R; A R) calculates the greatest lower bound of the two roles. For concreteness, this
paper fixes that lattice to the two element lattice, which is all that is needed for GHC. However,
treating this lattice abstractly allows us to define the type system more uniformly.

The rules for typing and definitional equality for this fragment are shown in Figure 2.” These
rules are implicitly parameterized over a global signature ¥ of type constant declarations.

Typing Relation. Most rules of the typing relation are standard for dependently-typed languages.
Because Haskell includes nontermination, we do not need include a universe hierarchy, instead
using the x : x axiom [Cardelli 1986]. The novel rules are the application rules (rules AE-App and AE-
TAPrp), the conversion rule (rule AE-Conv) and the rules for constants and axioms (rules AE-CONST
and AE-Fam), all discussed below.

Role-Indexed Type Equality. In System DR, the equality relation is indexed by a role that determines
whether the equality is nominal or representational. The judgmentT' F a =g b : A defines when the
terms a and b, of type A, are equal at role R. The rules for this judgment appear in the middle of
Figure 2. This relation is defined as essentially the language’s small-step operational semantics,
closed over reflexivity, symmetry, transitivity, and congruence. (Note that because System DR
allows nontermination, the equality judgment is not a decidable relation.)

The role sensitivity of the equality relation derives from the fact that System DR’s small-step
operational semantics, written a —>£ b, is also role-sensitive. Specifically, the role in the small-step
relation determines whether top-level definitions can unfold to their right-hand sides or are kept
abstract (see rule ABETA-AXI0M, in Figure 3).

For example, we have that HTML —>§ep String, but at role Nom, the expression HTML is treated
as a value. This step is reflected into the equality relation via rule AE-BETA.

Conversion. Dependently-typed languages use definitional equality for conversion: allowing the
types of terms to be implicitly replaced with equal types. In source Haskell, conversion is available
for all types that are nominally equal. The coerce primitive is required to convert between types

"For the purposes of presentation, these rules presented in this section are simplified versions of the rules that we use in
our proofs. The complete listing of rules is available in the extended version of this paper [Weirich et al. 2019].
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that are representationally equal. This primitive ensures that newtype distinctions are maintained
by default but are erasable when desired.

However, System DR is intended to define GHC’s intermediate language, so we can assume
that the source language type checker has already made sure that users do not confuse HTML and
String. Instead, the optimizer is free to conflate these types, for great benefit.

Therefore System DR does not include a coerce primitive. Instead, the conversion rule, rule AE-
Conv, allows conversion using the coarsest relation, representational equality. This choice simplifies
the design because all uses of coercion are implicit; there are no special rules in the equality relation
or operational semantics. The downside of this design is that System DR is not a definition of
source Haskell, an issue that we return to in Section 6.4.

3.1 Role Annotations and Application Congruence

Haskell allows data type and newtype constants to be optionally ascribed with role annotations for
their parameters. (Definitions without role ascriptions get their roles inferred [Breitner et al. 2016,
Section 4.6].) These role annotations control what equalities can be derived about these constants.
For example, Maybe has a representational parameter so Maybe HTML is representationally equal to
Maybe String. However, the type Set HTML can be prevented from being coercible to Set String
by annotating its parameter with the nominal role.

In System DR, a constant, like Maybe, is an opaque declaration in the signature 3, of the form
T : A @ R. This declaration specifies the type A of the constant T, as well as a list of roles R
for its parameters. (We assume that role inference has already happened, so all constants include
role annotations.) For example, the signature might declare constants Set : *x — * @ Nom and
Maybe : x — * @ Rep with their usual types and roles.

The key idea from Breitner et al. [2016] is that the equality rule for applications headed by
constants uses these declared role annotations to determine how to compare their arguments.
We adapt this idea in this context using application flags, v, marking arguments in applications.
Consistent usage of flags is checked by the typing judgment using rule AE-TApp. If the head of
the application is a constant, then this rule ensures that the flag must be the one calculated by the
(partial) function Roles (a) = R, shown at the bottom of Figure 2. For example, Set StringN°™ and
Maybe IntR¢P are valid terms. However, role annotations are optional and can be replaced by the
application flag +, in which case rule AE-APp is used to check the term.

Application Congruence. The equality rule AE-TAppCoNG defines when two role-annotated
applications a; a® and by bzR are equal at some (other) role R’. This rule is most interesting when
R’ is Rep—it explains why Maybe HTML and Maybe String are representationally equal but Set
String and Set HTML are not. Here, applications such as Maybe String use role annotations on
their arguments to enable this rule. In the case of Maybe, the R above should also be Rep because
Maybe is declared with a representational argument.

The first two premises of the rule specify that the corresponding components of the application
must be equal. Importantly, the role used for equality between the arguments of the application (a;,
and b,) is the minimum of the current role R” and the declared role for the argument R. For example,
for Set the declared role is Nom, so the arguments must be nominally equal, as Nom A Rep is Nom,
but for Maybe they may be representationally equal.

The use of the minimum role in this rule forces the nominal equality judgment (i.e. when R’ is
Nom), to compare all subterms using nominal equality while allowing representational equality
when both the context and the argument are representational.

The last premise of the rule is a subtle aspect of the combination of roles and dependent types—it
ensures that definitional equality is homogeneous. In the conclusion of the rule, we want to ensure
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that both terms have the same type, even when the type may be dependent. In this case, we know
that a; = b, atrole RAR’, but this does not necessarily imply that the types B{a;/x} and B{b,/x} are
representationally equal. For example, given a new type T with dependent type ITx:x.F xN°™ — %,
then we can show

F T String®P : (F StringN°™) — *
and

F T HTMLR®P : (F HTMLN™) — «

In this case, the terms are equal at role Rep but the types are not.® Therefore, the rule ensures that
both sides have the same type by fiat.

In comparison, the (non-roled) application congruence rule AE-ArpCONG always uses nominal
equality for arguments, following Breitner et al. [2016]. Lacking any other source of role information
about the parameters (such as roles annotating the function types), this rule defaults to requiring
that they be equal using the finest equality (i.e. Nom).

Whether definitional equality uses rule AE-TAppCoONG or rule AE-ArpCoNG depends on the
application flag annotating the syntax of the term. The typing rules (rule AE-App and rule AE-TApp)
ensure that the application flag is appropriate. Some arguments have a choice of application flag:
they can either use the one specified by the roles in the signature, or they can use + (which defaults
to Nom for congruence). Mostly however, application flags are a technical device for our proofs as
they duplicate information that is already available in the abstract syntax tree.

