
PROGRAMMING LANGUAGES FOR INFORMATION

SECURITY

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Stephan Arthur Zdancewic

August 2002

c© Stephan Arthur Zdancewic 2002
ALL RIGHTS RESERVED

PROGRAMMING LANGUAGES FOR INFORMATION SECURITY

Stephan Arthur Zdancewic, Ph.D.
Cornell University 2002

Our society’s widespread dependence on networked information systems for every-
thing from personal finance to military communications makes it essential to improve
the security of software. Standard security mechanisms such as access control and en-
cryption are essential components for protecting information, but they do not provide
end-to-end guarantees. Programming-languages research has demonstrated that secu-
rity concerns can be addressed by using both program analysis and program rewriting
as powerful and flexible enforcement mechanisms.

This thesis investigates security-typed programming languages, which use static typ-
ing to enforce information-flow security policies. These languages allow the program-
mer to specify confidentiality and integrity constraints on the data used in a program;
the compiler verifies that the program satisfies the constraints.

Previous theoretical security-typed languages research has focused on simple mod-
els of computation and unrealistically idealized security policies. The existing practical
security-typed languages have not been proved to guarantee security. This thesis ad-
dresses these limitations in several ways.

First, it establishes noninterference, a basic information-flow policy, for languages
richer than those previously considered. The languages studied here include recursive,
higher-order functions, structured state, and concurrency. These results narrow the gap
between the theory and the practice of security-typed languages.

Next, this thesis considers more practical security policies. Noninterference is often
too restrictive for real-world programming. To compensate, a restricted form of declassi-
fication is introduced, allowing programmers to specify a richer set of information-flow
policies. Previous work on information-flow security also assumed that all computation
occurs on equally trusted machines. To overcome this unrealistic premise, additional
security constraints for systems distributed among heterogeneously trusted hosts are
considered.

Finally, this thesis describes Jif/split, a prototype implementation of secure program
partitioning, in which a program can automatically be partitioned to run securely on

heterogeneously trusted hosts. The resulting communicating subprograms collectively
implement the original program, yet the system as a whole satisfies the security require-
ments without needing a universally trusted machine. The theoretical results developed
earlier in the thesis justify Jif/split’s run-time enforcement mechanisms.

BIOGRAPHICAL SKETCH

Steve was born on June 26, 1974 in Allentown, Pennsylvania to Arthur and Deborah
Zdancewic. After living briefly in Eastern Pennsylvania and California, his family,
which includes his brother, David, and sister, Megan, settled in Western Pennsylva-
nia in the rural town of Friedens. His family remained there until the autumn of 1997,
when his parents moved back to Eastern PA.

Steve attended Friedens Elementary School and Somerset Area Junior and Senior
High Schools. His first computer, a Commodore 64, was a family Christmas gift in 1982.
Although he learned a smattering of Commodore BASIC1, he mainly used the computer
to play games, the best of which were Jumpman, Archon, and the classic Bard’s Tale.
Steve pursued his interest in computers through senior high school, although he never
took the programming courses offered there. His most influential high school teacher
was Mr. Bruno, who taught him Precalculus, Calculus I & II, and Statistics.

After graduating with Honors from Somerset Area Senior High in 1992, Steve en-
rolled in Carnegie Mellon University’s Department of Electrical and Computer Engi-
neering. Shortly into his second semester there, he decided that the computer science
courses were more fun than the engineering ones and transferred into the School of
Computer Science.

Steve graduated from Carnegie Mellon University with a B.S. in Computer Science
and Mathematics. He decided to continue his education by obtaining a Ph.D. and entered
Cornell’s CS department in the fall of 1996. There, he met Stephanie Weirich, also a
computer scientist, when they volunteered to organize the department’s Fall picnic. Both
Steve and Stephanie were recipients of National Science Foundation Fellowships and
Intel Fellowships; they also both spent the Summer of 1999 doing internships at Lucent
Technologies in Murray Hill, New Jersey. On August 14, 1999 Steve and Stephanie
were married in Dallas, Texas.

Steve received a M.S. in Computer Science from Cornell University in 2000, and a
Ph.D. in Computer Science in 2002.

1Anyone familiar with the Commodore machines will recall with fondness the arcane command
poke 53281, 0 and the often used load *,8,1.

iii

ACKNOWLEDGEMENTS

First, I thank my wife, Stephanie Weirich, without whom graduate school would have
been nearly impossible to survive. She has been my best friend, my unfaltering com-
panion through broken bones and job interviews, my source of sanity, my reviewer and
editor, my dinner partner, my bridge partner, my theater date, my hockey teammate, my
most supportive audience, my picnic planner, and my love. I cannot thank her enough.

Next, I thank my parents, Arthur and Deborah Zdancewic, my brother Dave and my
sister Megan for their encouragement, love, and support. Thanks also to Wayne and
Charlotte Weirich, for welcoming me into their family and supporting me as they do
Stephanie.

I also thank my thesis committee. Andrew Myers, my advisor and friend, made it fun
to do research; his ideas, suggestions, questions, and feedback shaped this dissertation
more than anyone else’s. Greg Morrisett advised me for my first three years at Cornell
and started me on the right path. Fred Schneider, with his sharp insights and unfailingly
accurate advice, improved not only this thesis, but also my writing and speaking skills.
Karen Vogtmann challenged my mathematical abilities in her algebraic topology course.

I also thank Jon Riecke, whom I worked with one fun summer at Lucent Tech-
nologies; our discussions that summer formed the starting point for the ideas in this
dissertation.

I am especially indebted to Nate Nystrom and Lantian Zheng, who not only did the
bulk of the programming for the Jif and Jif/split projects, but also contributed immensely
to the results that make up Chapter 8.

Many, many thanks to my first set of officemates, Tuğkan Batu, Tobias Mayr, and
Patrick White, who shared numerous adventures with me during our first years as grad-
uate students. Thanks also to my second set of officemates: Dan Grossman and Yanling
Wang, from whom I’ve learned much. I also thank Dan for coffee filters, for grammati-
cal and editorial acumen, and for always being prepared to talk shop.

Lastly, I would like to add to all of the above, a big thanks to many others who made
Ithaca such a fun place to be for the last six years:

Bert Adams, Gary Adams, Kavita Bala, Matthew Baram, Jennifer Bishop, James
Cheney, Bob Constable, Karl Crary, Jim Ezick, Adam Florence, Annette Florence, Neal

iv

Glew, Mark Hayden, Jason Hickey, Takako Hickey, Kim Hicks, Mike Hicks, Timmy
Hicks, Amanda Holland-Minkley, Nick Howe, Susannah Howe, David Kempe, Dan
Kifer, Jon Kleinberg, Dexter Kozen, Lillian Lee, Lyn Millet, Tonya Morrisett, Riccardo
Pucella, Andrei Sabelfeld, Dave Walker, Vicky Weisman, and Allyson White.

This research was supported in part by a National Science Foundation Fellowship
(1996 through 1999) and an Intel Fellowship (2001 through 2002).

v

vi

TABLE OF CONTENTS

1 Introduction 1
1.1 Security-typed languages . 5
1.2 Contributions and Outline . 9

2 Defining Information-Flow Security 11
2.1 Security lattices and labels . 11

2.1.1 Lattice constraints . 14
2.2 Noninterference . 15
2.3 Establishing noninterference . 19
2.4 Related work . 21

3 Secure Sequential Programs 23
3.1 λSEC: a secure, simply-typed language 23

3.1.1 Operational semantics . 25
3.1.2 An aside on completeness . 29
3.1.3 λSEC type system . 29
3.1.4 Noninterference for λSEC . 33

3.2 λREF
SEC : a secure language with state . 38

3.2.1 Operational semantics . 41
3.2.2 Type system . 45
3.2.3 Noninterference for λREF

SEC . 49
3.3 Related work . 50

4 Noninterference in a Higher-order Language with State 52
4.1 CPS and security . 53

4.1.1 Linear Continuations . 56
4.2 λCPS

SEC: a secure CPS calculus . 56
4.2.1 Syntax . 57
4.2.2 Operational semantics . 59
4.2.3 An example evaluation . 61

vii

4.2.4 Static semantics . 63
4.3 Soundness of λCPS

SEC . 69
4.4 Noninterference . 75
4.5 Translation . 83
4.6 Related work . 88

5 Secure Concurrent Programs 89
5.1 Thread communication, races, and synchronization 92

5.1.1 Shared memory and races . 92
5.1.2 Message passing . 95
5.1.3 Synchronization . 98

5.2 λCONCUR
SEC : a secure concurrent calculus 101

5.2.1 Syntax and operational semantics 101
5.2.2 λCONCUR

SEC type system . 109
5.2.3 Race prevention and alias analysis 118

5.3 Subject reduction for λCONCUR
SEC . 123

5.4 Noninterference for λCONCUR
SEC . 128

5.4.1 ζ-equivalence for λCONCUR
SEC . 129

5.5 Related work . 143

6 Downgrading 145
6.1 The decentralized label model . 146
6.2 Robust declassification . 148
6.3 Related work . 150

7 Distribution and Heterogeneous Trust 152
7.1 Heterogeneous trust model . 153
7.2 λDIST

SEC : a secure distributed calculus . 155
7.2.1 Syntax . 156
7.2.2 Operational semantics . 156
7.2.3 Type system . 156

7.3 Related Work . 160

8 Jif/split 161
8.1 Jif: a security-typed variant of Java . 163

8.1.1 Oblivious Transfer Example 164
8.2 Static Security Constraints . 166

8.2.1 Field and Statement Host Selection 166
8.2.2 Preventing Read Channels . 167
8.2.3 Declassification Constraints 168

viii

8.3 Dynamic Enforcement . 169
8.3.1 Access Control . 170
8.3.2 Data Forwarding . 170
8.3.3 Control Transfer Integrity . 171
8.3.4 Example Control Flow Graph 172
8.3.5 Control Transfer Mechanisms 173

8.4 Proof of Protocol Correctness . 176
8.4.1 Hosts . 177
8.4.2 Modeling Code Partitions . 178
8.4.3 Modeling the Run-time Behavior 179
8.4.4 The stack integrity invariant 181
8.4.5 Proof of the stack integrity theorem 184

8.5 Translation . 193
8.6 Implementation . 194

8.6.1 Benchmarks . 195
8.6.2 Experimental Setup . 195
8.6.3 Results . 196
8.6.4 Optimizations . 198

8.7 Trusted Computing Base . 198
8.8 Related Work . 199

9 Conclusions 200
9.1 Summary . 200
9.2 Future Work . 201

BIBLIOGRAPHY 203

ix

LIST OF TABLES

8.1 Benchmark measurements . 196

x

LIST OF FIGURES

3.1 λSEC grammar . 24
3.2 Standard large-step operational semantics for λSEC 26
3.3 Labeled large-step operational semantics for λSEC 26
3.4 Subtyping for pure λSEC . 30
3.5 Typing λSEC . 31
3.6 λREF

SEC grammar . 42
3.7 Operational semantics for λREF

SEC . 44
3.8 Value subtyping in λREF

SEC . 46
3.9 Value typing in λREF

SEC . 47
3.10 Expression typing in λREF

SEC . 48

4.1 Examples of information flow in CPS 54
4.2 Syntax for the λCPS

SEC language . 58
4.3 Expression evaluation . 60
4.4 Example program evaluation . 62
4.5 Value typing . 64
4.6 Value subtyping in λCPS

SEC . 65
4.7 Linear value subtyping in λCPS

SEC . 66
4.8 Linear value typing in λCPS

SEC . 66
4.9 Primitive operation typing in λCPS

SEC . 67
4.10 Expression typing in λCPS

SEC . 68
4.11 CPS translation . 84
4.12 CPS translation (continued) . 85

5.1 Synchronization structures . 100
5.2 Process syntax . 102
5.3 Dynamic state syntax . 104
5.4 λCONCUR

SEC operational semantics . 105
5.5 λCONCUR

SEC operational semantics (continued) 106
5.6 Process structural equivalence . 107
5.7 Network structural equivalence . 108

xi

5.8 Process types . 110
5.9 λCONCUR

SEC subtyping . 111
5.10 λCONCUR

SEC value typing . 111
5.11 λCONCUR

SEC linear value types . 112
5.12 λCONCUR

SEC primitive operation types . 112
5.13 Process typing . 113
5.14 Process typing (continued) . 114
5.15 Join pattern bindings . 115
5.16 λCONCUR

SEC heap types . 116
5.17 λCONCUR

SEC synchronization environment types 117
5.18 Network typing rules . 117
5.19 Primitive operation simulation relation 131
5.20 Memory simulation relation . 132
5.21 Synchronization environment simulation relation 132
5.22 Network simulation relation . 133

6.1 The need for robust declassification 149

7.1 λDIST
SEC operational semantics . 157

7.2 λDIST
SEC operational semantics continued 158

7.3 λDIST
SEC typing rules for message passing 159

7.4 λDIST
SEC typing rules for primitive operations 159

8.1 Secure program partitioning . 162
8.2 Oblivious transfer example in Jif . 165
8.3 Run-time interface . 169
8.4 Control flow graph of the oblivious transfer program 172
8.5 Distributed implementation of the global stack 174
8.6 Host h’s reaction to transfer requests from host i 176

xii

Chapter 1

Introduction

The widespread use of computers to archive, process, and exchange information via the
Internet has led to explosive growth in e-commerce and on-line services. This increasing
connectivity of the web means that more and more businesses, individual users, and
organizations have come to depend critically on computers for day-to-day operation. In
a world where companies exist whose sole purpose is to buy and sell electronic data and
everyone’s personal computer is connected to everyone else’s, it is information itself
that is valuable.

Protecting valuable information has long been a concern for security—cryptography,
for example, has been in use for centuries [Sch96] Ironically, the features that make
computers so useful—the ease and speed with which they can duplicate, process, and
transmit data—are the same features that threaten information security.

This thesis focuses on two fundamental types of policies that relate to information
security. Confidentiality policies deal with disseminating data [BL75, Den75, GM82,
GM84]. They restrict who is able to learn information about a piece data and are in-
tended to prevent secret information from becoming available to an untrusted party.
Integrity policies deal with generating data [Bib77]. They restrict what sources of in-
formation are used to create or modify a piece of data and are intended to prevent an
untrusted party from corrupting or destroying it.

The approach is based on security-typed languages, in which extended type sys-
tems express security policies on programs and the data they manipulate. The compiler
checks the policy before the program is run, detecting potentially insecure programs be-
fore they can possibly leak confidential data, tamper with trusted data, or perform unsafe
actions. Security-typed languages have been used to enforce information-flow policies
that protect the confidentiality and integrity of data [ABHR99, HR98, Mye99, PC00,
SV98, VSI96, ZM01b].

1

2

This thesis addresses the problem of how to provably enforce confidentiality and
integrity policies in computer systems using security-typed languages. 1

For example, the following program declares h to be a secret integer and l to be a
public integer:

int{Secret} h;

int{Public} l;

. . . code using h and l . . .

Conceptually, the computer’s memory is divided into a low-security portion visible
to all parts of the system (the Public part) and a high-security portion visible only
to highly trusted components (the Secret part). Intuitively, the declaration that h is
Secret means that it is stored in the Secret portion of the memory and hence should
not be visible to any part of the system that does not have clearance to access secret data.

Of course, simply dividing memory into regions does not prevent learning about
high-security data indirectly, for instance by observing the behavior of a program that
alters the Public portion of the memory. For example, a program that copies Secret
data to a Public variable is insecure. When the observable behavior of the program
is affected by the Secret data, the low-clearance program might be able to deduce
confidential information, which constitutes a security violation.

This model assumes that the low-security observer knows which program is being
run and hence can correlate the observed behaviors of the program with its set of possible
behaviors to make deductions about confidential data. If the Public observer is able to
infer some information about the contents of the Secret portion of data, there is said
to be an information flow from Secret to Public. Information flows from Public to
Secret are possible too, but they are permitted.

These information flows arise for many reasons:

1. Explicit flows are information channels that arise from the ways in which the
language allows data to be assigned to memory locations or variables. Here is an
example that shows an explicit flow from the high-security variable h to a low-
security variable l:

l := h;

Explicit flows are easy to detect because they are readily apparent from the text of
the program.

1Confidentiality and integrity of data are of course not the only cause for concern in networked in-
formation systems, but they are essential components of information security. See Trust in Cyberspace
[Sch99] for a comprehensive review of security challenges. Security-typed languages can enforce security
policies other than information flow, for example arbitrary safety policies [Wal00].

3

2. Implicit flows arise from the control-flow structure of the program. For example,
whenever a conditional branch instruction is performed, information about the
condition variable is propagated into each branch. The program below shows
an implicit flow from the high-security variable h to a low-security variable l; it
copies one bit of the integer h into the variable l:

if (h > 0) then l := 1 else l := 0

Similar information flows arise from other control mechanisms such as function
calls, goto’s, or exceptions.

3. Alias channels arise from sharing of a mutable resource that can be affected by
both high- and low-security data. For example, if memory locations are first-
class constructs in the programming language, aliases between references can leak
information. In the following example, the expression ref 0 creates a reference
to the integer 0, the expression !y reads the value stored in the reference y, and
the statement x := 1 updates the location pointed to by reference x to hold the
value 1:

x = ref 0; Create a reference x to value 0
y = x; Create an alias y of x

x := h; Assignment through x affects contents of y

l := !y; Contents of h are stored in l

Because the problem of determining when two program variables alias is, in gen-
eral undecidable, the techniques for dealing with alias channels make use of con-
servative approximations to ensure that potential aliases (such as x and y) are
never treated as though their contents have different security levels.

4. Timing channels are introduced when high-security data influences the amount
of time it takes for part of a program to run. The code below illustrates a timing
channel that transmits information via the shared system clock.

l := time(); Get the current time
if h then delay(10); Delay based on h

if (time() < l + 10) See whether there was delay
then l := 0 h is false
else l := 1; h is true

The kind of timing channel shown above is internal to the program; the program
itself is able to determine that time has passed by invoking the time() routine.

4

This particular flow can be avoided by making the clock high-security, but con-
current threads may time each other without using the system clock.

A second kind of timing channel is external to the program, in the sense that a user
observing the time it takes for a program to complete is able to determine extra
information about secret data, even if the program itself does not have access to
the system clock. One approach to dealing with external timing channels is to
force timing behavior to be independent of the high-security data by adding extra
delays [Aga00] (at a potentially severe performance penalty).

5. Abstraction-violation channels arise from under-specification of the context in
which a program will be run. The level of abstraction presented to the programmer
by a language may hide implementation details that allow someone with knowl-
edge of run-time environment to deduce high-security information.

For example, the memory allocator and garbage collector might provide an in-
formation channel to an observer who can watch memory consumption behavior,
even though the language semantics do not rely on a particular implementation of
these features. Similarly, caching behavior might cause an external timing leak
by affecting the program’s running time. External timing channels are a form of
abstraction-violation—they are apparent only to an observer with access to the
“wall clock” running time of the program.

These are the hardest sources of information flows to prevent as they are not cov-
ered by the language semantics and are not apparent from the text or structure
of the program. While it is nearly impossible to protect against all abstraction-
violation channels, it is possible to rule out more of them by making the language
semantics more specific and detailed. For instance, if one were to model the mem-
ory manager formally, then that class of covert channels might be eliminated. Of
course making such refined assumptions about the run-time environment means
that the assumptions are harder to validate—any implementation must meet the
specific details of the model.

Noninterference is the basic information-flow policy enforced by the security-typed
languages considered in this thesis. It prohibits all explicit, implicit, and internal timing
information flows from Secret to Public.

Although the above discussion has focused on confidentiality, similar observations
hold for integrity: A low-integrity (Tainted) variable should not be able to influence
the contents of a high-integrity (Untainted) variable. Thus, a security analysis should
also rule out explicit and implicit flows from Tainted to Untainted.

The security-typed languages in this thesis are designed to ensure noninterference,
but noninterference is often not the desired policy in practice. Many useful security

5

policies include intentional release of confidential information. For example, although
passwords are Secret, the operating system authentication mechanism reveals informa-
tion about the passwords—namely whether a user has entered a correct password.