3.2 Type Families and Newtypes via Axioms

This calculus uses axioms to model type families and newtypes in GHC. An axiom declaration
appears in the top-level signature and has the following form.

F:A@}_?wherepnga

The axiom introduces a contructor F of type A with parameter roles R. It also declares that the
pattern p (which must be headed by F) can be equated at role R to the right-hand side term a.

Patterns come from the following subgrammar of terms and are composed of a sequence of
applications.

pu=F|p xR

Each variable in the pattern is bound in the right hand side of the axiom. The variables in the
pattern are annotated with their roles, which are repeated in the list R for convenience.

For example, compare the axiom for the type family definition F on the left side below with
the one for the newtype declaration T on the right. In each case, the pattern is headed by the
corresponding constant and binds the variable x at role Nom.

type family F a where newtype T a =
F a = Maybe a MKT (F a)

F:% — x @ Nom where T: % — x» @ Nom where
F xNom <\ om (Maybe xReP) T xNom ~Rep (F xNom)

The important distinction is the role marking the ~ in the axiom declarations: it is Nom for type
families and Rep for newtypes. This role determines whether a definition should be treated opaquely

8In a system that annotates parameter roles on function types, we could check that the parameter is used consistently with
the role annotation on its type. This would allow us to drop this premise from the application rule.
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Fa —>§ b

ABETA-AXIOM
ABETA-APPABS F:A@Rwherep~p b e 3 MatchSubst (a, p, b) = b’ R <R
E (Ax.a) b —% a{b/x} Fa—h b

‘ MatchSubst (a, p, b1) = b, ‘

MATCHSUBST-APPRELR
MATCHSUBST-CONST MatchSubst (ay, p1, b1) = by

MatchSubst (F, F, b) = b MatchSubst ((a; a®), (p1 %), by) = (by{a/x})

S1G-CoNsCONST
S1G-EmpTY EX TEA:x F ¢ domX

Fo EXU{F:A@R}

SS16-ConNsAx
FX F ¢ domX PatCtx (p, F:A) =T;B; Q TEA:* I'Ea:B QFa:R

FXU{F:A@ rngQ where p ~g a}

\ PatCtx (p, F: A) = r;B;Q\

SPATCTX-PIREL

SPATCTX-CONST PatCtx (p, F: A) = T; (TIIx: A".B); Q
PatCtx (F,F:A) = &; A; @ PatCtx (p xX, F: A) = (I, x: A"); B; (Q, x:R)
SROLE-A-CONST
SROLE-A-STAR SROLE-A-VAR uniq(_Q)
uniq(Q) uniq(Q) x:ReQ R<R F:A@R € 3
QFE%x:R QFEx: R QFEF: R
SROLE-A-FAM
_ unig(Q) SROLE-A-ABS SROLE-A-APP
F:A@Rwherep~gpa € 3 Q,x:Nom F a: R QFa:R QF b:Nom
QFF:R QF (Ax.a): R QF(ab"):R
SROLE-A-TAPP SROLE-A-P1
QFa:R QFb:R AR QFA:R Q,x:NomE B: R
QE(@@bf):R QE (IIx:A.B): R

Fig. 3. Axioms and Role-checking
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or transparently by definitional equality. For example, at the nominal role, we have F IntN°™ equal
to Maybe IntRP and T IntN°™ distinct from F IntN™, The representational role equates all of these
types.

These equalities are derived via the operational semantics. The types F IntN°™ and Maybe IntReP
are equal because the former reduces to the latter. In other words, the operational semantics
matches a term of the form F IntN°™ against a pattern in an axiom declaration F xN°™, producing a
substitution {Int/x} that is applied to the right-hand side of the axiom (Maybe x®¢P){Int/x}.

More generally, this behavior is specified using rule ABETa-Ax1oMm This rule uses an auxiliary
relation MatchSubst (a, p, b) = b’ to determine whether the scrutinee a matches the pattern p, and
if so, substitutes for the pattern variables in the right-hand side. This rule is also only applicable
as long as the role of the axiom R; is less-than or equal to the role R that is used for evaluation.
For example, if R is Nom and R; is Rep, then this rule does not apply (and a is an opaque value).
Alternatively, such as when R; is Nom as in a type family, then this rule will replace the application
headed by a constant with its definition.

Axiom constructors must be saturated in order to reduce to their right hand side. In other words,
a constructor F must be applied to at least as many arguments as specified by the pattern in the
axiom. Non-saturated constructor applications are treated as values by the semantics, no matter
their role.

Axioms extend the notion of definitions from Weirich et al. [2017], which were always transpar-
ent and consequently had no need of role annotations. As before, signatures are unordered and
definitions may be recursive—each right hand side may refer to any name in the entire signature.
As a result, axioms may be used to define a fixed point operator or other functions and types that
use general recursion.

3.3 Role-Checking

The role checking judgment Q F a : R is used by rule SS16-ConsAx, which checks the well-
formedness of axioms. This rule uses the auxiliary function PatCtx (p, F: A) = T'; B; Q to determine
the context I' and type B to use to type check the right-hand side of the axiom. This function
also determines Q, the context to use when role-checking the right-hand side. The notation rngQ
converts the role-checking context into a list of roles that is used when checking application flags.

Unlike opaque constants (which are inert) role annotations for the parameters to an axiom must
be checked by the system. In other words, if a newtype axiom declares that it has a representational
parameter, then there are restrictions on how that parameter may be used. We check role annotations
using the role-checking judgment Q F a: R, shown at the bottom of Figure 3.

The role-checking context Q assigns roles to variables. When we check the well-formedness
of axioms, the role-checking context is derived from the annotations in pattern p. Note, the roles
declared in the pattern need not be the most permissive roles for a. Even if the term would check at
role Rep, the pattern may specify role Nom instead.

The rules of the role checking judgment appear at the bottom of Figure 3. The rule SROLE-A-VAR
specifies that the role of a variable must be greater-than or equal to its role in the context. In
rule SROLE-A-TAPP, the role marking an annotated, relevant argument determines how it will be
checked. If the role annotation is not present, then arguments must be checked at role Nom, as in
rule SROLE-A-APP. Analogously, when role-checking an abstraction, the bound variable enters the
context at role Nom, as this is the most conservative choice.

4 FULL SYSTEM DR

The previous section presented the complete details of a minimal calculus to provide a solid basis
for understanding about the interaction between roles and dependent types in System DR. In
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relevance p n= 4+ |-

application flags (terms) v z= Rlp

application flags (any) v u= v|e

equality constraints 1) u= a~gb:A

terms, types a,b,A,B = x|x|F|A’x.b|lab’|II’x:A— B
| O|Acb|a e |Vc:¢.B
| caseaof Fo — b||_— by

contexts r w= G Lx:A|T,ci¢p

patterns p s= FlpxR|pxt|po|pe

Fig. 4. Syntax of full language

Typing I'Fa:A
Definitional equality (terms) IAFa=gb:A
Proposition well-formedness I'E ¢ ok
Definitional equality (propositions) T;AFE ¢1 = ¢,
Context well-formedness ET

Signature well-formedness EX

Primitive (B-)reduction Fa —>£ b
One-step reduction Fa~pgb

Fig. 5. Major judgment forms for System DR.

this section, we zoom out and complete the story at a higher level, providing an overview of the
remaining features of the language. The syntax of the full language appears in Figure 4 and the
major judgment forms are summarized in Figure 5. For reference, the full specification of System DR
is available in the extended version of this paper [Weirich et al. 2019].

4.1 Coercion Abstraction

An essential feature of internal languages capable of compiling Haskell is coercion abstraction,
which is used to generalize over equality propositions [Sulzmann et al. 2007]. Coercion abstraction
is the basis for the implementation of generalized algebraic datatypes [Peyton Jones et al. 2006; Xi
et al. 2003] in GHC. For example, a datatype definition, such as

data T :: Type -> Type where MKT :: T Int

can be encoded by supplying MkT with a constraint about its parameter.

data T :: Type -> Type where MKT :: forall a. (a ~ Int) => T a

Pattern matching an argument of type T b brings the equality constraint b ~ Int into scope.
f::Ta->a

f MKT = 42 -- we have an assumption (a ~ Int) in the context

In System DR, definitional equality is indexed by a role R, so we also allow equality propositions,
written a ~g b : A, to include roles. When R is Nom, this proposition corresponds to Haskell’s
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equality constraint, such as a ~ Int above. When the role is Rep, it corresponds to the Coercible
(§2.4) constraint.

Coercion abstraction brings equality constraints into the context and coercion application
discharges those assumptions when the equality can be satisfied. As in extensional type the-
ory [Martin-Lof 1971], equality propositions can be used implicitly by definitional equality. If an
equality assumption between two types is available in the context, then those two types are defined
to be equal.

E-Assn
ET c:(a~gb:A) el ceA

I'AFEa=gb: A

For technical reasons, discussed in Weirich et al. [2017], the full judgment for definitional equality
in System DR is written T'; A F a =g b : A. The additional component is a set A that tracks which
coercions are actually available, used in the rule above. This set need not concern us here; feel free
simply to assume that A equals the domain of T, written T.

The extension of the System D rules with roled equality constraints is straightforward, though
care must be taken to ensure that the roles are used consistently. Note that when role-checking, all
variables that appear in a nominal equality constraint must have role Nom. This corresponds to
the requirement in GHC that the constrained parameters to GADTs have nominal arguments.

4.2 Irrelevant Arguments

A dependently-typed intermediate language for GHC must include support for irrelevant arguments
as well as relevant arguments [Miquel 2001] in order to implement the type-erasure aspect of
parametric polymorphism. In Haskell, polymorphic functions cannot dispatch on types, so these
may be erased prior to runtime. In (Curry-style) System DR, irrelevant arguments are therefore
elided from the abstract syntax. We extend the calculus by adding a new application flag “—” to
indicate that an argument is irrelevant. Furthermore, we add a flag p to function types to indicate
whether the argument to the function is relevant or irrelevant.

The typing rules for the introduction of an irrelevant abstraction requires that the bound variable
not actually appear in the body of the term. When an irrelevant function is used in an application,
the argument must be the trivial term, O. Note that the argument is only elided from the term
however—it is still substituted in the result type.’

AE-IABs E-IAprp
I''x:AFa:B x ¢ fva TEDL:II x:A— B TEa:A
IT'EA x.a:(II"x:A— B) I'=bo :B{a/x}

Role annotations may only apply to relevant arguments, even though constants and newtypes
may have both relevant and irrelevant parameters. Irrelevant arguments have their own congruence
rule for applications. Because irrelevant arguments never appear in the syntax of terms, an equality
between two irrelevant applications only need compare the function components—the arguments
are always trivially equal.

E-IAprrCoNG
I’AEaq =g by : (IT' x:A— B) 'kFa:A

IAEaq O =g b0 : (B{a/x})

%In System DC, the annotated version of the language with syntax-directed type checking, the argument does appear in
term but is eliminated via an erasure operation, following Barras and Bernardo [2008].
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BETA-PATTERNTRUE BETA-PATTERNFALSE
a <Nom F U ApplyArgs(a, by) = b; Valuenom a —(a ©Nom F V)
E (case a of Fu — by||_ — by) —>£ bj e E (case a of Fo — by||_ — by) —>£ b,

Fig. 6. Case analysis

Overall, there is little interaction between irrelevant arguments and roles. However, there is
one important benefit of having both capabilities in the same system. We can use irrelevant
quantification to model the phantom role from prior work; details are in Section 6.2.

4.3 Case Expressions

The soundness issue described in Section 2.3 arises through the use of the Discern type family,
which returns different results based on whether its argument is String or HTML. To ensure that
System DR is not susceptible to a similar issue, we include a pattern matching term of the following
form.!?

case aof Fv — b||_— by

Operationally, the pattern matching term reduces the scrutinee a to a value and then compares
it against the pattern specified by F v. If there is a match, the expression steps to b;. In all other
cases, the expression steps to b;. Pattern matching is not nested—only the head constructor can
be observed. In Haskell, type families do both axiom unfolding and discrimination. We separate
these features in System DR for orthogonality and eventual unification of pattern matching with
Haskell’s existing case expression. (The semantics of this expression is not exactly the same as
that of Haskell’s case; more details are in Section 7.)