Noninterference should be thought of as a baseline security policy from which others
are constructed. Practical security-typed languages include declassification mechanisms
that allow controlled release of confidential data, relaxing the strict requirements of non-
interference. Although noninterference results are the focus, this thesis also discusses
declassification and controlling its use.

1.1 Security-typed languages

Language-based security is a useful complement to traditional security mechanisms like
access control and cryptography because it can enforce different security policies.

Access-control mechanisms grant or deny access to a piece of data at particular
points during the system’s execution. For example, the read–write permissions pro-
vided by a file system prevent unauthorized processes from accessing the data at the
point when they try to open the file. Such discretionary access controls are well-
studied [Lam71, GD72, HRU76] and widely used in practice.

Unlike traditional discretionary access-control mechanisms, a security-typed lan-
guage provides end-to-end protection—the data is protected not just at certain points,
but throughout the duration of the computation. To the extent that a system can be de-
scribed as a program or a collection of communicating programs written in a security-
typed language, the compositional nature of the type-system extends this protection
system-wide.

As an example of the difference between information flow and access control, con-
sider this policy: “the information contained in this e-mail may be obtained only by
me and the recipient.” Because it controls information rather than access, this policy is
considerably stronger than the similar access-control policy: “only processes authorized
by me or the recipient may open the file containing the e-mail.” The latter policy does
not prohibit the recipient process from forwarding the contents of the e-mail (perhaps
cleverly encoded) to some third party.

Program analysis is a useful addition to run-time enforcement mechanisms such as
reference monitors because such purely run-time mechanisms can enforce only safety
properties, which excludes many useful information-flow policies [Sch01]2. Run-time
mechanisms can monitor sequences of actions and allow or deny them; thus, they can
enforce access control and capability-based policies. However, dynamic enforcement of

2This analysis assumes that the run-time enforcement mechanism does not have access to the pro-
gram text; otherwise the run-time mechanism could itself perform program analysis. Run-time program
analysis is potentially quite costly.

6

information-flow policies is usually expensive and too conservative because information
flow is a property of all possible executions of a program, not just the single execution
available during the course of one run [Den82].

Encryption is another valuable tool for protecting information security, and it is cru-
cial in settings where data must be transmitted via an untrusted medium—for example
sending a secret over the Internet. However, encryption works by making it infeasible to
extract information from the ciphertext without possessing a secret key. This property is
exactly what is needed for transmitting the data, but it also makes it (nearly) impossible
to compute usefully over the data; for instance it is difficult to create an algorithm that
sorts an encrypted array of data.3 For such non-trivial computation to take place over
encrypted data, the data must be decrypted, at which point the problem again becomes
regulating information flow through a computation.

The following examples illustrate scenarios in which access control and cryptog-
raphy alone are insufficient to protect confidential data, but where security-typed lan-
guages can be used:

1. A home user wants a guarantee that accounting software, which needs access
to both personal financial data and a database of information from the software
company, doesn’t send her credit records or other private data into the Internet
whenever it accesses the web to query the database. The software company does
not want the user to download the database because then proprietary information
might fall into the hands of a competitor. The accounting software, however, is
available for download from the company’s web site.

Security-typed languages offer the possibility that the user’s home computer could
verify the information flows in the tax program after downloading it. That verifi-
cation gives assurance that the program will not leak her confidential data, even
though it communicates with the database.

With the rise of the Internet, such examples of mobile code are becoming a wide-
spread phenomenon: Computers routinely download Java applets, web-scripts and
Visual Basic macros. Software is distributed via the web, and dynamic software
updates are increasingly common. In many cases, the downloaded software comes
from untrusted or partially untrustworthy parties.

2. The ability for the sender of an e-mail to regulate how the recipient uses it is
an information-flow policy and would be difficult to enforce via access control.

3There are certain encryption schemes that support arithmetic operations over ciphertext so that
encrypt(x) ⊕ encrypt(y) = encrypt(x + y), for example. They are too impractical to be used for
large amounts of computation [CCD88].

7

While cryptography would almost certainly be used to protect confidential e-
mail and for authenticating users, the e-mail software itself could be written in
a security-typed language.

3. Many programs written in C are vulnerable to buffer overrun and format string
errors. The problem is that the C standard libraries do not check the length of
the strings they manipulate. Consequently, if a string obtained from an untrusted
source (such as the Internet) is passed to one of these library routines, parts of
memory may be unintentionally overwritten with untrustworthy data—this vul-
nerability can potentially be used to execute an arbitrary program such as a virus.

This situation is an example of an integrity violation: low-integrity data from the
Internet should not be used as though it is trustworthy. Security-typed languages
can prevent these vulnerabilities by specifying that library routines require high-
integrity arguments [STFW01, Wag00].

4. A web-based auction service allows customers to bid on merchandise. Multiple
parties may bid on a number of items, but the parties are not allowed to see which
items others have bid on nor how much was bid. Because the customers do not
necessarily trust the auction service, the customer’s machines share information
sufficient to determine whether the auction service has been honest. After the bid-
ding period is over, the auction service reveals the winning bids to all participants.

Security policies that govern how data is handled in this auction scenario can
potentially be quite complex. Encryption and access control are certainly useful
mechanisms for enforcing these policies, but the client software and auction server
can be written in a security-typed language to obtain some assurance that the bids
are not leaked.

Despite the historical emphasis on policies that can be enforced by access control
and cryptographic mechanisms, computer security concerns have advanced to the point
where richer policies are needed.

Bill Gates, founder of Microsoft, called for a new emphasis on what he calls “Trust-
worthy Computing” in an e-mail memorandum to Microsoft employees distributed on
January 15, 2002. Trustworthy Computing incorporates not only the reliability and
availability of software, but also security in the form of access control and, of particular
relevance to this thesis, privacy [Gat02]:

Users should be in control of how their data is used. Policies for information
use should be clear to the user. Users should be in control of when and if
they receive information to make best use of their time. It should be easy for

8

users to specify appropriate use of their information including controlling
the use of email they send.4

–Bill Gates, January 15, 2002

Trustworthy Computing requires the ability for users and software developers to ex-
press complex security policies. Commercial operating systems offer traditional access
control mechanisms at the file-system and process level of granularity and web browsers
permit limited control over how information flows to and from the Internet. But, as in-
dicated in Gates’ memo, more sophisticated, end-to-end policies are desired.

Security-typed languages provide a formal and explicit way of describing complex
policies, making them auditable and enforceable via program analysis. Such automa-
tion is necessitated both by the complexity of security policies and by the sheer size of
today’s programs. The security analysis can potentially reveal subtle design flaws that
make security violations possible.

Besides complementing traditional enforcement mechanisms, security-typed lan-
guages can help software developers detect security flaws in their programs. Just as
type-safe languages provide memory safety guarantees that rule out a class of program
errors, security-typed languages can rule out programs that contain potential informa-
tion leaks or integrity violations. Security-typed languages provide more confidence
that programs written in them are secure.

Consider a developer who wants to create digital-signature software that is supposed
to run on a smart card. The card provides the capability to digitally sign electronic data
based on a password provided by the user. Because the digital signatures authorize
further computations (such as transfers between bank accounts), the password must be
protected—if it were leaked, anyone could forge the digital signatures and initiate bogus
transactions. Consequently, the developer would like some assurance that the digital-
signature software does not contain any bugs that unintentionally reveal the password.
Writing the digital-signature software in a security-typed language would help improve
confidence in its correctness.

There is no magic bullet for security. Security-typed languages still rely in part on
the programmer to implement the correct policy, just as programmers are still trusted to
implement the correct algorithms. Nevertheless, security-typed languages provide a way
to ensure that the policy implemented by the programmer is self-consistent and that it
agrees with the policy provided at the program’s interface to the external environment.
For example, the operating system vendor can specify a security policy on the data
passed between the file system and applications written to use the file system. The
compiler of a security-typed language can verify that the application obeys the policy

4Is it ironic that the text of this e-mail was available on a number of web sites shortly after it was sent?

9

specified in the OS interface; therefore the OS vendor need not trust the applications
programmer. Symmetrically, the application writer need not trust the OS vendor.

Absolute security is not a realistic goal. Improved confidence in the security of
software systems is a realistic goal, and security-typed programming languages offer a
promising way to achieve it.

1.2 Contributions and Outline

This thesis develops the theory underlying a variety of security-typed languages, starting
with a simple toy language sufficient for sequential computation on a trusted computer
and building up to a language for describing multithreaded programs. It also address the
problem of secure computation in a concurrent, distributed setting in which not all the
computers are equally trusted.

Chapter 2 introduces the lattice-model of information-flow policies and the notation
used for it in this thesis. This chapter defines noninterference—making precise what
it means for a security-typed language to protect information security. This chapter
is largely based on the existing work on using programming language technology to
enforce information-flow policies.

Chapter 3 gives an elementary proof of noninterference for a security-typed, pure
lambda calculus. This is not a new result, but the proof and the language’s type sys-
tem serve as the basis for the more complex ones presented later. Chapter 3 explains
the proof and discusses the difficulties of extending it to more realistic programming
languages.

The subsequent chapters describe the main contributions of this thesis. The contri-
butions are:

1. The first proof of noninterference for a security-typed language that includes high-
order functions and state. This result is described in Chapter 4. The material
there is drawn from a conference paper [ZM01b] and its extended version, which
appears in the Journal of Higher Order and Symbolic Computation special issue
on continuations [ZM01a]. The proofs of Soundness and Noninterference for
the language that appear in Sections 4.3 and 4.4 are adapted from a technical
report [ZM00]. Since the original publication of this result, other researchers
have proposed alternatives to this approach [PS02, HY02, BN02].

2. An extension of the above noninterference proof to the case of multithreaded pro-
grams. The main difficulty in a concurrent setting is preventing information leaks
due to timing and synchronization behavior. The main contribution of Chapter 5
is a proposal that, contrary to what is done in existing security-typed languages

10

for concurrent programs, internal timing channels should be controlled by elim-
inating race conditions entirely. This chapter gives a type system for concurrent
programs that eliminates information leaks while still allowing threads to com-
municate in a structured way.

3. The observation that declassification, or intentional release of confidential data,
ties together confidentiality and integrity constraints. Because declassification
is a necessary part in any realistic secure system, providing a well-understood
mechanism for its use is essential. Chapter 6 explains the problem and a proposed
solution that is both simple and easy to put into practice. Intuitively, the decision
to declassify a piece of confidential information must be protected from being
tampered with by an untrusted source.

4. A consideration of the additional security requirements imposed when the sys-
tem consists of a collection of distributed processes running on heterogeneously
trusted hosts. Previous security-typed languages research has assumed that the un-
derlying execution platform (computers, operating systems, and run-time support)
is trusted equally by all of the principals whose security policies are expressed in
a program. This assumption violates the principle of least privilege. Furthermore,
it is unrealistic for scenarios involving multiple parties with mutual distrust (or
partial distrust)—the very scenarios for which multilevel security is most desir-
able

This approach, described in Chapter 7, is intended to serve as a model for un-
derstanding confidentiality and integrity in distributed settings in which the hosts
carrying out the computation are trusted to varying degrees.

5. An account of a prototype implementation for obtaining end-to-end information-
flow security by automatically partitioning a given source program to run in a
network environment with heterogeneously trusted hosts. This prototype, called
Jif/split, extends Jif [MNZZ01], a security-typed variant of Java, to include the
heterogeneous trust model. Jif/split serves both as a test-bed and motivating ap-
plication for the theoretical results described above.

The Jif/split prototype described in Chapter 8, which is adapted from a paper that
appeared in the Symposium on Operating Systems Principles in 2001 [ZZNM01]
and a subsequent journal version that will appear in Transactions on Computer
Systems [ZZNM02]. The proof from 8.4 is taken in its entirety from the latter.

Finally, Chapter 9 concludes with a summary of the contributions and some future
directions.

Chapter 2

Defining Information-Flow Security

This chapter introduces the lattice model for specifying confidentiality and integrity
levels of data manipulated by a program. It then shows how to use those security-level
specifications to define the noninterference security policy enforced by the type systems
in this thesis.

2.1 Security lattices and labels

Security-typed languages provide a way for programmers to specify confidentiality and
integrity requirements in the program. They do so by adding explicit annotations at
appropriate points in the code. For example, the declaration int{Secret} h indicates
that h has confidentiality label Secret.

Following the work on multilevel security [BP76, FLR77, Fei80, McC87, MR92b]
and Denning’s original work on program analysis [Den75, Den76, DD77], the security
levels that can be ascribed to the data should form a lattice.

Definition 2.1.1 (Lattice) A lattice L is a pair 〈L,�〉. Where L is a set of elements
and � is a reflexive, transitive, and anti-symmetric binary relation (a partial order) on
L. In addition, for any subset X of L, there must exist both least upper and greatest
lower bounds with respect to the � ordering.

An upper bound for a subset X of L is an element � ∈ L such that x ∈ X ⇒ x � �.
The least upper bound or join of X is an upper bound � such that for any other upper
bound z of X , it is the case that � � z. It is easy to show that the least upper bound of a
set X , denoted by X , is uniquely defined. In the special case where X consists of two
elements x1 and x2, the notation x1 � x2 is used to denote their join.

A lower bound for a subset X of L is an element � ∈ L such that x ∈ X ⇒ � � x.
The greatest lower bound or meet of X is a lower bound � such that for any other
lower bound z of X , it is the case that z � �. It is easy to show that the greatest lower

11

12

bound of a set X , denoted by X , is uniquely defined. In the special case where X
consists of two elements x1 and x2, the notation x1 	 x2 is used to denote their meet.

Note that because a lattice is required to have a join for all subsets of L there must

be a join for L itself, denoted by
 def
= L. By definition, it must be the case that � �

for any element � ∈ L, that is,
 is the greatest or top element of the lattice. Similar
reasoning establishes that there is a least or bottom element of the lattice, denoted by

⊥ def
= L.

One example of a confidentiality lattice is the classification used by the Department
of Defense in their “Orange Book” [DOD85]:

Unclassified � Confidential � Secret � Top Secret

An even simpler lattice that will be useful for examples in what follows is the two point
lattice:

⊥ �

This lattice is just a renaming of the lattice already used in the examples at the beginning
of this chapter:

Public � Secret

Another example is a readers lattice that is generated from a set of principal identi-
fiers, P . The elements of the lattice are given by P(P), the powerset of P . The order
� is the reverse of the usual set inclusion. Intuitively, information about a piece of data
labeled with the set of principals {p1, . . . , pn} ⊆ P should only be observable by mem-
bers p1 through pn. Thus the set P itself is the most public element, and the empty set
(indicating that the information should be invisible to all principals) is the most confi-
dential.

As an example of a readers lattice, consider the case where there are two principals,
Alice and Bob. The resulting label lattice is:

{}

{Alice}

�
���������������

{Bob}

�
��������������

{Alice, Bob}
�

������������� �

�������������

All of the lattices shown above are intended to describe confidentiality policies; lat-
tices can also describe integrity policies. The simplest such lattice is:

Untainted � Tainted

13

Note that this lattice is isomorphic to the Public � Secret lattice. Why is that?
Intuitively, Secret information has more restrictions on where it can flow than Public

information—Secret data should not flow to a Public variable, for instance. Similarly,
Tainted information has more restrictions on its use than Untainted information. Both
Secret and Tainted data should be prevented from flowing to points lower in the
lattice. Formally, confidentiality and integrity are duals [Bib77].

In view of this duality, in this thesis, high security means “high confidentiality” or
“low integrity” and low security means “low confidentiality” or “high integrity.” High
and low are informal ways of referring to relative heights in a lattice where �1 � �2

means that �1 is bounded above by �2 and �1 � �2 means that �1 is not bounded above by
�2. The terminology “�1 is protected by �2” will also be used to indicate that �1 � �2—
intuitively it is secure to treat data with label �1 as though it has label �2 because the
latter label imposes more restrictions on how the data is used.

As a final example of a security lattice, both integrity and confidentiality can be
combined by forming the appropriate product lattice, as shown below:

〈Secret, Tainted〉

〈Public, Tainted〉

�
������������������

〈Secret, Untainted〉

�
�������������������

〈Public, Untainted〉
�

������������������ �

�������������������

The lattice elements are also used to describe the privileges of users of the program,
hence determining what data should be visible to them. For instance, in the DoD lat-
tice, a user with clearance Secret is able to learn information about Unclassified,
Classified, and Secret data, but should not learn anything about Top Secret data.

The choice of which lattice to use is dependent on the desired security policies and
level of granularity at which data is to be tracked. For simple security, the DoD style lat-
tice may suffice; for finer control over the security levels of data more complex lattices,
such as those found in Myers’ and Liskov’s decentralized label model [ML98, ML00]
should be used.

Despite the importance of the security lattice with regard to the security policies that
can be expressed, it is useful to abstract from the particular lattice in question. Con-
sequently, all of the results in this thesis are derived for an arbitrary choice of security
lattice.

14

2.1.1 Lattice constraints

The type systems in this thesis can be thought of as generating a system of lattice in-
equalities based on security annotations of a program in question. For example, consider
the program that assigns the contents of the variable x to the variable y:

y := x

Suppose that the labels assigned to the variables x and y are label(x) and label(y) respec-
tively. The assignment is permissible if label(x) � label(y), because this constraint says
that x contains more public (or less tainted) data than y is allowed to hold. Concretely,
suppose that label(x) = Secret and label(y) = Public. The program above would
generate the constraint Secret � Public, which is not satisfiable in the simple security
lattice. On the other hand, if label(y) = Secret, then the constraint label(x) � Secret

is satisfiable no matter what label(x) is.
The lattice structure is used to approximate the information contained in a piece of

data that results from combining two pieces of data. For example, the expression x + y

is given the security label label(x) � label(y), which intuitively says that the expression
x + y may reveal information about either x or y. If either x or y is Secret, then the
result of x + y is Secret.

To determine whether the assignment z := x + y is legal, we determine whether
the constraint label(z) � label(x) � label(y) is satisfiable.

The type system generates similar lattice inequations for all of the program state-
ments, reducing the problem of determining whether a program is secure to a lattice-
inequality constraint satisfaction problem. The correctness theorem for a security-type
system says that if the constraints are satisfiable then the program does not leak infor-
mation. The meaning of “does not leak information” is made precise in the next section.

The complexity of determining whether a program obeys the noninterference policy
rests on the ability to solve systems of lattice inequalities. In general, this problem
is NP-complete for finite lattices: it is simple to reduce 3SAT to the lattice constraint
satisfaction problem because Boolean algebras constitute lattices and implication can be
encoded via �.

There are properties of the security lattice and the system of inequalities that can
make it easier to determine whether a solution exists [RM96]. One possibility is that the
system has only inequalities that can be written in the form a � b � c, for example, and
does not contain more complex constraints like a	 b � c� d. Disallowing meets on the
left of inequalities reduces the search space of candidate solutions.

Another useful lattice property is distributivity, which means that:

a 	 (b � c) = (a 	 b) � (a 	 c)

15

Distributivity alone is not enough to admit a polynomial time constraint satisfaction al-
gorithm (Boolean algebras are also distributive). However, distributitivy allows inequal-
ities to be put into normal forms that, with additional restrictions like the one above,
make efficient constraint satisfaction algorithms possible.

Despite the importance of obtaining tractable constraint sets from the type system,
this thesis is not concerned with the complexity of solving the lattice constraints. Hap-
pily, however, practical applications often make use of distributive lattices (see Myers’
and Liskov’s Decentralized Label Model [ML98, ML00] for example). The constraints
generated by the type systems in this thesis also do not contain meets on the left of
inequalities.

2.2 Noninterference

This section describes a general methodology for defining information-flow security in
programming languages. The goal is a formal definition of noninterference, a basic se-
curity policy that intuitively says that high-security information cannot affect the results
of low-security computation.

This thesis is concerned with regulating information flows that are internal to a pro-
gram. In particular, the type systems presented attempt to address only information
flows that can be detected because they alter the behavior of a program as it runs. This
means that programs deemed to be secure might still contain external timing leaks or
abstraction-violation channels.