In this syntax, the scrutinee must match the pattern of arguments specified by F v, where v is
a list of application flags. Note that in the full language, these application flags can include roles,
+, -, or indicate a coercion argument.11 We specify the behavior of case with the rules shown in
Figure 6. In the first rule, the a <>g F U judgment holds when the scrutinee matches the pattern; i.e.
when the scrutinee is an application headed by F with arguments specified by v. The constructor
F must be a constant at role Nom; it cannot be a type family axiom. If this judgment holds, the
second premise passes those arguments to the branch b;. In the conclusion of the rule, b] is further
applied to an elided coercion e; this coercion witnesses the equality between the head of a and the
pattern, implementing dependent pattern matching.

The second rule, rule BETA-PATTERNFALSE triggers when the scrutinee is a value, yet the com-
parison a <> F v does not hold. It steps directly to b,.

Dependent case analysis mean that when the scrutinee matches the head constructor, not only
does the expression step to the first branch, but the branch is type checked under the assumption
of an equality proposition between the scrutinee and the pattern.

Simple examples of this behavior are possible in source Haskell today, using the TypeInType
extension.

type family F k (a :: k) :: Bool where
F Bool =X -- here we have (k ~ Bool)
F = False

X
X

10Unlike source Haskell, patterns in System DR axiom definitions may only include variables and thus may not dispatch on
their arguments.

1 This nameless form of pattern-matching helps with our formalization. The typing rule for case requires the branch b; to
start with a sequence of abstractions that matches the form specified by the list of flags v.
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Because System DR is dependently-typed, and full-spectrum, the pattern matching term described
in this section can also be used for run-time type analysis, as well as dispatch during type checking.
We view this as a key benefit of our complete design: we retain the ability to erase (most) types
during compilation by abstracting them via irrelevant quantification, but can support run-time
dispatch on types when desired.

Case Analysis is Nominal. One part of our design that we found surprising is the fact that case
analysis must use the nominal role to evaluate the scrutinee, as we see in the following rule:'?

E-PATTERN
E a~Nom @

E (case a of FU — by||_ — by) ~g (case @’ of FU — b||_ — by)

Indeed, our original draft of the system also allowed a form of “representational” case analysis,
which first evaluated the scrutinee to a representational value before pattern matching. This case
analysis could “see through” newtype definitions and would match on the underlying definition.

For example, with representational case analysis, the term

case-rep HTML of
String -> True
-> False

would evaluate to True.

Unfortunately, we found that representational case analysis is unsound in our system. Consider
the following term, which uses a representational analysis to first match the outer structure of
its argument, and then uses an inner, nominal analysis for the parameter. System DR always
assigns nominal roles to variables bound in a case-match, so this axiom would role-check with a
representational argument.

F x = case-rep x of
[yl -> case-nom y of
HTML -> True
-> False

-> False

With this definition, we would be able to show F [HTML] representationally equal to F [String]
because F’s parameter is representational. However, these two expressions evaluate to different
results. Disaster!

Extending the system to include a safe version of representational case analysis requires a way
to rule out the nominal case analysis of y above. This means that the type system must record
y’s role as representational (as it is the argument to the list constructor) and furthermore use the
role-checking judgment to ensure that y does not appear in a nominal context (such as in the
scrutinee of a nominal case analysis). But doing so would violate our design constraint of keeping
role checking completely separate from type checking (cf. Section 2.5), thus we have not pursued
this extension.

This example also demonstrates that the soundness of nominal case analysis depends on the
use of the R A R’ operation when checking the roles in applications. Because of this operator, all

12This rule belongs to a different judgment than the rules in Figure 6. We separate our primitive S-reduction rules from the
congruence rules for stepping in our semantics. Only the f-reduction rules are used in our equality relation, relying on the
equality relation’s congruence rules to correspond to the stepping relation’s congruence rules.
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subterms of the scrutinee are checked at the nominal role, so we would not be able to show that
F [HTML] is nominally equal to F [String].

4.4 Constructor Injectivity

System DR is a syntactic type theory. As a result, it supports equality rules for injectivity. If
two types are equal, then corresponding subterms of those types should also be equal. In prior
work [Weirich et al. 2017], the injectivity of function types was witnessed by rules that allowed an
equality between two function types to be decomposed.

This work augments those rules with the correct role components. For example, in rule E-PISND,
shown below, when we pull out an equality between the co-domain types of a function type,
we must provide an equality between the arguments at role Nom. This is because we have no
knowledge about how the parameter x is used inside the types B; and B, and so we must be

conservative.'?
E-P1SnD
IAEIPx:A; = By =R [IPx:Ay —> By 1 % ;A E ap =Nom a2 & Al

[5A F Bi{ai/x} =g Bo{aa/x} : %
This work also extends the reasoning about injectivity to abstract types. An equality of the
form F a,® ... a®" = F b;® ... bR" can be decomposed to equalities between the corresponding
arguments at the roles specified for F. For example, the rule E-RiGHT, shown below shows that we

can extract an equality between b and b’ when we have an equality between a b® and a’ b'%.
E-RiGHT

CasePathg, (a b%) = F
CasePathg, (¢’ ¥™)=F TEa:I'x:A—B TEb:A TEd:II'x:A— B
TEV:A  T;AFabf =g o 0™ B{b/x}  T:T F B{b/x} =gep B{b'/x} : %
[SAEb=gpag, Ui A

The first two premises of this rule require that the equation is between two applications, headed
by the same constructor F, which cannot be matched to an axiom at role R;. The next four premises
describe the types of the components of the applications. These premises ensure that the equality
relation is homogeneous, i.e. that only terms of equal types are related.

The key part of this rule is that the equality role of the conclusion is determined by both the
original role of the equality R, and the annotated role of the application R;. This is the dual of
rule AE-TAprpCoNG, the congruence rule for applications. In that rule, we can use the fact that b is
representationally equivalent to b’ to show that a bR°P is representationally equal to a’ b"*¢P. Here,
we can invert that reasoning.

5 PROPERTIES OF SYSTEM DR

The main result of our Coq development is the proof of type soundness for full System DR. Given
the size of the language, the delicate interactions between its features, and number of iterations we
have gone through in its development, we could not have done it without mechanical assistance.

This type soundness proof follows from the usual preservation and progress lemmas. Both of
these lemmas are useful properties for an intermediate language. The preservation property holds
even for open terms. Therefore, it implies that simple, reduction-based optimizations, such as
inlining, do not produce ill-typed terms. Our proof of the progress lemma relies on showing that a
particular reduction relation is confluent, which itself provides a simplification process for terms
and (semi-decidable) algorithm for showing them equivalent.

131f the function type were annotated with a role, we would not be limited to Nom in this rule.
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(Values)

VALUE-UABSIRREL
VALUE-STAR VALUE-P1 VALUE-CP1 VALUE-UABSREL

Valueg a
Valueg % Valueg II’x:A — B Valueg Vc:¢.B Valuer 1*x.a Valueg A" x.a
VALUE-PATH
VALUE-UCABS CasePathg a = F
Valueg Ac.a Valueg a
Fig. 7. Values

From the original design of FC [Sulzmann et al. 2007], we inherit a separation between the
proofs of the preservation and progress lemmas. In this system it is possible to prove preservation
without relying on the consistency of the system. This means that preservation holds in any context,
including ones with contradictory assumptions (such as Int ~ Bool). As a result, GHC can apply,
e.g., inlining regardless of context.

In this section, we provide an overview of the main results of our Coq development. However, we
omit many details. Excluding automatically generated proofs, our scripts include over 700 lemmas
and 250 auxiliary definitions.

5.1 Values and Reduction

We define the values of this language using the role-indexed relation Valueg a, shown in Figure 7.
Whether a term is a value depends on the role: a newtype HTML is a value at role Nom but reduces at
role Rep. This relation depends on the auxiliary judgment CasePathg a = F (not shown, available
in the extended version of this paper [Weirich et al. 2019]) which holds when a is a path headed by
the constant F that cannot reduce at role R. (This may be because F is a constant, or if the role on
F’s definition is greater than than R, or if F has not been applied to enough arguments.)

Note that the value relation is contravariant with respect to roles. If a term is a value at some
role, it is a value at all smaller roles.

LEMMA 5.1 (SUBROLE-VALUE'). IfR, < R; and Valueg, a then Valueg, a.

Alternatively, if a term steps at some evaluation role, and we make some of the definitions more
transparent, then it will continue to step, but it could step to a different term. This discrepancy is
due to the fact that f-reduction only applies when functions are values. Irrelevant functions are
values only when their bodies are values—so changing to a larger role could allow an abstraction
to step further.

LEMMA 5.2 (SUBROLE-STEP"®). IfR; < R, andF a ~>p, a’ then3a”,F a~og, a”.
That said, the operational semantics is deterministic at a fixed role.

LEMMA 5.3 (DETERMINISTIC!'®). IfFF a~>g @’ andF a~>g a”’ thena = a”.

4ext red one.vinsub_Value
Sext red one.v:sub_red one
16ext red one.vireduction_in_one_deterministic
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5.2 Role-Checking

The role-checking judgment Q F a : R satisfies a number of important properties. For example, we
can always role-check at a larger role.

LEMMA 5.4 (SUBROLE-ING'). IfQF a: Ry andR; < R, then Q F a: R,.

Furthermore, the following property says that users may always downgrade the roles of the
parameters to their abstract types.

LEMMA 5.5 (ROLE ASSIGNMENT NARROWING'®). If Qi,x : R,Q, F a : Rand R, < R, then
Ql,XZRz,QZ Ea:R

Finally, well-typed terms are always well-roled at Nom, when all free variables have role Nom.

LEMMA 5.6 (TYPING/ROLEING'?). IfT F a: A thenTyom F a : Nom, where INom is the role-checking
context that assigns Nom to every term variable in the domain of T.

5.3 Structural Properties
LEMMA 5.7 (TYPING REGULARITYX). I[fT F a: A thenT F A : *.

Definition 5.8 (Context equality). Define = I} = I, with the following inductive relation:

CE-ConsCo
CE-ConsTm [AF ¢ = ¢
I};A|=A1 ERepAgl* Fz;A':¢1E¢2
CE-EmpTY rz; AE Al =Rep A2 HE g F Fl = rz E Tl = rz
Fo=0 |=F1,x:A1§F2,x:A2 )=T1,c:¢151“2,c:¢2

LEMMA 5.9 (CONTEXT CONVERSION?!). IfTi1 Fa: AandE T, =T, thenT, F a: A.
LEMMA 5.10 (DEFEQ REGULARITY?). I[fT;AF a=gp b: AthenT Fa: AandT F b: A.

5.4 Preservation

We prove the preservation lemma simultaneously with the property that one-step reduction is
contained within definitional equality. (This property is not trivial because definitional equality
only includes the primitive reductions directly, and relies on congruence rules for the rest.) The
reason that we need to show these results simultaneously is due to our typing rule for dependent
pattern matching.

LEMMA 5.11 (PRESERVATION?). IfE a~p a’ andT F a: AthenTF a' : AandT;AF a=gad : A

5.5 Progress

We prove progress by extending the proof in prior work [Weirich et al. 2017] with new rules
for axiom reduction and case analysis. This proof, based on a technique of Tait and Martin-Lof,
proceeds first by developing a confluent, role-indexed, parallel reduction relation =g for terms
and then showing that equal terms must be joinable under parallel reduction [Barendregt 1984].
Furthermore, this relation also tracks the roles of free variables using a role-checking context Q.

ett_roleing.v:roleing_sub
Bett_roleing.viroleing_ctx_weakening
Dett_roleing.v:Typing_roleing
Dext_invert.v:Typing_regularity
Zlext_invert.v:context_DefEq_typing
2ext_invert.v:DefEq_regularity
Bext_red.v:reduction_preservation
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We need this role checking context because of the following substitution lemma, necessary to
show the confluence lemma below.

LEMMA 5.12 (PARALLEL REDUCTION SUBSTITUTION?Y). If Q' F a =g a’ and Q',x:R F b: R,
then Q' = b{a/x} =g, b{a’/x}

We know that some term a reduces and we want to show that we can reconstruct that reduction
after that term has been substituted into some other term b. However, the variable x could appear
anywhere in b, perhaps as the argument to a function. As a result, the role that we use to reduce a
may not be the same role as the one that we use for b.

The parallel reduction relation must be consistent with the role-checking relation. Although our
definition of parallel reduction is not typed (it is independent of the type system) it maintains a
strong connection to the role-checking judgment.

LEMMA 5.13 (PARALLEL REDUCTION ROLE-CHECKING®). IfQ F a = a’ then Q F a : R and
QFd:R

This property explains why rule SS16-ConsAx, which checks axiom declarations, uses the role
on the declaration to role check the right-hand side of the axiom. In other words, type families must
role check at Nom, whereas newtypes must role check at Rep. We could imagine trying to weaken
this requirement and role-check all axioms at the most permissive role Rep. However, then the
above property would not hold. We need to know that when an axiom unfolds, the term remains
well-formed at that role.