For instance, the following Java-like1 insecure, under the assumption that the method
System.print prints to a public location:

class C {

public static void main(string[] args) {

String{Secret} combination = System.input();

System.print("The secret combination is : " + combination);

}

}

Here, the value of the string stored in the variable combination (which has been ex-
plicitly declared to be secret) affects the behavior of the program. The purpose of the
security-typed languages is to rule out these kind of information flows.

The basic approach to defining noninterference is the following. Each step is de-
scribed in more detail below.

1Java’s keyword public, in contrast to the label Public, describes the scope of fields or methods, not
their confidentiality level. Such scoping mechanisms are considerably weaker than the information-flow
policies described in this thesis.

16

1. Choose an appropriate formal model of computation equipped with a meaningful
(implementable) semantics. The language should have values—data objects—and
programs should describe computations over those values.

3, true, . . . ∈ Values z := x + 3, . . . ∈ Programs

2. Derive from the semantics a definition of program equivalence, starting from an
apparent equivalence on the values of the language. This equivalence should be
sound with respect to the language semantics in the sense that equivalent programs
should produce equivalent observable results.

∀P1, P2 ∈ Programs. P1 ≈ P2 ⇔ . . .

3. Enrich the program model using a security lattice as described in the previous
section. This yields a way of specifying the high- and low-security interfaces
(written with a Γ) to a program P .

An interface Γ to a program describes a set of contexts in which it makes sense to
run the program. In this thesis, the interfaces will be type environments that de-
scribe what variables or memory locations are available for use within the program
P . Assertions like the following say that program P has high- and low-security
interfaces ΓHigh and ΓLow:

ΓHigh,ΓLow � P

4. Define the powers of the low-security observers of the system. This is done
by coarsening the standard notion of process equivalence ≈ to ignore the high-
security parts of the program. This new equivalence, ≈Low represents the low-
security view of the computation; it depends on the low-security interface to the
program (ΓLow). Treating the equivalence relations as sets, coarsening ≈ is the
requirement that ≈ ⊆ ≈Low.

5. Define a set of high-security inputs for the program, these values should match
the interface ΓHigh, so that v ∈ Values(ΓHigh).

6. Define noninterference from the above components: There is no illegal informa-
tion flow through a program P iff the low-security behavior of the program is
independent of what high-security inputs are given to the program. Formally,
P ∈ Programs is information-flow secure (satisfies noninterference) iff

ΓHigh,ΓLow � P ⇒ ∀v1, v2 ∈ Values(ΓHigh). P (v1) ≈Low P (v2)

17

This basic recipe for defining information-flow security will be used in this thesis
for a variety of different programming languages. For each language, a type system that
establishes noninterference for programs written in the language are given. However,
there are many details left unspecified in the high-level overview given above, so it is
worth going into each of the steps in more depth.

Step 1: Language definition

The first step is to choose a notion of program (or process, or system) that includes
a computationally meaningful semantics. For example, one could pick the untyped
lambda calculus and give its semantics via β-reduction. Another choice could be the
Java programming language with semantics given by translation to the bytecode inter-
preter (which in turn has its own semantics).

The language semantics should include an appropriate notion of the observable be-
havior of programs written in the language. The observable behavior is usually formal-
ized as an evaluation relation between program terms and values computed (large-step
operational semantics), or perhaps a finer-grained model of the computation via a suit-
able abstract machine (small-step operational semantics).

Step 2: Program equivalence

The next step is to choose a basic definition of program equivalence; typically this equiv-
alence is derived from and must respect the behavioral semantics of the language. For
example, one might choose β-η equivalence for the untyped lambda calculus. Giv-
ing an appropriate definition of equivalence for Java programs is considerably harder;
nevertheless, some well-defined notion of equivalence is necessary. (Programmers and
compiler writers make use of program equivalences all the time to reason about changes
they make to a program, so this is not an unreasonable requirement.)

The choice of language behavioral semantics, together with the accompanying equi-
valence, determines the level of detail in the model. For example, the lambda calculus
provides a very abstract model of computation that is quite far from the behavior of
actual computers, whereas, in principle, one could characterize the precise operational
specification of a particular microprocessor.

There is a trade off between the accuracy of the information-flow analysis and the
generality of the results. This thesis concentrates on a relatively abstract level of detail
in an idealized computer.

18

Step 3: Security types

It is impossible to define security without specifying a security policy to be enforced.
Consequently, the next step in defining information-flow security is to enrich the pro-
gramming language so it can describe the confidentiality or integrity of the data it ma-
nipulates. This is done by associating a label, drawn from a security lattice, with the
types of the data manipulated by the program.

Consider the example Java-like program from the introduction:

class C {

public static void main(string[] args) {

String{Secret} combination = System.get();

System.print("The secret combination is : " + combination);

}

}

The declaration String{Secret} indicates that the variable contains secret data. A
similar annotation on the print method can indicate that its String argument is printed
to a console visible to the public—print constitutes a channel through which the pro-
gram’s behavior can be observed. In Java-like notation,2 print’s type can be written as:
void System.print(String{Public} x)

Except where Java or Jif programs are considered (see Chapters 6 and 8), this thesis
adopts a more abstract syntax for security types. If t is a type in the language and � is
a security label, then t� is a security type. This notation is more compact than the t{�}
used in the example above.

Step 4: Low-security behavioral equivalence

The next step is to define an appropriate notion of low-level or low-security equivalence.
Intuitively, this equivalence relation hides the parts of the program that should not be
visible to a low-level observer.

For example, consider the set of states consisting of pairs 〈h, l〉, where h ranges
over some high-security data and l ranges over low-security data. An observer with
low-security access (only permitted to see the l component) can see that the states
〈attack at dawn, 3〉 and 〈do not attack, 4〉 are different (because 3 = 4), but will
be unable to distinguish the states 〈attack at dawn, 3〉 and 〈do not attack, 3〉. Thus,
with respect to this view (≈Low):

〈attack at dawn, 3〉 ≈Low 〈do not attack, 3〉
〈attack at dawn, 3〉 ≈Low 〈do not attack, 4〉

2In more traditional type-theoretic notation, this type might be written as:
System.print : String{Public}→ unit

19

It is necessary to generalize this idea to include other parts of the program besides
its state—the computations must also have a suitable notion of low equivalence. The
choice of observable behavior impacts the strength of the noninterference result. For
example, if the equivalence on computations takes into account running time, then non-
interference will require that high-security information not affect the timing behavior
of the program. This thesis, as elsewhere in the security literature, generalizes low-
equivalence to computations via appropriate bisimulation relations [LV95, Mil89].

Also, because the security lattice contains many points, and the program should be
secure only if all illegal information flows are ruled out, we must also generalize to
equivalence relations indexed by an arbitrary lattice element �. The relation ≈� repre-
sents the portion of the computation visible to an observer at security level �.

Step 5: High-security inputs

Because we are interested in preventing information flows from high-security sources
to lower-security computation, we must specify how the high-security information is
generated. The next step of defining information flows is to pick an appropriate notion
of high-security inputs.

For simple datatypes such as Booleans and integers, any value of the appropriate type
is suitable as a high-security input. However, if the high-security input is a function
or some other higher-order datatype (like an object), then this input itself can lead to
insecure behavior—when the insecure function is invoked, for instance.

Any security analysis that establishes noninterference must guarantee that insecure
inputs are not used by the program. In practice, this can be accomplished by analyzing
the inputs, i.e. requiring them to type check.

Step 6: Noninterference

Combining the steps above, we obtain a suitable definition of noninterference:

ΓHigh,ΓLow � P ⇒ ∀v1, v2 ∈ Values(ΓHigh). P (v1) ≈Low P (v2)

This definition says that a program P is secure if changing the high-security values of
the initial state does not affect the low-security observable behavior of the program.

2.3 Establishing noninterference

The security-typed languages studied in this thesis rule out insecure information flows
by augmenting the type system to constrain how high-security data is handled by the
program. To connect these nonstandard type systems to information security, we must

20

prove that well-typed programs satisfy an appropriate definition of noninterference. As
we have seen, noninterference is a statement about how the program behaves. Therefore
one must connect the static analysis of a program to the program’s operational behavior.
As with ordinary type systems, the main connection is a soundness theorem that implies
that well-typed programs do not exhibit undesired behavior (such as accessing initialized
memory locations).

In the case of information-flow properties, we take this proof technique one step fur-
ther: we instrument the operational semantics of the programming language to include
labels. This nonstandard operational semantics is constructed so that it tracks informa-
tion flows during program execution. For example, suppose that the standard semantics
for the language specifies integer addition using rules like 3+4 ⇓ 7, where the ⇓ symbol
can be read as “evaluates to”. The labeled operational semantics requires that the values
3 and 4 to be tagged with security labels. Supposing that the labels are drawn from the
two point lattice, we might have 3� and 4⊥. The nonstandard rule for arithmetic addi-
tion would show that 3� + 4⊥ ⇓ 7(��⊥), where we use the lattice join operation (�) to
capture that the resulting value reveals information about both of the operands.

Importantly, the instrumented operational semantics agrees with the original seman-
tics: erasing all of the additional label information from an execution trace of the non-
standard programs yields a valid execution trace of the standard program. This implies
that any results about the nonstandard operational semantics apply to the standard pro-
gram as well. This erasure property is also important, because it means that, even
though the instrumented operational semantics makes use of labels at run time, a real
implementation of the security-typed language does not need to manipulate labels at run
time.

The strategy adopted in this thesis for establishing noninterference thus consists of
four steps.

1. Construct a labeled operational semantics safely approximates the information
flows in a program.

2. Show that the security type system is sound with respect to the nonstandard se-
mantics.

3. Use the additional structure provided by the labeled semantics to show that non-
interference conditions hold for instrumented programs.

4. Use the erasure property to conclude that the standard behavior of a program
agrees with the nonstandard behavior, which implies that the standard program
satisfies noninterference.

The next three chapters illustrate this process for three different languages that in-
corporate increasingly rich programming features.

21

2.4 Related work

There is a considerable amount of work related to specifying noninterference-style
information-policies and generalizing those definitions to various models of computa-
tion.

The enforcement of information-flow policies in computer systems has its inception
in Bell and La Padula’s work on a multi-level security policy for the MULTICS operating
system [BL75]. At roughly the same time, Denning proposed the lattice-model of secure
information flow [Den76] followed by a means of certifying that programs satisfy a
strong information-flow policy [DD77]. However, no correctness result was given for
this approach, partly due to a lack of a formal characterization of what it means for a
program to be insecure.

Goguen and Meseguer addressed this problem of formalizing information-security
by proposing the first definition of noninterference in 1982 [GM82]. The intuitions
underlying their definition of noninterference are the same as those used to motivate
the definition of noninterference in this thesis. Their original definition was suitable for
deterministic state machines and used traces of states to represent systems, rather than
the language and context formulation used here.

Many definitions of information security similar to noninterference have been pro-
posed, and there is no general agreement about which definition is appropriate for what
scenarios. Two major classifications of security properties have emerged.

In the possibilistic setting, the set of possible outcomes that might result from a
computation are considered the important factor [Sut86, McC88, McL88b, McL88a,
McL90, WJ90, McL94, ZL97, Zha97]. A system is considered possibilistically secure
if the actions of a high-security observer do not affect the set of possible outcomes.
Probabilistic security, in contrast, requires that high-security events are not able to affect
the probability distribution on the possible outcomes of a system [Gra90, Gra91, GS92].
For sequential programs, possibilistic and probabilistic security coincide—there is only
one possible outcome of running the system and it occurs with probability 1.

The results in the work discussed above are presented at the level of state machines
that represent an entire system, typically a whole computer or complete program. Se-
curity properties are expressed as predicates over sets of traces which correspond to
runs of the state machine on various inputs. This level of detail abstracts away from the
implementation details of the system, which is good from the point of view of specifica-
tion, but does not contain enough detail to give rise to any principle for building secure
system. Sabelfeld and Mantel bridge the gap between the labeled transition models and
programming-languages approaches to information security [MS01] by showing how to
encode the actions of a simple programming language in the labeled transition model.

The definition of noninterference used here is closer to those used in the program-
ming languages community [VSI96, HR98, PC00] and is equivalent to them for se-

22

quential programs. The presentation of nointerference in this thesis draws on the idea
contextual equivalence [Mor68].

Language-based security extends beyond information-flow control [SMH00]. Work
on Typed Assembly Language [MWCG99, MCG+99, CWM99] and proof-carrying
code [Nec97] emphasizes static checking of program properties. In-lined reference
monitors [ES99, ET99] use code rewriting techniques to enforce security policies on ex-
isting software. Buffer overflow detection, a common source of security holes, has also
been treated via static program analysis [LE01] and dynamic techniques [CPM+98].

Chapter 3

Secure Sequential Programs

This chapter introduces two secure source calculi. They serve as examples of the basic
methodology introduced in Chapter 2, and the remainder of this thesis builds on them.

The first language, λSEC, is a case study for introducing the basic definitions and no-
tation. It is a purely functional, simply-typed lambda calculus that includes the minimal
extensions for expressing confidentiality policies. Section 3.1 describes λSEC in detail,
explains its type system, and proves that well-typed programs enjoy the noninterference
security property.

The second language, λREF
SEC , serves as a vehicle for discussing the problems of in-

formation flows that can occur through side effects in a program. It extends λSEC with
mutable state and recursion, to obtain a Turing-complete language. The type system for
λREF

SEC must be more complicated to account for information flows that can arise from
aliasing and mutations to the store. Section 3.2 describes the language, its operational
semantics and the type system for ensuring security. Noninterference is not proved for
λREF

SEC directly; instead, that result is obtained in Chapter 4 using a semantics-preserving
translation into a CPS-style language.

3.1 λSEC: a secure, simply-typed language

Figure 3.1 describes the grammar for λSEC, a purely functional variant of the simply-
typed lambda calculus that includes security annotations. This language is a simplified
variant of the SLam calculus, developed by Heintze and Riecke [HR98].

In the grammar, the metavariables � and pc range over elements of the security lat-
tice. The possible types include the type bool of Boolean values and the types of func-
tions (s → s) that expect a security-annotated value as an argument and produce a
security-annotated type as a result. Security types, ranged over by the metavariable s,
are just ordinary types labeled with an element from the security lattice.

23

24

�, pc ∈ L Security labels

t ::= bool Boolean type
| s → s Function type

s ::= t� Security types

bv ::= t | f Boolean base values
| λx :s. e Functions

v ::= x Variables
| bv� Secure Values

e ::= v Values
| e e Function application
| e ⊕ e Primitive operations
| if e then e else e Conditional

⊕ ::= ∧ | ∨ | . . . Boolean operations

Figure 3.1: λSEC grammar

Base values, in the syntactic class bv, include the Boolean constants for true and false
as well as function values. All computation in a security-typed language operates over
secure-values, which are simply base values annotated with a security label. Variables,
ranged over by the metavariable x, denote secure values.

Expressions include values, primitive Boolean operations such as the logical “and”
operation ∧, function application, and a conditional expression.

To obtain the underlying unlabeled lambda-calculus term from a λSEC term, we sim-
ply erase the label annotations on security types and secure values. For any λSEC term
e, let erase(e) be its label erasure. The resulting language is identical to standard defini-
tions of the simply typed lambda-calculus [Mit96].

Definition 3.1.1 (Free and Bound Variables) Let vars(e) be the set of all variables oc-
curring in an expression e. The free and bound variables of an expression e are defined
as usual for the lambda calculus. They are denoted by the functions fv(−) and bv(−)
respectively.

25

fv(t�) = ∅
fv(f�) = ∅

fv((λx :s. e)�) = fv(e) \ {x}
fv(e1 e2) = fv(e1) ∪ fv(e2)

fv(e1 ⊕ e2) = fv(e1) ∪ fv(e2)
fv(if e then e1 else e2) = fv(e) ∪ fv(e1) ∪ fv(e2)

bv(e) = vars(e) \ fv(e)

Following Barendregt[Bar84], this thesis uses the bound variable convention: the
terms are identified up to consistent renaming of their bound variables. Two such terms
are said to be α-equivalent, and this is indicated by the notation e1 =α e2. Usually,
however, terms will be considered to implicitly stand for their =α-equivalence classes;
consequently, bound variables may be renamed so as not to conflict.

Definition 3.1.2 (Program) A program is an expression e such that fv(e) = ∅. Such
an expression is said to be closed. Expressions that contain free variables are open.

3.1.1 Operational semantics

For simplicity, we give λSEC a large-step operational semantics. The standard evaluation
relation is of the form e ⇓S v, which means that the (closed) program e evaluates to the
value v. The definition of the ⇓S relation is given in Figure 3.2.1 Figure 3.3 shows
the instrumented operational semantics, which is derived from the standard operational
semantics by adding labels.

Values evaluate to themselves; they require no further computation, as indicated by
the rule λSEC-EVAL-VAL.

Binary Boolean operators are evaluated using the rule λSEC-EVAL-BINOP. Here,
the notation [[⊕]] is the standard semantic function on primitive values corresponding to
the syntactic operation ⊕. For example:

t [[∧]] t = t

t [[∧]] f = f

f [[∧]] t = f

f [[∧]] f = f

1The box at the top of the figure (and subsequent figures in this thesis) illustrates the form of the
relation defined by the figure. Rules are named by appending a short description in SMALL CAPS to the
name of the language to which the rule pertains.

26

e ⇓S v

λSEC-SEVAL-VAL v ⇓S v

λSEC-SEVAL-BINOP

e1 ⇓S bv1 e2 ⇓S bv2

e1 ⊕ e2 ⇓S bv1[[⊕]]bv2

λSEC-SEVAL-COND1
e ⇓S t e1 ⇓S v

if e then e1 else e2 ⇓S v

λSEC-SEVAL-COND2
e ⇓S f e2 ⇓S v

if e then e1 else e2 ⇓S v

λSEC-SEVAL-APP

e1 ⇓S λx :s. e e2 ⇓S v e{v/x} ⇓S v′

e1 e2 ⇓S v′

Figure 3.2: Standard large-step operational semantics for λSEC

e ⇓ v

λSEC-EVAL-VAL v ⇓ v

λSEC-EVAL-BINOP

e1 ⇓ (bv1)�1
e2 ⇓ (bv2)�2

e1 ⊕ e2 ⇓ (bv1[[⊕]]bv2)(�1��2)

λSEC-EVAL-COND1
e ⇓ t� e1 ⇓ v

if e then e1 else e2 ⇓ v � �

λSEC-EVAL-COND2
e ⇓ f� e2 ⇓ v

if e then e1 else e2 ⇓ v � �

λSEC-EVAL-APP

e1 ⇓ (λx :s. e)� e2 ⇓ v e{v/x} ⇓ v′

e1 e2 ⇓ v′ � �

Figure 3.3: Labeled large-step operational semantics for λSEC

27

As shown in the evaluation rule, the labels on the arguments to the binary operation are
joined to produce the label on the result. This is necessary because it is possible to learn
information about the arguments based on the outcome of the operation. As a simple
example, we have:

t� ∧ f⊥ ⇓ f�

The pair of rules λSEC-EVAL-COND1 and λSEC-EVAL-COND2 describe the behav-
ior of conditional expressions. First, the conditional expression is evaluated to a Boolean
value. If the result is t� the first branch is evaluated, otherwise the second branch is. The
confidentiality label � of the if guard propagates to the result of the condition expression
because the result depends on information contained in the guard.

The notation v � � in these rules is a convenient abbreviation used throughout this
thesis. This operation simply joins the label � into the label tagging a secure value:

Definition 3.1.3 (Label Stamping) Let bv� be any secure value and �′ be any label in
the security lattice.

bv� � �′ def
= bv(���′)

As an example of how this operational semantics propagates the security labels to
account for information flows, we have the following derivation tree, which says that
the results of branching on high-security data are high-security:

t� ⇓ t� t⊥ ⇓ t⊥
if t� then t⊥ else f⊥ ⇓ t�

Finally, rule λSEC-EVAL-APP shows the operational behavior of function applica-
tion. The left expression must evaluate to a function value. The right expression must
evaluate to a value. Finally the actual parameter to the function call is substituted for the
bound variable in the body of the function to obtain the result.