LEMMA 5.14 (CONFLUENCE?®). If Q F a =3 a; and Q F a =y a, then there exists some b such

that Q F ay = g band Q F a, = b.

The confluence proof allows us to show the usual canonical forms lemmas, which are the key to

showing the progress lemma.
LEMMA 5.15 (PROGRESS?’).
Fa~opgd.

If @ F a: A then either Valueg a or there exists some a’ such that

6 PRACTICALITIES
6.1 Constraint vs. Type

Haskell differentiates the kind Constraint from the kind Type; the former classifies constraints
that appear to the left of an => in Haskell (thus, we have Eq a :: Constraint) while the latter
classifies ordinary types, like Int. This separation between Constraint and Type is necessary for
at least two reasons: we want to disallow users from confusing these two, rejecting types such as
Int => Int and Bool -> Eq Char; and types in kind Constraint have special rules in Haskell
(allowing definition only via classes and instances) to keep them coherent.

However, we do not want to distinguish Constraint from Type in the core language. Inhabitants
of types of both kinds can be passed to and from functions freely, and we also want to allow
(homogeneous) equalities between elements of Constraint and elements of Type. These equalities
come up when the user defines a class with exactly one member, such as

class HasDefault a where
deflt :: a

Zett_par.v:substl
Bett_par.v:Par_roleing_tm_fst,ett_par.v:Par_roleing_tm_snd
2 ext_consist.v:confluence

ZText_consist.v:progress
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Given that the evidence for a HasDefault a instance consists only of the deflt :: a member,
GHC compiles this class declaration into a newtype definition, producing an axiom equating
HasDefault a with a, at the representational role. Some packages®® rely on this encoding, and it
would be disruptive to the Haskell ecosystem to alter this arrangement.

We are thus left with a conundrum: how can we keep Constraint distinct from Type in Haskell
but identify them in the internal language? This situation clearly has parallels with the need
for newtypes: a newtype is distinct from its representation in Haskell but is convertible with its
representation in the internal language. We find that we can connect Constraint with Type by
following the same approach, but in kinds instead of in types.

This would mean defining Constraint along with an axiom stating that Constraint is represen-
tationally equal to Type. That solves the problem: the Haskell type-checker already knows to keep
representationally equal types distinct, and all of the internal language functionality over Types
would now work over Constraints, too. Because the internal language—System DR—allows con-
version using representational equality, an axiom relating, say, HasDefault a :: Constraint to
a :: Type would be homogeneous, as required. The implementors of GHC are eager for System DR
in part because it solves this thorny problem.?’

6.2 The Phantom Role

Prior work [Breitner et al. 2016] includes a third role, the phantom role. Consider the following
newtype definition, which does not make use of its argument.

newtype F a = MkF Int

All values of type F a are representationally equal, for any a. By giving this newtype the phantom
role for its parameter, Haskell programmers can show that F Int is representationally equal to
F Bool even when the MkF constructor is not available.

It is attractive to think about the phantom role when thinking of roles as indexing a set of
equivalence relations, but that doesn’t work out for System DR. In that interpretation, the phantom
role is the coarsest relation that identifies all terms of the same type, so it should be placed at the
top of the role lattice (above Rep). However, with this addition, we do not get the desired semantics
for the phantom role.

First, we would need a special definition for evaluating at the phantom role. The difference
between nominal and representational evaluation is determined solely by whether axioms are
transparent or opaque. However, we cannot use this mechanism to define what it means to evaluate
at the phantom role. We would need something else entirely.

Second, arguments with phantom roles require special treatment in the congruence rule. Logically,
phantom would be above representational in the role hierarchy, as the corresponding equivalence
is coarser. However, rule AE-TApPCONG uses R; A R to equate arguments. But the minimum of Rep
and phantom is Rep, not phantom, so we would need a different congruence rule for this case.

However, the most compelling reason why we do not include phantom as a role is because it is
already derivable using irrelevant arguments. In the example above, we can implement the desired
behavior via two levels of newtype definition. First, we define a constant, say F’, with an irrelevant
argument; this is the representation of the newtype above.

F':x @ where F' O ~gep Int

28Notably, the reflection package by Edward Kmett.
23ee https://ghc.haskell.org/trac/ghc/ticket/11715#comment:64 and https://github.com/ghc-proposals/ghc-proposals/pull/
32#issuecomment-315082072.
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(Note that F’” lacks a role annotation. Only relevant arguments are annotated with roles.) We make
this newtype abstract by not exporting this axiom.

Then, we define the phantom type by wrapping the irrelevant argument with a relevant one,
which is ignored.

F : % @ Rep where F xR ~Rep F' O

When we use F in a nominal role, we will not be able to show that F Int®P is equal to F BoolRe?,
as is the case in Haskell. However, at the representational role, we can unfold the definition of F in
both sides to F/ 07, equating the two types. Furthermore, the actual definition of the type can stay
hidden, just as in the example above.

6.3 An explicit coerce Term

One simplifying idea we use in System DR, taken from Breitner et al. [2016], is the separation
between the role-checking and type-checking judgments. This design, overall, leads to a simpler
system because it limits the interactions between the type system and roles. Furthermore, it is also
compatible with the current implementation of role checking in GHC.

However, one might hope for a more expressive system by combining the role-checking and
type-checking judgments together, as was done in the system of Weirich et al. [2011]. In fact, this
was our first approach to this work, primarily because we wanted to explore a design that factored
conversion into implicit and explicit parts.

AR-Conv AR-CasT
F|=Ra:A F|=Ra:A
F''EA=RB:% ['F A=gep B: %
T'Fra:B T Eg coerce a: B

In the conversion rule on the left, the role on the typing judgment (indexing the typing judgment by
a role is new here) determines the equality that can be used. If this role is Nom, then only nominal
equality is permitted and coercing between representationally equal types requires an explicit use
of coercion, via the rule on the right. Alternatively, if the role is Rep then all type conversions are
allowed (and using the coerce primitive is unnecessary).

This system is attractive because it resembles the design of source Haskell. In contrast, in the
current System DR, if an expression has type HTML, then it also has type String—precisely the
situation newtypes were meant to avoid. We return to the question of what coerce means for
source Haskell in the next subsection.

However, after struggling with various designs of the system for some time, we ultimately
abandoned this approach. In particular, we were unhappy with a number of aspects of the design.

e How should coerce a reduce at role Nom? It cannot reduce to a: that would violate type
preservation. The solution to this problem is “push” rules, as in System FC [Sulzmann et al.
2007]. These complicate the semantics by moving uses of coerce when they block normal
reduction. For example, if we have (coerce (\x -> x)) 5, we cannot use our normal rule
for f-reduction, as the coerce intervenes between the A-expression and its argument. Instead,
a push rule is required to reduce the term to (\x -> coerce x) (coerce 5), allowing
P-reduction to proceed. However, these push rules are complex and the complexity increases
with each feature added to the language; see Weirich et al. [2013, Section 5] for a telling
example of how bad they can be.

e Push rules prevent coerce from creating stuck terms, but they are not the only evaluation
rules for coerce that we could want. In particular, we would like the operational semantics to
eliminate degenerate coercions, which step coerce a to a in the case when the coercion does
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not actually change the type of a. However, this sort of reduction rule would be type-directed:
it would apply only when the two types involved are definitionally equal. Such an operational
behavior is at odds with our Curry-style approach and would complicate our treatment of
irrelevance.

e Because we are in a dependent setting, we must also consider the impact of coerce on the
equality relation. For example, what is the relationship between coerce a and a? Are they
nominally equal? Are they representationally equal? In our explorations of the possibilities,
none worked out well. (See also Eisenberg [2015, Section 5].)

We also hoped that working with the combined role-/type-checking system would lead to greater
expressiveness in other parts of the language. In particular, the current treatment of roles in GHC
was believed to be incompatible with putting the function join :: Monad m =>m (m a) -> m a
in the Monad type-class.”* However, the combined role-/type-checking does not help with this
problem. Fortunately, the new QuantifiedConstraints extension [Bottu et al. 2017], available in
GHC 8.6, provides a new solution,*! resolving the problem in a much less invasive way.

6.4 What is Source Haskell?

As described above, System DR fails to give a direct semantics for the coerce primitive in Haskell.
(This is not an issue specific to System DR; no prior work does this [Breitner et al. 2016; Weirich
et al. 2011].) However, all is not lost. We propose instead that it is better to understand the coerce
term in the Haskell source language through an elaboration semantics.

More concretely, we can imagine a specification for source Haskell where source terms can
automatically convert types with nominal equalities and coerce is needed for representational
equalities.

S-Conv S-COERCE
IF'Fgea: A TEA=Nom B: % IF'Fgea: A ['F A=gep B: %
I'Egca:B T Eg coerce a: B

However, this language would not have its own small-step semantics (which would require “push
rules” as described above). Instead, we would understand its semantics directly through translation
to System DR. In other words, we would specify a relation I' Fq a ~» a’ : A that translates source
Haskell terms a to System DR terms a’. The key step of this translation is that it compiles away all
uses of the coerce term.

ST-COERCE
F'Fgca~ad A I'EA=spep B:x

I' Fqc coerce a~> a’ : B

Because we know that System DR is type-sound, we would automatically get a type soundness
property for well-typed source terms.

The drawback of this approach is that without an operational semantics, the source language
type system would fall back to System DR for conversion, as in the rules above. Any terms that
appear in types would be checked according to System DR instead of with the source language
rules. However, this discrepancy would affect only the most advanced Haskell programmers: those
that use coerce and dependent types together. In the absence of the use of either feature, the
systems would coincide.

30See https://ghc.haskell.org/trac/ghc/ticket/9123, which was originally titled “Need for higher kinded roles”.
31https://ryanglscott.github.io/2018/03/04/how-quantifiedconstraints-can-let-us-put-join-back-in-monad/
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7 FUTURE WORK

Our work in this paper lays out a consistent point in the design space of interactions between roles
and dependent types. However, we plan to continue refining our definitions and extending our
system to enhance its expressiveness. Our efforts will be along the following lines:

Annotated Language. We adopted a Curry-style language design in this paper, where the syntax
of terms includes only computationally relevant terms. This style of language makes a lot of sense
for reasoning about representational equivalence [Diehl et al. 2018]. It also simplifies our design
process as we need not worry about propagating annotations at the same time as developing the
semantics.

However, this language, taken at face value, cannot be implemented: type-checking is undecidable
and non-deterministic. In order to extend GHC’s core language along the lines of System DR, we
will need to design a system of annotations that will make type checking simple and syntax-
directed, much like System DC [Weirich et al. 2017]. Given prior work (including all the work
on System FC [Breitner et al. 2016; Sulzmann et al. 2007]) as exemplars, this task should be
straightforward; the most challenging parts are choosing a system of annotations that is easy for
GHC to manipulate, and showing that the annotated language satisfies properties that are useful
for the implementation, such as substitution and preservation.

Other Roles. Our focus in this work has been on the roles Rep and Nom. However, the rules are
generic enough to support arbitrary roles in between these two extremes. Furthermore, perhaps
Nom is not the right role at the bottom of the lattice—it still allows type families to unfold, for
example. Indeed, GHC internally implements an even finer equality—termed pickyEqType—that
does not even unfold type synonyms. Today, this equality is used only to control error message
printing, but perhaps giving users more control over unfolding would open new doors.

Closed Types. The rules of System DR do not check for the exhaustiveness of case analysis.
Instead, every pattern match must have a “wildcard” case to provide an option when the scrutinee
does not match (see rule BETA-PATTERNFALSE). This design is appropriate when all types are open
and extensible through the use of declarations in the signature. It ensures that if a term type checks
it will also type check in any extended signature (a necessary property for separate compilation).
However, we would like to investigate an extension of the system with closed types, those that do
not allow the definition of new constants or axioms in the signature. The types could then be the
basis for a form of case analysis that does not require the wildcard case and can be shown to be
exhaustive.

Extended Pattern Matching. Although System DR allows the definition of parameterized datatypes
through the use of constants in the signature, the case analysis term is not expressive enough to
allow pattern matching for these datatypes. For example, we cannot use this term with the type
Maybe Int. We omit this capability only to constrain the scope of this work—our rules for pattern
matching are complex enough already and are targeted to scrutinees of type x. However, we would
like to extend this system with this ability in future work and do not foresee any difficulties.

8 RELATED WORK

Roles. We have reviewed the connection between this work and its two main antecedents [Breitner
et al. 2016; Weirich et al. 2017] throughout. Furthermore, Sections 2.5 and 6.3 compare with the
approach taken in Weirich et al. [2011].