The application rules make use of capture-avoiding substitution, a concept used
throughout this thesis:

Definition 3.1.4 (Capture-Avoiding Substitution) Let e1 and e2 be expressions and
let x be a variable. The capture-avoiding substitution of e1 for x within e2 is written
e2{e1/x}. Such a substitution is well defined when fv(e1)∩bv(e2) = ∅, that is, whenever
none of the binding occurrences of variables in e2 can capture the free variables of e1.
Note that it is always possible to choose a term α-equivalent to e2 so that substitution
may occur.

A substitution e2{e1/x} results in a new term in which the free occurrences of the
variable x in e1 have been replaced by the expression e1. It is defined inductively on the
structure of e2.

28

x{e1/x} def
= e1

y{e1/x} def
= y (when x = y)

t�{e1/x} def
= t�

f�{e1/x} def
= f�

(λy : t. e)�{e1/x} def
= (λy : t. e{e1/x})� (x = y by assumption)

(e e′){e1/x} def
= (e{e1/x} e′{e1/x})

(if e then e′ else e′′){e1/x} def
= if e{e1/x} then e′{e1/x} else e′′{e1/x}

In λSEC-EVAL-APP the security label on the function being applied is stamped into
the results of calling the function. Such a restriction, in combination with the rule for
conditionals, prevents information flows that arise when high-security data influences
the choice of which function gets applied to a piece of data.

As an example, consider the following program that applies either the Boolean iden-
tity or Boolean negation, based on high-security information. It also results in a high-
security value:

(if f� then (λx :bool⊥. x)⊥ else (λx :bool⊥. x ⇒ f⊥)⊥) t⊥ ⇓ f�

This program shows the propagation of a high-security label through the conditional
expression and then through the resulting function application, as seen in these sub-
derivations that are part of its evaluation:

f� ⇓ f� (λx :bool⊥. x⇒ f⊥)⊥ ⇓ (λx :bool⊥. x⇒ f⊥)⊥
(if f� then (λx :bool⊥. x)⊥ else (λx :bool⊥. x⇒ f⊥)⊥) ⇓ (λx :bool⊥. x⇒ f⊥)�

(λx :bool⊥. x ⇒ f⊥)� ⇓ (λx :bool⊥. x ⇒ f⊥)� t⊥ ⇓ t⊥

t⊥ ⇓ t⊥ f⊥ ⇓ f⊥
(x ⇒ f⊥){t⊥/x} ⇓ f⊥

(λx :bool⊥. x ⇒ f⊥)� t⊥ ⇓ t�

Finally, we note that the instrumented operational semantics of λSEC terms corre-
sponds to the standard operational semantics.

Lemma 3.1.1 (Erasure) If e ⇓ v then erase(e) ⇓ erase(v).

Proof (sketch): By induction on the derivation of e ⇓ v. For λSEC-EVAL-APP one
must show that erasure commutes with substitution:

erase(e){erase(v)/x} = erase(e{v/x})
�

29

3.1.2 An aside on completeness

It is worth noting that the labels used in the operational semantics of this simple language
are an approximation to the true information flows. For example, the following program
could be deemed to produce a low-security result because its result does not depend on
the high-security value used in the conditional. Nevertheless, it is considered to return a
high-security value

if t� then t⊥ else t⊥

λSEC, a toy language, is not Turing complete: all λSEC programs eventually halt be-
cause their label erasures are simply-typed lambda calculus programs, which are known
to terminate [Mit96]. In principle, it would be possible to fully characterize the informa-
tion flows that arise in a λSEC program, but such an analysis would amount to running
the program on all possible high-security inputs and determining whether it produced
the same low-security output in each run. In the worst case, such an analysis could take
time more than exponential in the program size, so approximating the information flows
with the security lattice elements is justified.

In Turing-complete languages, like those presented later in this thesis, the problem of
determining security is even harder. Because it is possible to reduce the halting problem
to the problem of determining whether a program is secure, the question is undecidable.
Thus, some form of approximation, like the lattice elements used here, is necessary.

3.1.3 λSEC type system

The type system for λSEC is designed to prevent unwanted information flows. The ba-
sic idea is to associate security-labels to the type information of the program and then
take the confidentiality lattice into account when type checking so as to rule out illegal
(downward) information flows.

This section examines the type system for λSEC in detail, and proves some basic
properties that establish its soundness. The next section proves the desired noninterfer-
ence result: well-typed programs are secure.

Because upward information flows are allowed (e.g. low-confidentiality data may
flow to a high-confidentiality variable), the lattice ordering is incorporated as a subtyp-
ing relationship [VSI96]. This subtyping eliminates the need for the programmer to
make explicit when information flows are permissible.

The subtype relationship is shown in Figure 3.4, which contains mutually-recursive
rules of the form � t1 ≤ t2 and � s1 ≤ s2. The rules establish that ≤ is a reflexive,
transitive relation that obeys the expected contravariance for function types.

The interesting rule is λSEC-SLAB, which allows a low-security type to be treated as
a high-security type. For example, � bool⊥ ≤ bool� because anywhere a high-security

30

� t1 ≤ t2 � s1 ≤ s2

λSEC-TREFL � t ≤ t

λSEC-TTRANS

� t ≤ t′ � t′ ≤ t′′

� t ≤ t′′

λSEC-TFUNSUB

� s′1 ≤ s1 � s2 ≤ s′2
� s1 → s2 ≤ s′1 → s′2

λSEC-SLAB

� t ≤ t′ � � �′

� t� ≤ t′�′

Figure 3.4: Subtyping for pure λSEC

Boolean can be safely used, a low-security Boolean can also be used. Intuitively, if the
program is sufficiently secure to protect high-security data, it also provides sufficient
security to “protect” low-security data.

The rules for type checking terms of λSEC are given in Figure 3.5. They are judg-
ments of the form Γ � e : s, which says “under the assumptions provided by Γ , the
term e is a secure program that evaluates to a value of type s.” Here, Γ is a type context
that maps the free variables of the term e to their types:

Definition 3.1.5 (Type Environment) A type environment is a finite map from vari-
ables to security types. Syntactically, type environments are written as terms in the
following grammar:

Γ ::= · | Γ , x :s

Here, · stands for the empty type environment, and if Γ is any environment, then
Γ , x :s stands for a new environment in which the variable x is mapped to the type s.

The domain of a type environment Γ , written dom(Γ), is simply the set of variables
on which the finite map is defined. The notation Γ (x) is used to indicate the type s to
which x is mapped by Γ , and is undefined if Γ does not contain a mapping for x.

To avoid unnecessary clutter, whenever the type environment is empty, the symbol
· will be elided from the judgment. For example · � t� : bool� will be written as
� t� : bool�.

The rules of the type system make use of the intuitions formed from the operational
semantics of the language—appropriate security information is propagated in such a

31

Γ � e : s

λSEC-TRUE Γ � t� : bool�

λSEC-FALSE Γ � f� : bool�

λSEC-VAR

Γ (x) = s

Γ � x : s

λSEC-FUN

Γ , x :s1 � e : s2 x ∈ dom(Γ)

Γ � (λx :s1. e)� : (s1 → s2)�

λSEC-BINOP

Γ � e1 : bool�1 Γ � e2 : bool�2

Γ � e1 ⊕ e2 : bool(�1��2)

λSEC-APP

Γ � e1 : (s2 → s)� Γ � e2 : s2

Γ � e1 e2 : s � �

λSEC-COND

Γ � e : bool� Γ � ei : s � � i ∈ {1, 2}
Γ � if e then e1 else e2 : s � �

λSEC-SUB

Γ � e : s � s ≤ s′

Γ � e : s′

Figure 3.5: Typing λSEC

way that the potential dependencies of computation on high-security information are
tracked. Because information is propagated only when data is examined in some way—
that is, its value is used to alter the behavior of the computation—the interesting rules
are the so-called elimination forms, which deconstruct values.

Rule λSEC-BINOP is a typical elimination rule: it ensures that the binary Boolean
operations are applied to Boolean values, but it additionally carries along the appropriate
security information. If the two operands are of security label �1 and �2 respectively, then
the results of the binary operation should be labeled with their join, �1��2 to approximate
the information that the resulting Boolean reveals about the operands.

Similarly, the rule for function application λSEC-APP ensures not only that the func-
tion is applied to an argument of the correct type, but also that the results of the function
call will be no less secure than the function itself, namely s � �.

32

Lastly, the if expression must propagate the security label of the condition to the
results of the computation, thus avoiding implicit information flows. Rule λSEC-COND

incorporates this constraint.
The introduction rules show how to create data values; consequently it is in these

rules that security annotations supplied by the programmer affect the labels that appear
in the types of the expressions.

Rules λSEC-TRUE and λSEC-FALSE say that Boolean constants have type bool, and
that they inherit whatever security annotation was declared in the program. Variables are
simply looked up in the appropriate type environment, as indicated in rule λSEC-VAR.
Similarly, the rule for function values, λSEC-FUN is standard: it says that the body of the
function is well-typed when the formal parameter is assumed to have the type declared
by the programmer.

The remaining rule, λSEC-SUB, plays an important role in the type system: it allows
an expression that results in a low-security value to be used in a position where high-
security data is expected.

Definition 3.1.6 (Substitution) A substitution γ is a finite map from variables to val-
ues. If Γ is a typing environment and γ is a substitution, we write γ |= Γ to mean that γ
assigns each variable a value of the type required by Γ. It should be read “substitution
γ satisfies environment Γ.” Formally, we have:

dom(Γ) = dom(γ) ∧ ∀x ∈ dom(Γ). � γ(x) : Γ (x)

The notation γ(e) is short-hand for the simultaneous capture-avoiding substitutions:2

γ(e)
def
= e{γ(x1)/x1}{γ(x2)/x2} . . . {γ(xn)/xn} where {x1, . . . , xn} = dom(γ)

In order to show that the λSEC-EVAL-APP rule preserves typing, we must show that
substitution of well-typed values does not yield an ill-typed term. This requirement is
captured in the following lemma.

Lemma 3.1.2 (Value Substitutions) If Γ � e : s and γ |= Γ then � γ(e) : s.

Proof: Standard proof by induction on the derivation of Γ � e : s. �

In order to assess the outcome of evaluating a program, it is helpful to associate the
types of the result with their possible values. The connection is quite strong: The types
of values determine their syntactic structure.

2Note that because the values in the range of γ are closed, the substitutions may be done in any order.

33

Lemma 3.1.3 (Canonical Forms)

• If � v : bool� then v = t�′ or v = f�′ and �′ � �.

• If � v : (s1 → s2)� then v = (λx :s′1. e)�′ and � s1 ≤ s′1 and �′ � �.

Proof: By inspection of the forms for values and the typing rules. �

Lemma 3.1.4 (λSEC Preservation) If � e : s and there exists a value v such that e ⇓ v
then � v : s.

Proof: Standard proof by induction on the derivation that � e : s, appealing to
Lemma 3.1.2 in the case of λSEC-EVAL-APP. �

Preservation is weaker than full type soundness because it doesn’t say that a well-
typed program does not go “wrong” (makes progress). The standard way to prove such a
result for a language with large-step operational semantics is to provide evaluation rules
that result in errors and then show that well-typed programs never produce an error.
Although such a soundness result could easily be formulated for this language, there is
no reason to include it here.

3.1.4 Noninterference for λSEC

This section establishes a noninterference result for λSEC. In this simple setting, the
only possible observation of a program is the value to which it evaluates, consequently,
noninterference simply says that confidential information should not alter the public
results of any expression. Formally, we want to establish:

Theorem 3.1.1 (Noninterference) If x : tH � e : boolL and � v1, v2 : tH then

e{v1/x} ⇓ v ⇔ e{v2/x} ⇓ v

Proof: This theorem follows by using the method of logical relations as a special case
of Lemma 3.1.6 below. �

The intuition behind the proof comes from thinking of the behavior of a secure pro-
gram from the perspective of a low-security observer. For the program to be secure, you
(the low-security observer) should not be able to see any of the actions performed on
high-security data. On the other hand, you can see the low-security data and computa-
tions. The program is secure if you can’t see any of the high-security data.

To formalize this intuition, we need to mathematically model what it means for an
observer to be able to “see” (or not “see”) a piece of data. If you can “see” a value,

34

you can distinguish it from other values of the same type: for instance if you can see
the Boolean value t, you should be able to tell that it is not the value f. On the other
hand, if you cannot see some Boolean value x, you should not be able to distinguish
it from either t or f. Thus, to model the fact that two values are indistinguishable, we
simply use an appropriate equivalence relation—two values are related if they can’t be
distinguished.

Whether or not a piece of data is visible to the low-security observer depends on
its security annotation. Consequently, which equivalence relation to use to capture the
observer’s view of the data depends on the relationship between the observer’s security
clearance and the label on the value. Thus, we parameterize the equivalence relations
with ζ, the security level of the observer.

Using the standard technique of logical relations [Mit96], we can extend these equiv-
alence relations to higher-order pieces of data and computations over the data as follows:

Definition 3.1.7 (Security Logical Relations) For an arbitrary element ζ of the secu-
rity lattice, the ζ-level security logical relations are type-indexed binary relations on
closed terms defined inductively as follows. The notation v1 ≈ζ v2 : s indicates that v1

is related to v2 at type s. Similarly, the notation e1 ≈ζ e2 : C(s) indicates that e1 and e2

are related computations that produce values of type s.

v1 ≈ζ v2 : bool� ⇔ � vi : bool� ∧ � � ζ ⇒ v1 = v2

v1 ≈ζ v2 : (s1 → s2)� ⇔ � vi : (s1 → s2)� ∧
� � ζ ⇒ ∀ v′

1 ≈ζ v′
2 : s1. (v1 v′

1) ≈ζ (v2 v′
2) : C(s2 � �)

e1 ≈ζ e2 : C(s) ⇔ � ei : s ∧ e1 ⇓ v1 ∧ e2 ⇓ v2 ∧ v1 ≈ζ v2 : s

To show that a well-typed program e that produces a ζ-observable output of type s
(i.e. label(s) � ζ) is secure, we simply show that e ≈ζ e : C(s).

To do so, we must first show that the logical relations are well-behaved with respect
to the subtyping relation. Intuitively, the following lemma shows that if two values with
some security label are indistinguishable to an observer, they remain indistinguishable
if given a higher-security label.

Lemma 3.1.5 (Subtyping Relations) If v1 ≈ζ v2 : s1 and � s1 ≤ s2 then v1 ≈ζ v2 : s2.
If e1 ≈ζ e2 : C(s1) and � s1 ≤ s2 then e1 ≈ζ e2 : C(s2).

Proof: We strengthen the hypothesis with the auxiliary claims (and similarly for rela-
tions on computations):

v1 ≈ζ v2 : t� ∧ � t ≤ t′ ⇒ v1 ≈ζ v2 : t′�

v1 ≈ζ v2 : t� ∧ � � �′ ⇒ v1 ≈ζ v2 : t�′

35

We proceed by induction on this strengthened hypothesis. For λSEC-TREFL, the
result follows immediately. The case for λSEC-TTRANS follows by straightforward
induction.

The interesting case is when rule λSEC-TFUNSUB is the next-to-last rule used in the
derivation that � s1 ≤ s2. Assume s1 = t1�1 and s2 = t2�2 . By λSEC-SLAB it must be
the case that �1 � �2. We want to show that v1 ≈ζ v2 : t2�2 .

If �2 � ζ, then any two values of the correct type are related, and the typing rule
λSEC-SUB allows us to show that � vi : s2, so we are done. Otherwise, we have �2 � ζ,
from which we conclude that �1 � ζ. It must be that t1 = sa → sb and t2 = s′a → s′b
such that � s′a ≤ sa and � sb ≤ s′b. It remains to show that

∀ v′
1 ≈ζ v′

2 : s′a. (v1 v′
1) ≈ζ (v2 v′

2) : C(s′b � �2)

But, by the induction hypothesis on S relations it follows that v′
1 ≈ζ v′

2 : sa and by
the assumption that v1 ≈ζ v2 : s1 it follows that (v1 v′

1) ≈ζ (v2 v′
2) : C(sb � �1).

Using the induction hypothesis on the C relations and an easy induction that shows
� sb � �1 ≤ s′b � �2 we obtain the desired result that (v1 v′

1) ≈ζ (v2 v′
2) : C(s′b � �2).

The inductive step on computation relations Cs relations follows directly from the
mutual induction with the value relations. �

We need to prove the noninterference result for open programs, but to do so, we must
establish that the substitution operation preserves the ζ-equivalence relations. First,
we define a notion of related substitutions; two substitutions are related if they are
component-wise related.

Definition 3.1.8 (Related Substitutions) Two substitutions γ1 and γ2 are related, indi-
cated by writing Γ � γ1 ≈ζ γ2, if γi |= Γ and

∀x ∈ dom(Γ). γ1(x) ≈ζ γ2(x) : Γ (x)

We next must show that substitution preserves the logical relations:

Lemma 3.1.6 (Substitution) If Γ � e : s and Γ � γ1 ≈ζ γ2 then γ1(e) ≈ζ γ2(e) :
C(s).
Proof: By induction on the derivation that e has type s. Consider the last step used in
the derivation:

λSEC-TRUE Then Γ � t� : bool� and s = bool�. By the definition of substitutions,
γ1(e) = γ2(e) = t�. By two applications of the rule λSEC-EVAL-VAL, it follows
that γ1(e) ⇓ t� and γ2(e) ⇓ t�. By definition, t� ≈ζ t� : s as required.

λSEC-FALSE Analogous to the previous case.

36

λSEC-VAR Follows immediately from the facts that substitutions map variables to val-
ues and that γ1(x) ≈ζ γ2(x) : Γ (x) because Γ � γ1 ≈ζ γ2.

λSEC-BINOP Then e = e1⊕ e2 and s = bool� where � = �1� �2. That each γi(e1⊕ e2)
is well-typed and has type s follows from the Lemma 3.1.2. It thus remains to
show:

γ1(e1 ⊕ e2) ⇓ v1 ∧ γ2(e1 ⊕ e2)) ⇓ v2 ∧ v1 ≈ζ v2 : bool�

But, from the definition of substitution, we have

γi(e1 ⊕ e2) = γi(e1) ⊕ γi(e2)

So by inversion of the typing judgment and two applications of the induction
hypothesis, we obtain

γ1(e1) ≈ζ γ2(e1) : C(bool�1)

and
γ1(e2) ≈ζ γ2(e2) : C(bool�2)

Consequently, we have γ1(e1) ⇓ v11 and γ2(e1) ⇓ v21 where v11 ≈ζ v21 : bool�1 .
Similarly γ1(e2) ⇓ v12 and γ2(e2) ⇓ v22 where v12 ≈ζ v22 : bool�2 . By Canonical
Forms (Lemma 3.1.3) we have:

v11 = (bv11)�11 v12 = (bv12)�12

v21 = (bv21)�21 v22 = (bv22)�22

By two applications of rule λSEC-EVAL-BINOP we have:

γ1(e1 ⊕ e2) ⇓ (bv11[[⊕]] bv12)(�11��12)

γ2(e1 ⊕ e2) ⇓ (bv21[[⊕]] bv22)(�21��22)

It remains to show that

(bv11[[⊕]] bv12)(�11��12) ≈ζ (bv21[[⊕]] bv22)(�21��22) : bool�

If � � ζ then the result follows trivially because≈ζ relates all well-typed Boolean
expressions. So assume that � � ζ, and from the definition of ≈ζ relations at
Boolean type, we must show that the expressions are equal. By the inequalities
expressed above, it follows that both �1 � ζ and �2 � ζ. Thus, v11 ≈ζ v21) :
bool�1 and v12 ≈ζ v22) : bool�2 but then we have that v11 = v21 and v21 = v22.
Consequently, we obtain

(bv11[[⊕]] bv12)(�11��12) = (bv21[[⊕]] bv22)(�21��22)

as required.