Eisenberg [2015] discusses a way to integrate roles with a system having some features of
dependent types, though that work does not present a dependently typed system. Instead, the
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type system under study is an extension of the non-dependent System FC used in other prior
work on Haskell (and introduced originally by Sulzmann et al. [2007]), but with merged types and
kinds [Weirich et al. 2013]. The main challenge that work faces is with the fact that the system
described is heterogeneous, in that equalities can relate types of different kinds. By contrast, our work
here studies only homogeneous equality, removing much of the complication Eisenberg discusses.
In addition, our work here studies an implicit calculus, allowing us to simplify the presentation
even further over the explicit calculus (with decidable type-checking) of Eisenberg.

A recent client for roles and coerce is Winant and Devriese [2018]. This work employs roles
in a critical way to build a mechanism for explicit instantiation and manipulation of type-class
dictionaries without imperiling class coherence.

Modal Dependent Type Theory. Like this work, Pfenning [2001] presents a dependent type theory
that simultaneously supports two different forms of equality in conjunction with irrelevance.
However, Pfenning’s equality relations differ from ours (his system includes a-equivalence and
afn-equivalence), and the type system is a conservative extension of LF [Harper et al. 1993].
Furthermore, Pfenning uses a modal typing discipline to internalize these different concepts.

More recently, modal type theories have refined our understanding of parametric, erasable and
irrelevant arguments in dependent type theories [Abel and Scherer 2012; Abel et al. 2017; Mishra-
Linger and Sheard 2008; Nuyts et al. 2017].** In particular, Nuyts and Devriese [2018] presents
a unified framework that includes these and other modalities. It is possible that roles could also
be understood as a new modality in this sense, and, once this is accomplished, enjoy a unified
treatment with irrelevant quantification.

A starting point for the first task would be a language that includes roles (as a modality) annotated
on II-types. This design could draw on the type system of Weirich et al. [2011], extended with
dependent types but without the explicit coerce term described in Section 6.3. This framework would
then avoid some of the approximations made by System DR caused by the lack of role information
on II-types (noted in the descriptions of rules AE-APPCONG, SROLE-A-APP, and E-PISND) and the
separation of type- and role- checking (noted in the description of the case expression).

The uniform system of Nuyts and Devriese [2018] could form the basis of the second task. More
specifically, this system includes structures that can resolve the differences in the treatment of
co-domain of II types between irrelevant and roled arguments. Although irrelevant arguments
cannot appear in lambda terms, they can freely appear in the result type of the lambda term. In
contrast, roled arguments must appear according to their indicated role everywhere. Furthermore,
Nuyts and Devriese [2018] includes a subsumption relationship between modalities that could
generalize sub-roleing.

However, even with the addition of role-annotated II-types, there would be differences in the
treatment of roles in System DR and in the general treatment of modalities in Nuyts and Devriese
[2018] that would need to be resolved. First, the general system would need to be extended by a
role-indexed operational semantics; roles control the unfolding of axioms and must be considered
in any reduction relation. Second, the application congruence rule (rule AE-TArpCoNG) uses the
R A R’ operator when comparing the arguments; instead, a modal system would only use the role of
argument R and would be independent of R’, the role of the context. System DR uses this operator
to make nominal equality line up with Haskell’s type equality. It is not clear how the general
framework can accommodate this behavior.

32Note that the distinctions between parametric, erasable and irrelevant quantification are not present in System DR. Our
work does not cover parametricity, so cannot determine whether functions take related inputs to related outputs. Furthermore,
because our equality judgment is not type directed, our system does not need to distinguish between irrelevant [Abel and
Scherer 2012] and shape-irrelevant [Abel et al. 2017] quantification.
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Overall, it does not make sense in GHC to combine the treatment of irrelevant quantification
and roles. Irrelevant quantification is the basis for the implementation of parametric polymorphism
in System DR. Parametric polymorphism is used everywhere, even by novice Haskellers, so it
cannot be restricted—so the system must mark relevance on II types. On the other hand, roles are
used to implement the safe-coercions, an advanced feature of GHC, and are subject to the design
considerations described in Section 2.5.

Conversions. Recent work by Diehl et al. [2018] studies the possibility of zero-cost conversions
in a Curry-style, dependently typed language. However, that work allows these conversions only
when two types differ in their irrelevant parameters only. In effect, their work supports nominal
equality and phantom equality, but not representational equality. Their work does not consider
roles. The main application of their work is code re-use, a challenging and painful problem in the
domain of dependent types, but one we do not explore here.

The work of Bernardy and Moulin [2013] is similar, and considers color-directed erasure (where
arguments of types can be colored, making them optionally irrelevant). In turn, the use of colors
allows the generation of coercions for the corresponding arguments. This work provides a mech-
anism for distinguishing between different sorts of phantom equalities, thanks to the ability to
combine several colors and perform selective erasure of arguments.

Our work is tangentially connected to the recent study of cubical type theory [Cohen et al. 2018].
In cubical type theory, equality or isomorphism of types is described as a path from one to the other.
These equalities can be lifted through type definitions, similar to how roles permit the lifting of
equalities through datatypes. However, there is a key difference: roles are about describing zero-cost
conversions, whereas cubical type theory describes computationally relevant conversions.

Like this work, 2-level type theory [Altenkirch et al. 2016; Capriotti 2016; Voevodsky 2013] is a
variant of Martin-Lof type theory with two different equality types. In this case, the “outer” equality
contains a strict equality type former, with unique identity proofs, while the “inner” one is some
version of Homotopy Type Theory (HoTT). As here, this work reconciles two conflicting definitions
of equality in the same system. However, the specific notions of equality are differ.

Typecase. Our case expression implements a form of typecase or intensional analysis of
types [Harper and Morrisett 1995]. In this setting, type discrimination is available both in types (as
in Haskell today) and at run-time. We do not attempt to summarize the immense literature related
to run-time type analysis here. Crary and Weirich [1999] consider a similar problem as we do here:
the sound preservation of typecase through translation.

9 CONCLUSION

In this work, we provide a solid foundation for two popular extensions of Haskell, dependent types
and safe coercions. We have worked out how these features can combine soundly in the same
system and have used a proof assistant to verify that we have not missed any subtle interactions.
Translating roles into a new framework (dependent type theory, with irrelevance and coercion
abstraction) has given us new insight into their power and limitations. Our focus has been Haskell,
but we believe that this work is important for more compilers than GHC.
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