37

λSEC-FUN In this case, e = (λx :s′. e′)� and s = (s′ → s′′)�. From the bound-variable
assumption, we have γi(e) = (λx :s′.γi(e

′))�. Because Lemma 3.1.2 indicates that
the resulting term is well-typed and these terms are already evaluated, it simply
remains to show that

(λx :s′. γ1(e
′))� ≈ζ (λx :s′. γ2(e

′))� : (s′ → s′′)�

To do so, note that if � � ζ then the terms are related in S trivially. Otherwise, we
have � � ζ and we must show that for v1 ≈ζ v2 : s′ that

((λx :s′. γ1(e
′))� v1) ≈ζ ((λx :s′. γ2(e

′))� v2) : C(s′′ � �)

But by the evaluation rule λSEC-EVAL-APP, these computations are related when-
ever

γ1(e
′){v1/x} ⇓ v′

1 ∧ γ2(e
′){v2/x} ⇓ v′

2 ∧ v′
1 ≈ζ v′

2 : (s′′ � �)

By inversion of the typing rule, we have that Γ , x : s′ � e′ : s′′ and that x ∈
dom(Γ). Observe that because v1 ≈ζ v2 : s′ it follows that

Γ , x :s′ � (γ1{x �→ v1}) ≈ζ (γ2{x �→ v2})
Now by the induction hypothesis it follows that

(γ1{x �→ v1}(e′)) ≈ζ (γ2{x �→ v2}(e′)) : C(s′′ � �)

But because x ∈ dom(Γ) the above statement is equivalent to

γ1(e
′){v1/x} ⇓ v′

1 ∧ γ2(e
′){v2/x} ⇓ v′

2 ∧ v′
1 ≈ζ v′

2 : (s′′ � �)

as required.

λSEC-APP In this case, e = e1 e2 and s = s′′ � � for some appropriate s′′ and �. It
follows that γi(e) = γi(e1 e2) = γi(e1) γi(e2). It follows from the induction
hypothesis and the well-typing of e that (γ1(e1)) ≈ζ (γ2(e1)) : C(s′ → s′′)� and
(γ1(e2)) ≈ζ (γ2(e2)) : C(s′). It follows from the definitions that

γ1(e1) ⇓ v11 ∧ γ2(e1) ⇓ v21 ∧ v11 ≈ζ v21 : (s′ → s′′)�

and that
γ1(e2) ⇓ v12 ∧ γ2(e2) ⇓ v22 ∧ v12 ≈ζ v22 : s′

But now, by definition of the value ≈ζ at function type relations, we have

(v11 v12) ≈ζ (v21 v22) : (s′′ � �)

38

λSEC-COND In this case, e = if e′ then e1 else e2 where Γ � e : bool� and Γ � ei :
s′ � � and s = s′ � �. We must show that

(γ1(if e′ then e1 else e2)) ≈ζ (γ2(if e′ then e1 else e2)) : C(s′ � �)

By definition of substitution, this is just

(if γ1(e
′) then γ1(e1) else γ1(e2)) ≈ζ (if γ2(e

′) then γ2(e1) else γ2(e2)) : C(s′��)

If � � ζ then the two terms are related trivially, because the ≈ζ relations relate
all such well-typed terms. So assume that � � ζ. By the induction hypothesis, it
follows that γ1(e

′) ≈ζ γ2(e
′) : C(bool�), so by definition we have γ1(e

′) ⇓ v1 and
γ2(e

′) ⇓ v2 and v1 ≈ζ v2 : bool�. But, since � � ζ, we have that v1 = v2. Thus,
either rule λSEC-EVAL-COND1 applies to both terms or λSEC-EVAL-COND2 ap-
plies to both terms; assume the former applies (the latter case is analogous). In
this case,

γ1(if e then e1 else e2) ⇓ v11 where γ1(e1) ⇓ v11

Similarly,

γ2(if e then e1 else e2) ⇓ v21 where γ2(e1) ⇓ v21

but by the induction hypothesis of this lemma, we already have v11 ≈ζ v21 :
C(s′ � �) as needed.

λSEC-SUB This follows directly from Lemma 3.1.5.

�

Finally, we obtain the noninterference proof as a simple corollary of Lemma 3.1.6.

3.2 λREF
SEC : a secure language with state

This section describes how to augment λSEC to include mutable state.
λREF

SEC includes a new type, s ref, that describes mutable references that point to
objects of type s. For example, if L is a memory location that stores the secure Boolean
value t⊥, then L can be given the type bool⊥ ref.

The memory location L may be updated to contain the value f⊥ by doing an assign-
ment with the program expression L := f⊥. The contents of L may be retrieved by the
dereference operation. For example, after the assignment just described, the program
let x = !L in e binds the variable x to the value f⊥.

39

It is unsafe to assign a high-security value to a low-security memory location. For
example, assuming L has type bool⊥ ref we must prevent the assignment L := t�
because such an assignment constitutes a direct flow from
 to⊥. This typing restriction
also prevents aliases, program variables that refer to the same memory location, from
being used to leak information. For instance, in the following program3, the variables x
and y must both be given the type bool⊥ ref

let x = L in

let y = x in

Otherwise, the alias could be used to leak information to the low-security location L.
Because references are themselves first-class values, they must also be given security

annotations. To see why, consider the following program in which L and L′ are both
low-security memory locations (they both contain data of type bool⊥) and h is of type
bool�.

L := t⊥;
L′ := t⊥;
let x = if h then L else L′ in

x := f⊥;
if !L then ... h is false

else ... h is true

This program contains an information flow from
 to ⊥ because whether the variable
x refers to L or L′ depends on high security information. To prevent this flow, secure
reference types include an additional security label, and are of the form s ref�. Here, L
and L′ might be given type bool⊥ ref⊥ but because the variable x depends on the high-
security h, x must be given the type bool⊥ ref�. The labeled operational semantics
and type system prevent the “bad” assignment x := f⊥ in the above program requiring
that the label of the reference be protected by the label of its contents. To assign to a
reference of type s ref� it must be the case that � � label(s). The example is ruled out
because
 � ⊥.

There is one more subtlety in dealing with mutable state. There can be an implicit
flow. Consider the following program, where L again has type bool⊥ ref⊥ and h is of
type bool�.

if h then L := t⊥ else L := f⊥

Here, the problem is that, even though the assignments to L are individually secure,
which of them occurs depends on high-security data. To prevent such implicit flows,

3The example (and others in this chapter) uses standard syntactic sugar for let and sequencing oper-
ations.

40

the type system for λREF
SEC associates a label pc with the program counter. Intuitively, the

program counter label approximates the information that can be learned by observing
that the program has reached a particular point during the execution. In the example
above, the program counter reveals the value of h, so inside the branches of the condi-
tional, we have pc =
. To prevent these implicit flows, the labeled semantics requires
that pc � label(s) whenever an assignment to a reference of type s ref� occurs in the
context with program counter label pc. This rules out the above example.

Another implicit information flow can arise due to the interaction between functions
and state. For example, consider a function f that takes no argument and assigns the
location L the constant t⊥. Function f can be written as:

f
def
= λ(). L := t⊥

This function is perfectly secure and can be used in many contexts, but it can also be
used to leak information. For example, consider the program below:

L := f⊥;
if h then f() else skip;

This program is insecure because f writes to the low-security memory location L. Calls
to functions that have side effects (writes to memory locations) can leak information in
the same way that assignment leaks information about the program counter.

To detect and rule out such implicit flows, function types in λREF
SEC include an addi-

tional label; they are of the form [�]s1 → s2. The label � is a lower bound on the labels of
any locations that might be written when calling the function. To call a function of this
type in a context where the program counter has label pc, the operational semantics and
type system require that pc � �. Thus, because f writes to a low security location, f is
given the type [⊥]unit⊥ → unit⊥; since pc =
 inside the branches of the conditional
guarded by h, the above program is ruled out.

With these intuitions in mind, we can now present details of λREF
SEC . Figure 3.6 con-

tains the grammar for this new source language, called λREF
SEC .

As just described, function types now include a label pc in their syntax [pc]s → s.
This label bounds the effects—writes to memory—that may occur when a function with
this type is invoked.

To model state, λREF
SEC includes locations, ranged over by Ls, which are the names of

memory cells that contain values of type s. Concrete memory locations are written using
lowercase letters like as, bs′ , etc., although the type annotations will often be omitted
when they are unimportant or clear from context. The type s decorating a location is
used for type checking purposes.

λREF
SEC provides a mechanism for allocating a new memory cell and storing a value

there: The expression refs e first evaluates the expression e to a value v, creates a fresh

41

location in memory, and then stores the value into that location. The result of refs e is
the newly created location.

The expression dereference operation !e evaluates e to obtain a location and then
returns the value stored in the memory at that location. The form e1 := e2 updates the
location indicated by e1 to contain the value obtained by evaluating e2 and then returns
〈〉. If the dereferenced or assigned location has not been created in memory, the program
halts (crashes).

Definition 3.2.1 (Memory) A memory M is a finite map from locations to values. Lo-
cations, ranged over by the metavariable L and decorated with a type s, are written Ls.
The notation M(Ls) denotes the value associated with location Ls in memory M . The
notation M [Ls �→ v] indicates the memory formed by replacing the contents of Ls by
the value v. If Ls is not in dom(M), then a new binding is created.

As an example, if M is the memory [abool� �→ t�], the expression abool� := f� causes
the memory to be updated to M [abool� �→ f�] = [abool� �→ f�].

An additional difference between λSEC and λREF
SEC is that λREF

SEC allows functions to be
recursive. The syntax λ[pc] f (x : s). e describes a function named f whose body is
able to assign to references that point to data with confidentiality label pc or higher. As
shown below, the pc is used to rule out insecure information flows that might arise due
to control flow involving calls to this function. The name f is bound within the body e;
it is used to invoke the function recursively. For example, the following function, when
invoked, goes into an infinite loop by calling itself immediately:

λ[⊥] f (x :s). f x

This function can be given the type [⊥]s → s for any secure type s.

3.2.1 Operational semantics

For λREF
SEC (and the other languages discussed in the remainder of this thesis), we present

only the labeled syntax and nonstandard operational semantics—from them it is straight-
forward to define the label erasure to a standard programming model.

The operational semantics for λREF
SEC is more complex than that of λSEC because it

must keep track of the effects that take place in the mutable storage. Accordingly, we
augment the abstract machine configurations to include memories as defined above.

Definition 3.2.2 (Machine configuration) A machine configuration is a triple, writ-
ten 〈M, pc, e〉, containing a memory M , a program counter label pc ∈ L, and an
expression e representing the program.

42

�, pc ∈ L Security labels

t ::= unit Unit type
| bool Boolean type
| s ref Reference type
| [pc]s → s Function type

s ::= t� Security types

bv ::= t | f Boolean base values
| 〈〉 Unit value
| λ[pc] f (x :s). e Recursive functions
| Ls Memory locations

v ::= x Variables
| bv� Secure Values

e ::= v Values
| e e Function applications
| e ⊕ e Primitive operations
| refse Reference creations
| !e Dereferences
| e := e Assignments
| if e then e else e Conditionals

⊕ ::= ∧ | ∨ | . . . Boolean operations

M ::= ∅ | M [Ls �→ v] Machine memories

m ::= 〈M, pc, e〉 Machine configurations

Figure 3.6: λREF
SEC grammar

43

A given machine configuration 〈M, pc, e〉 may evaluate to a final state of the form
〈M ′, v〉 or it may diverge. Figure 3.7 summarizes the operational rules. Just as with
λSEC, the operational semantics models function application using substitution.

The state also contains a security label pc that describes the information flows im-
plicit in the control flow of the program. For instance, recall the following example,
where h is of type bool�:

if h then L := t else L := f

This program copies the value in h into the value pointed to by reference L but returns
〈〉 no matter which branch is taken. If L represents a low-security memory location (i.e.
has type refbool⊥), this program is insecure. The problem is that the effect of writing to
the location L reveals information about the program counter at which the write occurs.

In order to determine that the program above is insecure, an analysis must be aware
that the assignment to L takes place in a context that reveals high-security information.
That fact is captured by a label pc, the program counter label, that conservatively bounds
the information that can be learned by observing that the program has reached that point
in the code. Within the body of a conditional guarded by a high-security Boolean, the
program counter label is high-security.

The operational semantics presented in Figure 3.7 includes additional checks that
regulate when it is safe to store a value in a memory location. For example, the rule
λREF

SEC -EVAL-ASSIGN requires that pc � � � label(s): the information contained in the
program counter together with the information label on the reference must be more
public than the label on the contents of the location. This run-time check prevents the
program above from writing to the location L if it stores low-security information.

References also have labels associated with them to prevent information flows that
result from aliasing: two variables that hold references may point to the same memory
location, and hence information may be leaked by assigning to one reference and detect-
ing the change through the other. One example of such aliasing was already described.
For another example, consider the following program:

a := t⊥;
let x = (if h then a else (ref t⊥)) in

let v1 = !x in

a := (¬ v1);

if (!x) = (¬ v1) then l := t⊥
else l := f⊥

Where the variables might be given the following types.

44

〈M1, pc, e〉 ⇓ 〈M2, v〉

λREF
SEC -EVAL-VAL 〈M, pc, v〉 ⇓ 〈M, v � pc〉

λREF
SEC -EVAL-PRIM

〈M, pc, e1〉 ⇓ 〈M ′, (v1)�1〉 〈M ′, pc, e2〉 ⇓ 〈M ′′, (v2)�2〉
〈M, pc, e1 ⊕ e2〉 ⇓ 〈M ′′, (v1 [[⊕]] v2)(�1��2)〉

λREF
SEC -EVAL-APP

〈M, pc, e1〉 ⇓ 〈M ′, (λ[pc′] f (x :s). e)�〉
〈M ′, pc, e2〉 ⇓ 〈M ′′, v〉 pc � � � pc′

〈M ′′, pc′, e{v/x}{(λ[pc′] f (x :s). e)�/f}〉 ⇓ 〈M ′′′, v′〉
〈M, pc, e1 e2〉 ⇓ 〈M ′′′, v′〉

λREF
SEC -EVAL-COND1

〈M, pc, e〉 ⇓ 〈M ′, t�〉 〈M ′, pc � �, e1〉 ⇓ 〈M ′′, v〉
〈M, pc, if e then e1 else e2〉 ⇓ 〈M ′′, v〉

λREF
SEC -EVAL-COND2

〈M, pc, e〉 ⇓ 〈M ′, f�〉 〈M ′, pc � �, e2〉 ⇓ 〈M ′′, v〉
〈M, pc, if e then e1 else e2〉 ⇓ 〈M ′′, v〉

λREF
SEC -EVAL-REF

pc � label(s)
〈M, pc, e〉 ⇓ 〈M ′, v〉 Ls ∈ dom(M ′)

〈M, pc, refse〉 ⇓ 〈M ′[Ls �→ v], Ls
pc〉

λREF
SEC -EVAL-DEREF

〈M, pc, e〉 ⇓ 〈M ′, Ls
�〉 M ′(Ls) = v

〈M, pc, !e〉 ⇓ 〈M ′, v � �〉

λREF
SEC -EVAL-ASSIGN

pc � � � label(s) Ls ∈ dom(M ′)
〈M, pc, e1〉 ⇓ 〈M ′, Ls

�〉 〈M ′, pc, e2〉 ⇓ 〈M ′′, v〉
〈M, pc, e1 := e2〉 ⇓ 〈M ′′[Ls �→ v], 〈〉pc〉

Figure 3.7: Operational semantics for λREF
SEC

45

h : bool�
a : bool⊥ ref⊥
x : bool⊥ ref�
v1 : bool⊥
l : bool⊥ ref⊥

This program copies the high-security boolean h into a location l. It does so by
conditionally creating an alias x to the location a and then testing whether in fact an
alias has been created. In this case, it is not the contents of the location a or x that
leak the information, it is the fact that a and x alias. (Pierce and Sangiorgi [PS99]
point out that a similar problem with aliasing in ML allows a programmer to violate
parametricity—aliasing provides a means for leaking type information.)

The label annotations on references rule out the program above when v1 is a low-
security Boolean because any value read through the reference high-security reference
x becomes high-security. This program will be rejected with the types given above
because !c has type bool� by v1 expects a ⊥-security Boolean. If instead, v1 were
given the type bool�, the program would still be ruled out because of the implicit flow
to the variable l in the branches of the second conditional. The only way for the above
program to be considered secure, is when, in addition to v1 having high security, variable
l is a reference to high security data.

3.2.2 Type system

The source type system is reminiscent of the type system for λSEC, but also draws on
the type systems found in previous work on information-flow languages such as the
one proposed by Volpano, Smith and Irvine [VSI96] and Heintze and Riecke’s SLam
calculus [HR98]. Unlike the SLam calculus, which also performs access control checks,
the source language type system is concerned only with secure information flow. The
type system rules out insecure information flows and thus eliminates the need for the
dynamic checks found in the operational semantics.

As with λSEC, the λREF
SEC type system lifts the ordering on the security lattice to a

subtyping relation on the values of the language (Figure 3.8).
Reference types obey the expected invariant subtyping, which is already expressed

by the λREF
SEC -TREFL rule. The security labels of the references themselves obey the

usual covariant subtyping given by λREF
SEC -SLAB. Consequently, s ref⊥ ≤ s ref� for

any s, but it is never the case that s ref� ≤ s′ ref�′ when s = s′.
The judgment Γ [pc] � e : s shows that expression e has source type s under type

context Γ , assuming the program-counter label is bounded above by pc. Intuitively,
the pc appearing in the judgment approximates the information that can be learned by

46

� t1 ≤ t2 � s1 ≤ s2

λREF
SEC -TREFL � t ≤ t

λREF
SEC -TTRANS

� t ≤ t′ � t′ ≤ t′′

� t ≤ t′′

λREF
SEC -TFUNSUB

pc′ � pc � s′1 ≤ s1 � s2 ≤ s′2
� [pc]s1 → s2 ≤ [pc′]s′1 → s′2

λREF
SEC -SLAB

� t ≤ t′ � � �′

� t� ≤ t′�′

Figure 3.8: Value subtyping in λREF
SEC

observing that the program counter has reached a particular point in the program. The
rules for checking program expressions appear in Figure 3.10.

Function types are labeled with their latent effect, a lower bound on the security
level of memory locations that will be written to by that functions. A function with type
[pc]s1 → s2 may be called safely only from contexts for which the program-counter
label, pc′ satisfies pc′ � pc because the side effects within the function body may leak
information visible at level pc. Rule λREF

SEC -FUN in Figure 3.9 shows that the label ap-
pearing in a function’s type is used to check the body of the function.

The [pc] component of λREF
SEC function types is contravariant, as shown in the rule

λREF
SEC -TFUN-SUB. This contravariance arises because the [pc] component is a lower

bound on the side effects that may occur in the body of a function. A function that has a
higher lower bound can exhibit fewer side effects, consequently such a function may be
used anywhere a function that is permitted to exhibit more side effects is required.

It is easy to see that this type system conservatively takes into account the informa-
tion flows from the context of the program to the value produced by the computation, as
shown by the following lemma:

Lemma 3.2.1 If Γ [pc] � e : s then pc � label(s).

Proof: By a trivial induction on the derivation that e has type s, observing that in the
base case (rule λREF

SEC -VAL) the condition pc � label(s) appears as an antecedent. �

Even though a well-formed source program contains no label values, memory lo-
cations may be allocated during the course of its evaluation. The λREF

SEC -EVAL-DEREF

47

Γ � v : s

λREF
SEC -TRUE Γ � t� : bool�

λREF
SEC -FALSE Γ � f� : bool�

λREF
SEC -UNIT Γ � 〈〉� : unit�

λREF
SEC -LOC Γ � Ls

� : s ref�

λREF
SEC -VAR

Γ (x) = s

Γ � x : s

λREF
SEC -FUN

f, x ∈ dom(Γ)
s′ = ([pc]s1 → s2)�

Γ , f :s′, x :s1 [pc] � e : s2

Γ � (λ[pc] f (x :s). e)� : s′

λREF
SEC -SUB

Γ � v : s � s ≤ s′

Γ � v : s′

Figure 3.9: Value typing in λREF
SEC

48

Γ [pc] � e : s

λREF
SEC -VAL

Γ � v : s pc � label(s)

Γ [pc] � v : s

λREF
SEC -APP

Γ [pc] � e : ([pc′]s′ → s)� Γ [pc] � e′ : s′ pc � � � pc′

Γ [pc] � e e′ : s � �

λREF
SEC -PRIM

Γ [pc] � e1 : bool� Γ [pc] � e2 : bool�

Γ [pc] � e1 ⊕ e2 : bool�

λREF
SEC -REF

Γ [pc] � e : s

Γ [pc] � refse : s refpc

λREF
SEC -DEREF

Γ [pc] � e : s ref�

Γ [pc] � !e : s � �

λREF
SEC -ASSN

Γ [pc] � e1 : s ref� Γ � e2 : s � � label(s)

Γ [pc] � e1 := e2 : unitpc

λREF
SEC -COND

Γ [pc] � e : bool� Γ [pc � �] � ei : s i ∈ {1, 2}
Γ [pc] � if e then e1 else e2 : s

λREF
SEC -EXPRSUB

Γ [pc] � e : s � s ≤ s′

Γ [pc] � e : s′

Figure 3.10: Expression typing in λREF
SEC

49

implicitly requires that the location being dereferenced be in the domain of the mem-
ory. Consequently, for the type system to rule out dereferencing of unallocated memory
cells, there must be a notion of when a memory is well formed. More formally, for
any program expression e, the set Loc(e) consists of all location names appearing in
e. The memory reference invariant says that in any well-formed machine configuration
〈M, pc, e〉 it should be the case that Loc(e) ⊆ dom(M). Indeed this is the case, but
to show that such a property holds, the type system must show that the memory M is
well-formed.

Because memories may contain cyclic data structures, we must carefully formulate
the notion of when a memory is well-formed. Intuitively, we want a location Ls to point
to a value v of type s, but v may contain references to other locations—even Ls itself.
We thus must use a kind of “assume”–“guarantee” reasoning, in which we assume that
all the required locations are present and well-typed in the memory when showing that
a particular memory item is well-formed.

Definition 3.2.3 (Memory well-formedness) A memory M is well-formed, written �
M wf if and only if

∀Ls ∈ dom(M). Loc(M(Ls)) ∈ dom(M) ∧ �M(Ls) : s

The intention is that whenever a closed program is placed in the context of a well-
formed memory that provides a meaning to all of the locations occurring in the program,
the type system guarantees that there will be no illegal information flows or unexpected
errors during the evaluation of the program. Formally:

Lemma 3.2.2 (λREF
SEC Preservation) If · [pc] � e : s and � M wf and Loc(e) ⊆ |M |

and 〈M, pc, e〉 ⇓ 〈M ′, v〉 then · � v : s and � M ′ wf and Loc(v) ⊆ |M ′|.
Proof: A standard proof on the derivation that 〈M, pc, e〉 ⇓ 〈M ′, v〉 . �

3.2.3 Noninterference for λREF
SEC

The type system for λREF
SEC is sufficient to establish a noninterference result, but doing

so requires a more sophisticated proof than the logical relations argument used for λSEC

in Section 3.1.4. The difficulty is that λREF
SEC has mutable state and first-class references.

Consequently, the equivalence relations must be extended to account for the contents of
memory.

Rather than prove noninterference for λREF
SEC directly, we shall translate λREF

SEC to a
language that makes the operational behavior of the programs more explicit and prove
noninterference for that language instead. Correctness of the translation then implies
that λREF

SEC inherits the security properties of the target language.
The next chapter proves the desired noninterference result for the target language.

50

3.3 Related work

Palsberg and Ørbæk studied a simply-typed lambda calculus that included facilities for
distinguishing trusted and untrusted computation [PO95]. Their type system enforces
an information-flow property intended to protect the integrity of data.

Volpano, Smith and Irvine [VSI96, VS97] were among the first to propose a security
type system. They considered a small imperative language with while loops and con-
ditionals. Memory locations are tagged with their security level and may contain only
integers. This work contributed the first soundness result for a security-typed language
intended to protect confidentiality.

Heintze and Riecke created the SLam (Secure Lambda) Calculus to investigate non-
interference in higher-order languages [HR98]. SLam is a variant of the simply-typed
lambda calculus, similar to the languages presented in this chapter. In addition, SLam
includes fixed-point recursion, products, and sum type constructors.

In the purely functional case, Heintze and Riecke provide a noninterference proof
using a logical-relations style argument over a denotational semantics of the program.
The idea is to interpret the type-structure of the language as partial equivalence relations
(PERs) over the denotations of the terms. Low-security views of high-security data
are represented by complete relations, and the fact that well-formed programs must
preserve all relations implies that high-security data cannot be observed by looking at
low-security data. This proof of noninterference for λSEC given in this chapter is an
operational semantics adaptation of their approach. They do not prove a noninterference
result for the stateful version of SLam.

The idea that noninterference can be captured by using a partial equivalence relation
semantics is further investigated by Abadi and others [ABHR99]. This work observes
that noninterference can be framed as a dependency analysis, and that several well-
known analyses including binding time, SLam’s type system, and the type system of
Smith and Volpano could be unified into a common theoretical framework. This model,
called the Dependency Core Calculus (DCC), builds on a long thread of research to
understand parametric polymorphism [Str67, Rey74, Rey83, MPS86, CGW89, AP90,
MR92a].

Program slicing techniques [Tip95] also provide information about the data depen-
dencies in a piece of software. The use of backward slices to investigate integrity and re-
lated security properties has been proposed [FL94, LWG+95]. Program debugging and
understanding existing software is the focus of the slicing work, and these approaches
typically do not allow programmer specified annotations to guide the slicing analysis.

Sabelfeld and Sands have extended the denotational semantics approach to proving
noninterference properties to the case of nondeterministic and probabilistic programs
[SS99]. They confine themselves to a simple imperative programming language similar
to the one studied by Volpano and Smith. The technique is essentially the same one

51

used in DCC: logical relations are built over a denotational semantics of the program.
The new twist is that powerdomains (the domain-theoretic analog to the powerset) are
used to accommodate the set of possible outputs due to nondeterminism. The interesting
observation here is that the choice of powerdomain operator (there are three) gives rise
to different ways of handling nonterminating programs: one powerdomain corresponds
to total correctness, one to partial correctness, and one to a “mixture” of the two that
yields more accurate results with respect to information flow.

Pottier and Conchon [PC00] describe a means of automatically extending an exist-
ing, sound type system so that a type inference algorithm also infers information flows
within a program. This effectively separates the mechanism for discovering information
flows from the policy about which flows are acceptable.

Reitman [Rei78] and Andrews [AR80] propose a Hoare-style logic for reasoning
about information flows in a simple imperative language. They extend the axiomatic
semantics to handle concurrency primitives, but give no correctness proofs of the logic.
Their work is less concerned with providing ways to enforce security policies than with
simply reasoning about the flows within the program.

Chapter 4

Noninterference in a Higher-order
Language with State

This chapter proves a noninterference result for a higher-order language with state, and
shows how to apply that result to the language λREF

SEC . Rather than prove noninterference
for λREF

SEC directly, we instead translate λREF
SEC to a new, lower-level language called λCPS

SEC.

The purpose of λCPS
SEC is to make the operational behavior of programs more explicit

by introducing the notion of a continuation. A continuation is an abstraction of the (po-
tential) future computation of a program. Like functions, continuations take arguments
and encapsulate a piece of code to run when supplied a value for the argument. Un-
like functions, continuations never return to the calling context. Instead, a continuation
either halts the whole program or invokes another continuation.

Because continuations are themselves first-class objects that can be manipulated as
data values, more structured control-flow mechanisms, like procedure call and return,
can be decomposed into continuation-passing style (CPS) [Fis72, Rey72, Ste78, App92,
DF92, FSDF93]. Continuations are thus more primitive than functions.

Compiling a structured, higher-order program to CPS exposes its control-transfer
behavior. There are a number of reasons why this compilation approach to establishing
noninterference is useful:

1. In contrast to λREF
SEC , λCPS

SEC has a small-step operational semantics. This means that
the sequence of states through which the memory passes during evaluation is more
apparent in λCPS

SEC than in λREF
SEC . Consequently, the noninterference result for λCPS

SEC

is stronger than the corresponding result for λREF
SEC because the former says that the

sequence of states induced must not reveal information to a low-security observer

52

53

whereas the latter says only that the final state reached by the program (if any)
should not reveal information to a low-security observer.1

2. The target language λCPS
SEC is more expressive than the source language in the sense

that it permits certain code transformations, like tail-call optimizations, that are
useful in practice.

3. Because the semantics of λCPS
SEC are closer to those of an actual computer, studying

how information-flow policies can be enforced at this level of abstraction opens
up the potential for checking security of assembly code [MWCG99], perhaps by
way of proof-carrying code [Nec97].

4. Finally, using continuations, rather than more structured control transfers like pro-
cedure calls, provides a stepping stone to the distributed computing setting. Mes-
sage passing in distributed systems, like continuation invocation, is a fundamen-
tally unidirectional operation from which more complex behaviors are defined.
Understanding continuation-passing style in a sequential, single-processor setting
leads to a better understanding of the problems that arise in the concurrent, dis-
tributed setting.

This chapter explores the problem of CPS compilation for security-typed languages.
It shows how a type system that captures the structured operations of the source language
can enforce information-flow security in low-level programming languages.

4.1 CPS and security

As we was shown in the last chapter, type systems for secrecy or integrity are con-
cerned with tracking dependencies in programs. Recall that one difficulty is implicit
flows, which arise from the control flow of the program. Consider the code fragment
(A) in Figure 4.1.2 There is an implicit flow between the value stored in h and the
value stored in a, because examining the contents of a after the program has run gives
information about the value in h. There is no information flow between h and b, how-
ever. Consequently, this code is secure when h and a are high-security variables and b

is low-security.

1One could also formulate a small-step semantics for λREF
SEC directly; doing so and establishing a

noninterference result requires essentially the same amount of work as proving noninterference for λCPS
SEC.

The other benefits favor the CPS approach.
2The examples are written in an imperative pseudo-code in which continuations can be introduced

explicitly (as in k = (λ〈〉. halt)) and invoked (as in k 〈〉). The actual syntax of λCPS
SEC is given in

Section 4.2.1.

54

(A) if h then { a := t; } else { a := f; }

b := f; halt;

(B) let k = (λ〈〉. b := f; halt) in

if h then { a := t; k 〈〉; } else { a := f; k 〈〉; }

(C) let k = (λ〈〉. b := f; halt) in

if h then { a := t; k 〈〉; } else { a := f; halt; }

(D) letlin k = (λ〈〉. b := f; halt) in

if h then { a := t; k 〈〉; } else { a := f; k 〈〉; }

(E) letlin k0 = (λ〈〉. halt) in

letlin k1 = (λk. b := t; k 〈〉) in

letlin k2 = (λk. b := f; k 〈〉) in

if h then { letlin k = (λ〈〉. k1 k0) in k2 k }

else { letlin k = (λ〈〉. k2 k0) in k1 k }

Figure 4.1: Examples of information flow in CPS

A programmer using a type system for enforcing information flow policies might
assign h the type bool� (high-security Boolean) and b the type bool⊥ (low-security
Boolean). If a were given the type bool�, program fragment (A) would type check, but
if a were given a low-security type (A) would not type check due to the implicit flow
from h to a. As we saw in the previous chapter, security-typed languages deal with these
implicit flows by associating a security annotation with the program counter (which we
will usually indicate by pc). In example (A), the program counter at the point before the
if statement might be labeled with L to indicate that it does not depend on high-security
data. Recall that within the branches of the conditional the program counter depends on
the value of h, and hence the pc must be
—the security label of h. Values (such
as the constants t and f of the example) pick up the security annotation of the program
counter, and consequently when a has type bool⊥ the assignment a := t is illegal—the
(implicitly) high-security value t is being assigned to a low-security memory location.

Suppose we were to straightforwardly adapt the source rule λREF
SEC -APP, which type-

checks function application, to account for continuation invocation. The resulting rule
would look something like:

CONSERVATIVE

Γ [pc] � k : [pc′]s → 0 Γ [pc] � v : s pc � pc′

Γ [pc] � k v

55

Here, the type of a continuation expecting an argument of type s is written [pc′]s → 0.
As with function types, the label pc′ is a lower bound on the security level of effects
that occur inside the body of the continuation k. The → 0 part indicates that, unlike
functions, continuations never return to their calling context. Just as for λREF

SEC -APP, the
condition pc � pc′ requires that the information contained in the program counter of the
caller is more public than the effects that occur once the continuation has been called.

Fragment (B) illustrates the problem with this naive rule for continuations. It shows
the code from (A) after CPS translation has made control transfer explicit. The variable
k is bound to the continuation of the if, and the jump is indicated by the application
k 〈〉. Because the invocation of k has been lifted into the branches of the conditional, the
rule CONSERVATIVE will require that the body of k not write to low-security memory
locations. The value of h would apparently be observable by low-security code and
program (B) would be rejected because k writes to a low-security variable, b.

However, this code is secure; there is no information flow between h and b in (B)

because the continuation k is invoked in both branches. On the other hand, as example
(C) shows, if k is not used in one of the branches, then information about h can be
learned by observing b. Linear type systems [Abr93, Gir87, Wad90, Wad93] can express
exactly the constraint that k is used in both branches. By making k’s linearity explicit,
the type system can use the additional information to recover the precision of the type
system for λREF

SEC . Fragment (D) illustrates this simple approach; in addition to a normal
let construct, we include letlin for introducing linear continuations. The program
(D) certifies as secure even when b is a low-security variable, whereas (C) does not.

Although linearity allows for more precise reasoning about information flow, lin-
earity alone is insufficient for security in the presence of first-class continuations. In
example (E), continuations k0, k1, and k2 are all linear, but there is an implicit flow
from h to b because b lets us observe the order in which k1 and k2 are invoked. It is
thus necessary to regulate the ordering of linear continuations. The type system pre-
sented in Section 4.2.4 requires that exactly one linear continuation be available at any
point—thus eliminating the possibility of writing code like example (E). We show in
Section 4.4 that these constraints are sufficient to prove a noninterference result.

It is easier to make information-flow analysis precise for λREF
SEC than λCPS

SEC because
the structure of λREF

SEC limits control flow. For example, it is known that both branches
of a conditional return to a common merge point. This knowledge is exploited by
the type system to obtain less conservative analysis of implicit flows than the rule
CONSERVATIVE above. Unfortunately, the standard CPS transformation loses this in-
formation by unifying all forms of control to a single mechanism. With the linearity
approach, the target language still has a single underlying control transfer mechanism
(examples (B) and (D) execute exactly the same code), but the type system statically
distinguishes between different kinds of continuations, allowing information flow to be
analyzed with the same precision as in λCPS

SEC.

56

4.1.1 Linear Continuations

Before diving into the formal definition of the secure CPS language, it is helpful to have
some intuition about what a linear continuation is. Ordinary continuations represent a
possible future computation of a program. How they are manipulated encapsulates the
control flow aspects of a piece of code. Powerful language constructs such as callcc
(found in the high level languages Scheme and Standard ML of New Jersey) expose the
continuations to the programmer in a first-class way, allowing direct manipulation of
the control flow. However, such use of continuations is far from common. As observed
by Berdine et al. [BORT01], many control-flow constructs use continuations linearly
(exactly once). This linearity arises from restrictions of the source language: functions
return exactly once, merge-points of conditional statements are reachable in exactly one
way from each branch, etc. The fact that callcc and other nonstandard control-flow
operators discard or duplicate continuations is part of what makes reasoning about them
difficult.

Combining linearity with an ordering on continuations restricts their manipulation
even further. Ordered linear continuations enforce a stack discipline on control [PP00].
Introducing a linear continuation is analogous to pushing a return address onto a stack;
invoking a linear continuation corresponds to popping that address and jumping to the
return context. Because many constructs (function call/return, nested blocks, and merge-
points of conditionals) of high-level structured programs can be implemented via a stack
of activation records, ordered linear continuations are a natural fit to describing their
control flow behavior.

Using ordered linear continuations in a type system divorces the description of the
stack-like control constructs of a programming language from its syntax (block struc-
ture). This separation is essential for preserving control-flow information across compi-
lation steps such as CPS transformation, because the syntactic structure of the program
is altered. The main insight is that we can push information implicitly found in the
structure of a program into explicit descriptions (the types) of the program.

4.2 λCPS
SEC: a secure CPS calculus

This section describes the secure CPS language, its operational behavior, and its static
semantics. λCPS

SEC is a call-by-value, imperative language similar to those found in the
work on Typed Assembly Language [CWM99, MWCG99], although its type system is
inspired by previous language-based security research [HR98, Mye99, VSI96].

57

4.2.1 Syntax

The syntax for λCPS
SEC is given in Figure 4.2.

Following the proposal for labeling data outlined in Chapter 2, we assume a lattice
of security labels, L. The � symbol denotes the lattice ordering. As before, the lattice
join and meet operations are given by � and 	, respectively, and the least and greatest
elements are written ⊥ and
. Elements of L are ranged over by meta-variables � and
pc. As in the λREF

SEC semantics, we reserve the meta-variable pc to suggest that the security
label corresponds to information learned by observing the program counter.

Types fall into two main syntactic classes: security types, s, and linear types, κ.
Security types are the types of ordinary values and consist of a base-type component,
t, annotated with a security label, �. Base types include Booleans, unit, and references.
Continuation types, written [pc](s, κ) → 0, indicate a security level and the types of their
arguments. The notation 0 describes the “void” type, and it indicates that a continuation
never returns.

Corresponding to these types, base values, bv, include the Booleans t and f, a unit
value 〈〉, type-annotated memory locations, Ls, and continuations, λ[pc]f(x :s, y :κ). e.
All computation occurs over secure values, v, which are base values annotated with a
security label. Variables, x, range over values.

As an example, the value t⊥ represents a low-security Boolean (one of type bool⊥)
that is observable by any computation. On the other hand, the value f� represents a high-
security Boolean that should be observable only by high-security computations—those
computations that do not indirectly influence the low-security portions of the memory.
The operational semantics will ensure that labels are propagated correctly. For instance
we have t⊥ ∧ f� = f�, because low-security computation, which can affect the low-
security portions of memory and hence leak information to a low-security observer of
the program, should be prevented from observing the result—it contains information
about the high-security value f�.

As in λREF
SEC , references contain two security annotations. For example, the type

bool� ref⊥ represents the type of low-security pointers to high-security Booleans,
which is distinct from bool⊥ ref�, the type of high-security pointers to low-security
Booleans. The data returned by a dereference operation is protected by the join of the
two labels. Thus, Booleans obtained through pointers of either of these two reference
types will receive a security label of
.

An ordinary continuation λ[pc]f(x : s, y : κ). e is a piece of code (the expression e)
that accepts a nonlinear argument of type s and a linear argument of type κ. Continu-
ations may recursively invoke themselves using the name f , which is bound in e. The
notation [pc] indicates that this continuation may be called only from a context in which
the program counter carries information of security at most pc. To avoid unsafe implicit

58

�, pc ∈ L Security Labels

t ::= unit Unit type
| bool Boolean type
| s ref Reference types
| [pc](s, κ) → 0 Ordinary continuation types

s ::= t� Security types

κ ::= s → 0 Linear continuation types

bv ::= 〈〉 Unit value
| t | f Boolean values
| Ls Memory locations
| λ[pc]f(x :s, y :κ). e Continuation values

v ::= x Variables
| bv� Secure Values

lv ::= y Linear variables
| λ〈pc〉(x :s). e Linear continuations

prim ::= v Primitive value
| v ⊕ v Primitive Boolean operation
| !v Location dereference

e ::= let x = prim in e Primitive value binding
| let x = refse in e Reference creation
| set v := v in e Assignment
| letlin y = lv in e Linear binding
| if v then e else e Conditional
| goto v v lv Ordinary continuation invocation
| lgoto lv v Linear continuation invocation
| halts v Program termination

Figure 4.2: Syntax for the λCPS
SEC language

59

flows, the body of the continuation may create effects observable only by principals able
to read data with label pc.

A linear value, lv, is either a variable (ranged over by y), or a linear continuation,
which contains a code expression e parameterized by a nonlinear argument just as for
ordinary continuations. Linear continuations may not be recursive, but they may be in-
voked from any calling context; hence linear types do not require any pc annotation. The
syntax 〈pc〉 serves to distinguish linear continuation values from nonlinear ones. As for
ordinary continuations, the label pc restricts the continuation’s effects, but unlike ordi-
nary continuations, the pc is constrained only by the context at the point of their creation
(as opposed to the context in which they are invoked). Intuitively, linear continuations
capture the security context in which they are created and, when invoked, restore the
program counter label to the one captured.

The primitive operations include binary arithmetic, ⊕, dereference, and a means of
copying secure values. Primitive operations are side-effect free. Program expressions
consist of a sequence of let bindings for primitive operations, reference creation, and
imperative updates (via set). The letlin construct introduces a linear continuation. A
straight-line code sequence is terminated by a conditional statement, a goto or a lgoto.

The expression halts v is a program that terminates and produces the final output v
of type s.

4.2.2 Operational semantics

The operational semantics (Figure 4.3) is given by a transition relation between machine
configurations of the form 〈M, pc, e〉. The notation e{v/x} indicates capture-avoiding
substitution of value v for variable x in expression e.

λCPS
SEC memories, M , are defined just as for λREF

SEC , except that the types annotating the
memory locations are λCPS

SEC types and the locations store λCPS
SEC values. We use the same

notational conventions for describing memory updates. A memory is well-formed if it
is closed under the dereference operation and each value stored in the memory has the
correct type. We use ∅ to denote the empty memory, and we write Loc(e) for the set of
location names occurring in e.

The label pc in a machine configuration represents the security level of information
that could be learned by observing the location of the program counter. Instructions exe-
cuted with a program-counter label of pc are restricted so that they update only memory
locations with labels more secure than pc. For example, λCPS

SEC-EVAL-SET shows that
it is valid to store a value to a memory location of type s only if the security label of
the data joined with the security labels of the program counter and the reference itself is
lower than label(s), the security clearance needed to read the data stored at that location.
Rules λCPS

SEC-EVAL-COND1 and λCPS
SEC-EVAL-COND2 show how the program-counter la-

bel changes after branching on data of security level �. Observing which branch is taken

60

〈M, pc, prim〉 ⇓ v 〈M1, pc1, e1〉 → 〈M2, pc2, e2〉

λCPS
SEC-EVAL-PRIM 〈M, pc, bv�〉 ⇓ bv��pc

λCPS
SEC-EVAL-BINOP 〈M, pc, n� ⊕ n′

�′〉 ⇓ (n[[⊕]]n′)���′�pc

λCPS
SEC-EVAL-DEREF

M(Ls) = bv�′

〈M, pc, !Ls
�〉 ⇓ bv���′�pc

λCPS
SEC-EVAL-LETPRIM

〈M, pc, prim〉 ⇓ v

〈M, pc, let x = prim in e〉 → 〈M, pc, e{v/x}〉

λCPS
SEC-EVAL-LETREF

� � pc � label(s) Ls ∈ dom(M)
〈M, pc, let x = refsbv� in e〉 →
〈M [Ls �→ bv��pc], pc, e{Ls

pc/x}〉

λCPS
SEC-EVAL-SET

� � �′ � pc � label(s) Ls ∈ dom(M)
〈M, pc, set Ls

� := bv�′ in e〉 → 〈M [Ls �→ bv���′�pc], pc, e〉

λCPS
SEC-EVAL-LETLIN 〈M, pc, letlin y = lv in e〉 → 〈M, pc, e{lv/y}〉

λCPS
SEC-EVAL-COND1 〈M, pc, if t� then e1 else e2〉 → 〈M, pc � �, e1〉

λCPS
SEC-EVAL-COND2 〈M, pc, if f� then e1 else e2〉 → 〈M, pc � �, e2〉

λCPS
SEC-EVAL-GOTO

pc � pc′ v = (λ[pc′]f(x :s, y :κ). e)�

e′ = e{v/f}{bv�′�pc/x}{lv/y}
〈M, pc, goto (λ[pc′]f(x :s, y :κ). e)� bv�′ lv〉 → 〈M, pc′ � �, e′〉

λCPS
SEC-EVAL-LGOTO 〈M, pc, lgoto (λ〈pc′〉(x :s). e) bv�〉 → 〈M, pc′, e{bv��pc/x}〉

Figure 4.3: Expression evaluation

61

reveals information about the condition variable, so the program counter must have the
higher security label pc � �.

As shown in rules λCPS
SEC-EVAL-PRIM through λCPS

SEC-EVAL-DEREF, computed values
are stamped with the pc label. The notation [[⊕]] denotes the semantic counterpart to
the syntactic operation ⊕. Run-time label checks prevent illegal information flows via
direct means such as assignment. For example, λCPS

SEC-EVAL-SET requires the following
label constraint to hold:

� � �′ � pc � label(s)

This constraint says that the label on the data being assigned into the reference, joined
with the label that regulates reference aliases and the current pc label should be more
public than the label on the type of data the location stores. This prevents direct, alias,
and indirect information leaks from occurring due to the assignment operation.

Section 4.4 shows that, for well-typed programs, all illegal information flows are
ruled out, and hence these dynamic label checks are unnecessary.

Operationally, the rules for goto and lgoto are very similar—each causes con-
trol to be transferred to the target continuation. They differ in their treatment of the
program-counter label, as seen in rules λCPS

SEC-EVAL-GOTO and λCPS
SEC-EVAL-LGOTO.

Ordinary continuations require that the program-counter label of the calling context, pc,
be protected by the program-counter label of the continuation, and the computation pro-
ceeds with the label declared in the continuation. Linear continuations instead cause
the program-counter label to be restored (potentially, lowered) to that of the context in
which they were declared. In accordance with the label-stamping intuition, both goto

and lgoto stamp the pc label of the calling context into the value passed to the contin-
uation.

As mentioned above, well-formed programs stop when they reach the expression
halts v. Consequently the “stuck” term halts v represents a valid terminal state.

4.2.3 An example evaluation

This section gives a concrete example of the operational semantics.
Consider the evaluation shown in Figure 4.4. It shows the program fragment (D)

from Figure 4.1 of the introduction using the syntax of our secure CPS language. In this
instance, the condition variable is the high-security value t�, and the program-counter
label is initially ⊥, the lowest security label. The memory, M , initially maps the high-
security location a to the value t� and the low-security location b to the value t⊥. (This
information is summarized in the figure.)

Step (1) is a transition via λCPS
SEC-EVAL-LETLIN that introduces the linear continu-

ation, kimpl and binds it to the variable k. As indicated by the notation 〈⊥〉 in kimpl’s
definition, when invoked, kimpl will set the pc label back to ⊥. In step (2), the program

62

〈M, ⊥, letlin k = kimpl in
if t� then set a := t⊥ in lgoto k 〈〉

else set a := f⊥ in lgoto k 〈〉 〉
(1) → 〈M, ⊥, if t� then set a := t⊥ in lgoto kimpl 〈〉

else set a := f⊥ in lgoto kimpl 〈〉〉
(2) → 〈M,
, set a := t⊥ in lgoto kimpl 〈〉 〉
(3) → 〈M ′,
, lgoto kimpl 〈〉 〉
(4) → 〈M ′, ⊥, set b := f⊥ in haltunit⊥ 〉
(5) → 〈M ′′, ⊥, lgoto haltunit⊥ 〉

Where
M = {a �→ t�, z �→ t⊥}
M ′ = {a �→ t�, z �→ t⊥}
M ′′ = {a �→ t�, z �→ f⊥}
a : bool� ref⊥
b : bool⊥ ref⊥

kimpl = λ〈⊥〉(h :unit⊥). set b := f⊥ in haltunit⊥

Figure 4.4: Example program evaluation

transitions via rule E5, testing the condition variable. In this case, because t� is high-
security, the program counter label increases to
 = ⊥ �
, and the program takes the
first branch. Next, step (3) is a transition by rule λCPS

SEC-EVAL-SET, which updates the
contents of memory location a. The new value stored is high-security, because, instanti-
ating λCPS

SEC-EVAL-SET, we have: � = ⊥, �′ = ⊥, pc =
 and �′���pc = ⊥�⊥�
 =
.
This assignment succeeds because a is a location that stores high-security data; if a were
a location of type bool⊥ ref⊥, the check �′ � �� pc � label(bool⊥) = ⊥ would fail—
however, the type system presented in the next section statically rules out such behavior,
making such dynamic checks unnecessary.

The fourth step is the linear invocation, via rule λCPS
SEC-EVAL-LGOTO. As promised,

kimpl resets the program counter label to ⊥, and in addition, we substitute the actual
arguments for the formal parameters in the body of the continuation. The last transition
is another instance of rule λCPS

SEC-EVAL-SET, this time updating the contents of b with
the low-security value f⊥.

How would this program differ if an ordinary continuation were used instead of
kimpl? The crucial difference would appear in step (4), where instead of evaluating via
rule λCPS

SEC-EVAL-LGOTO, we would be forced to use rule λCPS
SEC-EVAL-GOTO. Note that

λCPS
SEC-EVAL-GOTO requires the pc label of the continuation to be higher than the one

in the machine configuration. In this case, because the calling context has pc =
,

63

the body of the continuation would be forced to
 as well. It is not possible to write a
value to the low-security location b in such circumstances, and hence we cannot write
this program using an ordinary continuation in place of kimpl without forcing b to be a
high-security location.

4.2.4 Static semantics

The type system for the secure CPS language enforces the linearity and ordering con-
straints on continuations and guarantees that security labels on values are respected.
Together, these restrictions rule out illegal information flows and impose enough struc-
ture on the language for us to prove a noninterference property.

As in other mixed linear–nonlinear type systems [TW99], the type context is split
into an ordinary, nonlinear section and a linear section. Γ is a finite partial map from
nonlinear variables to security types, whereas K is an ordered list (with concatenation
denoted by “,”) mapping linear variables to their types. The order in which continuations
appear in K defines the order in which they are invoked: Given K = ·, (yn :κn), . . . , (y1 :
κ1), the continuations will be executed in the order y1 . . . yn. Thus, the context K spells
out explicitly the stack-like behavior of ordered linear continuations. A key part of
the type system is ensuring that this stack is respected by the program. The nonlinear
context Γ admits the usual weakening and exchange rules (which we omit), but the
linear context does not. The two parts of the context are separated by ‖ in the judgments
to make them more distinct (as in Γ ‖ K). We use · to denote an empty nonlinear
context.

Figures 4.5 through 4.10 show the rules for type-checking. The judgment form
Γ � v : s says that ordinary value v has security type s in context Γ . Linear values
may mention linear variables and so have judgments of the form Γ ; K � lv : κ. Like
values, primitive operations may not contain linear variables, but the security of the
value produced depends on the program-counter. We thus use the judgment Γ [pc] �
prim : s to say that in context Γ where the program-counter label is bounded above by
pc, prim computes a value of type s. Similarly, Γ ; K [pc] � e means that expression e
is type-safe and contains no illegal information flows in the type context Γ ‖ K, when
the program-counter label is at most pc. Because expressions represent continuations,
and hence do not return values, no type is associated with judgments Γ ; K [pc] � e.
Alternatively, we could write Γ ; K [pc] � e : 0 to indicate that e does not return. But,
as all expressions have type 0, we simply omit the : 0. In the latter two forms, pc is
a conservative approximation to the security label of information affecting the program
counter.

The rules for checking ordinary values, shown in Figure 4.5, are, for the most part,
the same as for those of λREF

SEC . A value cannot contain free linear variables because

64

Γ � v : s

λCPS
SEC-BOOL Γ � t� : bool� Γ � f� : bool�

λCPS
SEC-UNIT Γ � 〈〉� : unit�

λCPS
SEC-LOC Γ � Ls

� : s ref�

λCPS
SEC-VAR

Γ (x) = s

Γ � x : s

λCPS
SEC-CONT

f, x ∈ dom(Γ)
s′ = ([pc](s, κ) → 0)�

Γ , f :s′, x :s; y :κ [pc] � e

Γ � (λ[pc]f(x :s, y :κ). e)� : s′

λCPS
SEC-SUB

Γ � v : s � s ≤ s′

Γ � v : s′

Figure 4.5: Value typing

65

� t1 ≤ t2 � s1 ≤ s2

λCPS
SEC-TREFL � t ≤ t

λCPS
SEC-TTRANS

� t ≤ t′ � t′ ≤ t′′

� t ≤ t′′

λCPS
SEC-TCONTSUB

pc′ � pc � s′ ≤ s � κ′ ≤ κ

� [pc](s, κ) → 0 ≤ [pc′](s′, κ′) → 0

λCPS
SEC-SLAB

� t ≤ t′ � � �′

� t� ≤ t′�′

Figure 4.6: Value subtyping in λCPS
SEC

discarding (or copying) the value would break the linearity constraint on the variable. A
continuation type contains the pc label used to check its body (rule λCPS

SEC-CONT).
The lattice ordering on security labels lifts to a subtyping relationship on values

(shown in Figure 4.6). Continuations exhibit the expected contravariance, as shown in
rule λCPS

SEC-TCONTSUB. References, are, as in λREF
SEC , invariant with respect to the data

being stored but covariant with respect to their outer label.
Linear values are checked using the rules in Figures 4.7 and 4.8. Subtyping linear

types is standard. As shown in 4.8, linear values may safely mention free linear vari-
ables, but the variables must not be discarded or reordered. Thus we may conclude that
a linear variable is well-formed exactly when the only variable in the linear context is
the variable in question (rule λCPS

SEC-LVAR).
In a linear continuation (rule λCPS

SEC-LCONT) the linear context must be used within
the body of the continuation, but the non-linear argument is added to Γ .

The rules for primitive operations (in Figure 4.9) require that the calculated value
have security label at least as restrictive as the current pc, reflecting the “label stamping”
behavior of the operational semantics. Values read through deref (rule λCPS

SEC-DEREF)
pick up the label of the reference as well, which prevents illegal information flows due
to aliasing.

Figure 4.10 lists the rules for type checking expressions. Primitive operations are
introduced by a let expression as shown in λCPS

SEC-PRIM. The rules for creating new
references and doing reference update, rules λCPS

SEC-REF and λCPS
SEC-ASSN, require that

the reference protect the security of the program counter. The condition pc � label(s)
says that any data read through the created reference may only be observed by contexts

66

� κ1 ≤ κ2

λCPS
SEC-LREFL � κ ≤ κ

λCPS
SEC-LTRANS

� κ ≤ κ′ � κ′ ≤ κ′′

� κ ≤ κ′′

λCPS
SEC-LCONTSUB

� s′ ≤ s
� s → 0 ≤ s′ → 0

Figure 4.7: Linear value subtyping in λCPS
SEC

Γ ; K � lv : κ

λCPS
SEC-LVAR Γ ; y :κ � y : κ

λCPS
SEC-LCONT

x ∈ dom(Γ)
Γ , x :s; K [pc] � e

Γ ; K � λ〈pc〉(x :s). e : s → 0

λCPS
SEC-LSUB

Γ ; K � lv : κ � κ ≤ κ′

Γ ; K � lv : κ′

Figure 4.8: Linear value typing in λCPS
SEC

67

Γ [pc] � prim : s

λCPS
SEC-VAL

Γ � v : s pc � label(s)

Γ [pc] � v : s

λCPS
SEC-BINOP

Γ � v : bool� Γ � v′ : bool� pc � �

Γ [pc] � v ⊕ v′ : bool�

λCPS
SEC-DEREF

Γ � v : s ref� pc � label(s � �)

Γ [pc] � !v : s � �

Figure 4.9: Primitive operation typing in λCPS
SEC

able to observe the current program counter. The reference itself starts initially with a
secrecy determined by the current pc3 The condition pc � � � label(s) in λCPS

SEC-ASSN

prevents explicit flows in a similar way.

Rule λCPS
SEC-COND illustrates how the conservative bound on the information con-

tained in the program-counter is propagated: the label used to check the branches is the
label before the test, pc, joined with the label on the data being tested, �. The rule for
λCPS

SEC-GOTO restricts the program-counter label of the calling context, pc, joined with
the label on the continuation itself, �, to be less than the program-counter label under
which the body was checked, pc′. This prevents implicit information flows from propa-
gating into function bodies. Likewise, the values passed to a continuation (linear or not)
must pick up the calling context’s pc (via the constraint pc � label(s)) because they
carry information about the context in which the continuation was invoked.

The rule λCPS
SEC-HALT requires an empty linear context, indicating that the program

consumes all linear continuations before stopping. The s annotating halt is the type of
the final output of the program; its label should be constrained by the security clearance
of the user of the program.

The rule λCPS
SEC-LETLIN manipulates the linear context to enforce the ordering prop-

erty on continuations. The top of the continuation stack, K2, must be used in the body
of the continuation being declared. The body of the declaration, e, is checked under the
assumption that the new continuation, y, is available. Collectively, these manipulations
amount to pushing the continuation y onto the control stack.

3It is possible to allow users to annotate the ref creation instruction with a security label, but permit-
ting such annotation does not yield any interesting insights, so it is omitted here.

68

Γ ; K [pc] � e

λCPS
SEC-PRIM

Γ [pc] � prim : s
Γ , x :s; K [pc] � e

Γ ; K [pc] � let x = prim in e

λCPS
SEC-REF

Γ � v : s pc � label(s)
Γ , x :s refpc; K [pc] � e

Γ ; K [pc] � let x = refsv in e

λCPS
SEC-ASSN

Γ � v : s ref� Γ ; K [pc] � e
Γ � v′ : s pc � � � label(s)

Γ ; K [pc] � set v := v′ in e

λCPS
SEC-LETLIN

Γ ; K2 � λ〈pc′〉(x :s). e′ : s→ 0

pc � pc′ Γ ; K1, y :s → 0 [pc] � e

Γ ; K1, K2 [pc] � letlin y = λ〈pc′〉(x :s). e′ in e

λCPS
SEC-COND

Γ � v : bool� Γ ; K [pc � �] � ei

Γ ; K [pc] � if v then e1 else e2

λCPS
SEC-GOTO

Γ � v : ([pc′](s, κ) → 0)�

Γ � v′ : s Γ ; K � lv : κ
pc � � � pc′ pc � label(s)

Γ ; K [pc] � goto v v′ lv

λCPS
SEC-LGOTO

Γ ; K � lv : s→ 0

Γ � v : s
pc � label(s)

Γ ; K [pc] � lgoto lv v

λCPS
SEC-HALT

Γ � v : s pc � label(s)

Γ ; · [pc] � halts v

Figure 4.10: Expression typing in λCPS
SEC

69

Linear continuations capture the pc (or a more restrictive label) of the context in
which they are introduced, as shown in rule λCPS

SEC-LETLIN. Unlike the rule for goto, the
rule for lgoto does not constrain the program-counter label of the target continuation,
because the linear continuation restores the program-counter label to the one it captured.

Because linear continuations capture the pc of their introduction context, we make
the mild assumption that initial programs introduce all linear continuation values (except
variables) via letlin. This assumption rules out trivially insecure programs; during ex-
ecution this constraint is not required, and programs in the image of the CPS translation
of Section 4.5 satisfy this property.

4.3 Soundness of λCPS
SEC

This section proves the soundness theorem for λCPS
SEC. The proof is, for the most part,

standard, following in the style of Wright and Felleisen [WF92, WF94]. As usual for
a language with subtyping, our proofs assume that typing derivations are in a canon-
ical form in which applications of subsumption alternate with other rules. That such
canonical proofs exist follows from the reflexive and transitive nature of the subtyping
relation.

We first begin by establishing a few standard properties of typed languages. A simple
proposition that we shall not prove is the following, which says that if a base value is
well-typed when stamped with one label, it is well-typed when stamped with any other
label.

Proposition 4.3.1 (Base Value Relabeling) If Γ � bv� : τ� then Γ � bv�′ : τ�′ .

We shall use the Base Value Relabeling proposition without mentioning it explicitly
in the proofs below.

Next, we establish that capture-avoiding substitution of a well-typed term into an-
other well-typed term yields a well-typed term:

Lemma 4.3.1 (Substitution I) Assume Γ � v : s then

(i) If Γ , x :s � v′ : s′ then Γ � v′{v/x} : s′.

(ii) If Γ , x :s; K � lv : κ then Γ ; K � lv{v/x} : κ.

(iii) If Γ , x :s [pc] � prim : s′ then Γ [pc] � prim{v/x} : s′.

(iv) If Γ , x :s; K [pc] � e then Γ ; K [pc] � e{v/x}.

Proof: By mutual induction on the (canonical) derivations of (i)–(iv).

70

(i) By assumption, there exists a derivation of the form

Γ , x :s � v′ : s′′ � s′′ ≤ s′

Γ , x :s � v′ : s′

We proceed by cases on the rule used to conclude Γ , x : s � v′ : s′′. In cases
λCPS

SEC-BOOL, λCPS
SEC-UNIT, and λCPS

SEC-LOC we have v′{v/x} = v′, and the result
follows by Strengthening and derivation above. In the case of λCPS

SEC-VAR, we have
either x{v/x} = v, which, by assumption, has type s = s′′ or x′{v/x} = x′, also
of type s′′. In either case, this information plus the derivation above yields the
desired result. The case of λCPS

SEC-CONT follows from induction hypothesis (iv).

(ii) This cases follows analogously to the case for (i); the rule λCPS
SEC-LCONT makes use

of induction hypothesis (iv).

(iii) This follows directly from the induction hypothesis (i).

(iv) Follows by induction hypotheses (i)–(iv).

�

Note that neither ordinary values nor primitive operations may contain free linear
variables. This means that substitution of a linear value in them has no effect. The
following lemma strengthens substitution to open linear values and also shows that the
ordering on the linear context is maintained.

Lemma 4.3.2 (Substitution II) Assume ·; K � lv : κ then:

(i) If Γ ; K1, y :κ,K2 � lv′ : κ′ then Γ ; K1, K,K2 � lv′{lv/y} : κ′.

(ii) If Γ ; K1, y :κ,K2 [pc] � e then Γ ; K1, K,K2 [pc] � e{lv/y}.

Proof: By mutual induction on the (canonical) typing derivations of (i) and (ii).

(i) The canonical typing derivation for lv′ is:

Γ ; K1, y :κ,K2 � lv′ : κ′′ � κ′′ ≤ κ′

Γ ; K1, y :κ,K2 � lv′ : κ′

We proceed by cases on the rule used to conclude Γ ; K1, y :κ,K2 � lv′ : κ′′.

λCPS
SEC-LVAR Then lv′ = y and κ′′ = κ, it follows that K1, y : κ,K2 = y : κ, and

hence K1 = K2 = ·. This implies that K1, K,K2 = K and thus by the as-
sumption that lv = y{lv/y} is well-typed under K, we have Γ ; K1, K,K2 �
lv : κ, and the result follows from the subtyping of κ ≤ κ′.

71

λCPS
SEC-LCONT This case follows immediately from induction hypothesis (ii).

(ii) This part of the lemma follows almost immediately from the induction hypotheses.
The interesting case is λCPS

SEC-LETLIN, which must ensure that the ordering on the
linear context is maintained.

λCPS
SEC-LETLIN By assumption, there is a derivation of the following form:

Γ ; Kb � λ〈pc′〉(x′ :s′). e′ : κ′′

κ′′ = s′ → 0

pc � pc′ Γ ; Ka, y
′′ :κ′′ [pc] � e

Γ ; K1, y :κ,K2 [pc] � letlin y′′ = λ〈pc′〉(x′ :s′). e′ in e

Where K1, y :κ,K2 = Ka, Kb. If y appears in Ka then Ka = K1, y :κ,K−
2

and Kb = K+
2 where K−

2 , K+
2 = K2. In this case, y can’t appear in

Kb and it follows that e′{lv/y} = e′. Induction hypothesis (ii) applied
to Γ ; K1, y : κ,K−

2 [pc] � e yields the judgment Γ ; K1, K,K−
2 [pc] �

e{lv/y}. Thus, an application of rule λCPS
SEC-LETLIN yields the desired re-

sult, as K1, K,K−
2 , K+

2 = K1, K,K2.

The case in which y appears in Kb is similar to the one above, except that
K1 is split into K−

1 and K+
1 .

�

Next we must establish that the syntactic form of a value is determined by its type.

Lemma 4.3.3 (Canonical Forms I) If · � v : s then

(i) If s = bool� then v = t�′ or v = f�′ for some �′ � �.

(ii) If s = unit� then v = 〈〉�′ for some �′ � �.

(iii) If s = s′ ref� then v = Ls′
�′ and �′ � �.

(iv) If s = ([pc](s′, κ) → 0)� then v = (λ[pc′] f (x : s′′, y : κ′). e)�′ where �′ � �,
pc � pc′, � s′ ≤ s′′, and � κ ≤ κ′.

Proof (sketch): By inspection of the typing rules and the form of values. �

Lemma 4.3.4 (Canonical Forms II) If ·; · � lv : s → 0 then lv = λ〈pc〉(x : s′). e
where � s ≤ s′.

Proof (sketch): By inspection of the typing rules and the form of linear values. �

72

Definition 4.3.1 (Locations) For any well-typed primitive operation, prim (or pro-
gram, e), let Loc(prim) (respectively Loc(e)), be the set of all locations Ls appearing
in prim (respectively e).

Recall the definition of Memory Well-formedness:

Definition 4.3.2 (Memory well formedness) A memory M is well formed, written �
M wf if and only if

∀Ls ∈ |M |. Loc(M(Ls)) ∈ |M | ∧ · �M(Ls) : s

Next, we show that evaluation of primitive operations preserves typing, so long as
the memory contains the appropriate locations used by the primitive operation.

Lemma 4.3.5 (Primitive Evaluation) If · [pc] � prim : s, � M wf and Loc(prim) ⊆
dom(M) and 〈M, pc, prim〉 ⇓ v then · � v : s.

Proof: By cases on the evaluation rule used.

λCPS
SEC-EVAL-PRIM By assumption, we have the canonical derivation:

· � bv� : τ� � τ� ≤ τ ′
�′

· � bv� : τ ′
�′ pc � �′

· [pc] � bv� : τ ′
�′

We need to show · � bv��pc : τ ′
�′ . It follows from the derivation above that � � �′,

and as pc � �′ it is the case that � � pc � �′. Thus we have the inequality
τ��pc ≤ τ ′

�′ , and so the result follows by λCPS
SEC-SUB and an application of the rule

λCPS
SEC-VAL.

λCPS
SEC-EVAL-BINOP This case is similar to the previous one.

λCPS
SEC-EVAL-DEREF In this case, we assume a derivation of the following form:

· � Lτ�

�′ : τ� ref�′ � τ� ref�′ ≤ τ� ref�′′

· � Lτ�

�′ : τ� ref�′′ pc � � � �′′

· [pc] � !Lτ�

�′ : τ���′′

By the well-formedness of M , M(Lτ�) = bv�′′′ and we also have · � bv�′′′ : τ�.
This implies that �′′′ � �. We must show that · � bv�′��′′′�pc : τ���′′ but this follows
from the transitivity of subtyping and λCPS

SEC-SUB because the label inequalities in
the above derivation yield:

�′ � �′′′ � pc � �′′ � �′′′ � pc
� �′′ � � � pc
� �′′ � � � (� � �′′)
� � � �′′

73

�

The next lemma is used in the proof of subject reduction in the case for evaluating
conditional expressions. The idea is that because the static labels are just approximations
to the actual run-time labels that appear in the operational semantics, we must have a
way of accounting for the difference between what is statically inferred and what takes
place during evaluation. Thus, while the static label of the variable x in the conditional
if x then e1 else e2 may be �, dynamically the value substituted for x might have any
label �′ � �. Since the rules for evaluating conditionals use the dynamic label �′, in order
to establish subject-reduction, the branches of the conditional must be well-typed under
the weaker constraint.

Lemma 4.3.6 (Program Counter Variance)

If Γ ; K [pc � �] � e and �′ � � then Γ ; K [pc � �′] � e.

Proof: The proof is by induction on the derivation that e is well-typed. Note that
because pc � �′ � pc � � all inequalities involving pc � � on the left of � in the typing
rules will still hold with pc � �′. �

The subject reduction lemma follows almost immediately from the previous lemmas.
It says that well-typing is preserved by evaluation.

Lemma 4.3.7 (Subject Reduction) If ·; K [pc] � e, and � M wf, and Loc(e) ⊆
dom(M) and 〈M, pc, e〉 → 〈M ′, pc′, e′〉 then ·; K [pc′] � e′ and � M ′ wf, and
Loc(e′) ⊆ dom(M ′).

Proof: By cases on the transition step taken:

λCPS
SEC-EVAL-LETPRIM Because let x = prim in e is well-typed, prim is too. Thus

by the Primitive Evaluation Lemma, prim evaluates to a value v of the same type.
Substitution I, part (iv) tells us that e{v/x} is well-typed. Because M doesn’t
change it is still well-formed, and to see that Loc(e{v/x}) ⊆ dom(M) consider
that the only way Loc(e{v/x}) could be larger than Loc(let x = prim in e)
is if prim is a dereference operation and the memory location contains another
location not in e. This case is covered by the requirement that M is well-formed
and hence closed under dereference.

λCPS
SEC-EVAL-LETREF By assumption, that ·; K [pc] � let x = refsbv� in e. Working

backwards through the canonical derivation yields the following antecedents: · �
bv� : τ�, and � τ� ≤ s, and pc � label(s), and x :s refpc; K [pc] � e. From
λCPS

SEC-LOC we have · � Ls
�′�pc : s ref�′ . This fact, plus the well-typedness of e lets

74

us apply Substitution Lemma I, (iv) to conclude ·; K [pc] � e{Ls
�′�pc/x}. Now, to

see that the conditions on M are maintained, note that if bv contains a location,
then it is contained in the set of locations of the entire let expression and thus, by
assumption must occur in the domain of M . This implies that M [Ls �→ bv��pc] is
still closed under dereference. Finally, we must check that · � bv��pc : s, but this
follows from subsumption and the facts that τ� ≤ s and pc � label(s).

λCPS
SEC-EVAL-SET This case follows similarly to the previous case.

λCPS
SEC-EVAL-LETLIN This case follows from Substitution II, (ii), and the fact that the

conditions on M are satisfied after the substitution. Note that the order of K is
preserved by the step.

λCPS
SEC-EVAL-COND1 Assume that ·; K [pc] � if t� then e1 else e2. It follows that

· � 0� : bool�′ and � � �′ and that ·; K [pc � �′] � e1. It follows by the Program
Counter Variance Lemma that ·; K [pc � �] � e1. Because M doesn’t change and
it initially satisfied the well-formedness conditions and the locations of e1 are a
subset of the locations of the entire conditional, M is still valid after the transition.

λCPS
SEC-EVAL-COND2 This case is nearly identical to the previous one.

λCPS
SEC-EVAL-GOTO This case follows from the well-typedness of the body of the con-

tinuation being jumped to, plus two applications of Substitution I, (iv) and one
application of Substitution II, (ii). The fact that bv�′�pc has type s follows from
subsumption and the facts that pclabel(s) and �′ � label(s).

λCPS
SEC-EVAL-LGOTO This case is similar to the previous case.

�

The progress lemma says that the dynamic checks performed by the operational
semantics are actually unnecessary: a well-typed program is either already a value, or it
can perform a step of computation.

Lemma 4.3.8 (Progress) If ·; · [pc] � e and M wf and Loc(e) ⊆ dom(M), then either
e is of the form halts v or there exist M ′, A′, pc′, and e′ such that

〈M, pc, e〉 → 〈M ′, A′, pc′〉e′

Proof (sketch): By the Canonical Forms lemmas and inspection of the rules. We must
ensure that conditions such as ��pc � label(s) on rule λCPS

SEC-EVAL-LETREF are met by
well-typed terms. These constraints are taken from the typing derivations. For example,
for λCPS

SEC-EVAL-LETREF the fact that pc � label(s) is an immediate antecedent; we
have � � label(s) from the subtyping rules and the fact that the value is well formed.
�

75

Definition 4.3.3 A configuration 〈M, pc, e〉 is stuck if e is not halts v for some value
v or no transition rule applies.

Theorem 4.3.1 (Type Soundness) Well-typed programs do not get stuck.

Proof: By induction on the number of transition steps taken, using Subject Reduction
and Progress. �

Note that Subject Reduction holds for terms containing free occurrences of linear
variables. This fact is important for proving that the ordering on linear continuations is
respected. The Progress Lemma (and hence Soundness) applies only to closed terms.

4.4 Noninterference

This section proves a noninterference result for the secure CPS language, generalizing a
previous result from Smith and Volpano [SV98]. The approach is to use a preservation-
style argument that shows a particular invariant related to low-security views of a well-
typed program is maintained by each computation step.

In contrast to the previous work, the proof here handles the case of first-class contin-
uations and structured memories. The Smith and Volpano language permits only simple
while-loops and if statements and restricts memories locations to hold only integer
values. Heintze and Riecke’s SLam calculus [HR98] permits first-class functions and
reference cells, but their work does not prove a noninterference result.

Since this proof was originally published [ZM01a, ZM02], other researchers have
given alternative approaches to proving noninterference. Pottier and Conchon give
a proof for Core ML, a language with higher-order functions, references, and let-
polymorphism in the style of SML [MTHM97]. Their proof differs quite substantially
from the one presented here. Honda and Yoshida extend the Smith and Volpano system
to include general references, first-class functions, and concurrency. Their noninterfer-
ence result is established by a CPS-like translation to a secure version of Milner’s pi
calculus [HY02], but the full proof of noninterference has not been published.

Informally, the noninterference result says that low-security computations are not
able to observe high-security data. Here, the term “low-security” is relative to an arbi-
trary point, ζ, in the security lattice L. Thus, � is a low-security label whenever � � ζ.
Similarly, “high-security” refers to those labels � ζ. The security level of a computation
is indicated by the label of the program counter under which the computation is taking
place. Thus, by “low-security computation”, we mean a transition step in the operational
semantics whose starting configuration (the one before the step) contains a pc � ζ.

The proof shows that high-security data and computation can be arbitrarily changed
without affecting the value of any computed low-security result. Furthermore, memory

76

locations visible to low-security observers (locations storing data labeled � ζ) are like-
wise unaffected by high-security values. This characterization reduces noninterference
to the problem of showing that a given program e1 is equivalent (from a low-security
observer’s point of view) to any program e2 that differs from e1 only in its high-security
parts.

Key to the argument is a formal definition of “low-equivalence,” by which we in-
tend to capture the property that two programs’ executions are indistinguishable by an
observer only able to see the low-security portions of memory and machine state.

How do we show that configurations 〈M1, pc1, e1〉 and 〈M2, pc2, e2〉 behave iden-
tically from the low-security point of view? Clearly, the memories M1 and M2 must
agree on the values contained in low-security locations. In addition, if pc1, pc2 � ζ,
meaning that e1 and e2 might perform actions visible to low observers (such as modify-
ing a low-security memory location), the programs necessarily must perform the same
computation on low-security values. On the other hand, when pc � ζ, the actions of e1

and e2 should be invisible to the low view.
This intuition guides the formal definition of low-equivalence, which we write ≈ζ .

The definition builds on standard alpha-equivalence (written ≡α) as a base notion of
equality. We use substitutions to factor out the relevant high-security values and those
linear continuations that reset the program-counter label to be � ζ.

Definition 4.4.1 (Substitutions) For context Γ , let γ |= Γ mean that γ is a finite map
from variables to closed values such that dom(γ) = dom(Γ) and for every x ∈ dom(γ)
it is the case that · � γ(x) : Γ (x).

Substitution application, written γ(e), indicates capture-avoiding substitution of the
value γ(x) for free occurrences of x in e, for each x in the domain of γ.

To show ζ-equivalence between e1 and e2, we should find substitutions γ1 and γ2

containing the relevant high-security data such that e1 ≡α γ1(e) and e2 ≡α γ2(e)—both
e1 and e2 look the same as e after factoring out the high-security data.

The other important piece of the proof is that we can track the linear continuations
that restore the program counter to a label that is � ζ. Here is where the stack ordering
on linear continuations comes into play: The operational semantics guarantees that the
program-counter label is monotonically increasing except when a linear continuation is
invoked. If e1 invokes a linear continuation that causes pc1 to fall below ζ, e2 must fol-
low suit and call an equivalent continuation; otherwise the low-security observer might
distinguish e1 from e2. The stack ordering on linear continuations is exactly the property
that forces e2 to invoke the same low-security continuation as e1.

Note that only the low-security linear continuations are relevant to the ζ-equivalence
of two programs—the high-security linear continuations in the programs may differ.
Furthermore, our plan is to establish an invariant with respect to the operational seman-
tics. This means we must be able to keep track of the relevant low-security continuations

77

as they are introduced and consumed by letlin and lgoto. There is a slight technical
difficulty in doing so in the substitution-style operational semantics we have presented:
We want to maintain the invariant that ζ-equivalent programs always have equivalent
pending low-security continuations. Statically, the linear context names these continu-
ations, but dynamically, these variables are substituted away—there is no way to name
the “next” low-security linear continuation.

To get around this problem, our approach is to introduce auxiliary substitutions that
map stacks of linear variables to low-security linear continuations. The top of stack
corresponds to the next low-security linear continuation that will be invoked.

Definition 4.4.2 (Linear Continuation Stack) Let K be an ordered list (a stack) of
linear variables y1 : κ1, . . . , yn : κn such that n ≥ 0. We write Γ � k |= K to indicate
that k is a substitution that maps each yi to a linear value such that Γ ; · � k(y1) : κ1

and Γ ; yi−1 :κi−1 � k(yi) : κi for i ∈ {2 . . . n}.

Application of a stack substitution k to a term e is defined as:

k(e) = e{k(yn)/yn}{k(yn−1)/yn−1} . . . {k(y1)/y1}.

Note that the order of the substitutions is important because the continuation k(yn) may
refer to the linear variable yn−1.

Two linear continuation stacks k1 and k2 are equivalent if they have the same domain
and map each variable to equivalent continuations. We must also ensure that the stack
contains all of the pending low-security continuations.

Definition 4.4.3 (letlin Invariant) A term satisfies the letlin invariant if every lin-
ear continuation expression λ〈pc〉(x :s). e appearing in the term is either in the binding
position of a letlin or satisfies pc � ζ.

The idea behind the letlin invariant is that when k(e) is a closed term such that e
satisfies the letlin invariant, any invocation of a low-security linear continuation in e
must arise from the substitution k—in other words, k contains any pending low-security
linear continuations.

Extending these ideas to values, memories, and machine configurations we obtain
the definitions below:

Definition 4.4.4 (ζ-Equivalence)

Γ � γ1 ≈ζ γ2 If γ1, γ2 |= Γ and for every x ∈ dom(Γ) it is the case that
label(γi(x)) � ζ and γi(x) satisfies the letlin invariant.

78

Γ ‖K � k1 ≈ζ k2 If Γ � k1, k2 |= K and for every y ∈ dom(K) it is the case
that ki(y) ≡α λ〈pc〉(x : s). e such that pc � ζ and e satisfies the
letlin invariant.

v1 ≈ζ v2 : s If there exist Γ , γ1, and γ2 plus terms v′
1 ≡α v′

2 such that Γ �
γ1 ≈ζ γ2, and Γ � v′

i : s and vi = γi(v
′
i) and each v′

i satisfies the
letlin invariant.

M1 ≈ζ M2 If for all Ls ∈ dom(M1) ∪ dom(M2), label(s) � ζ implies that
Ls ∈ dom(M1) ∩ dom(M2) and M1(L

s) ≈ζ M2(L
s) : s.

Finally, we can put all of these requirements together to define the ζ-equivalence of
two machine configurations, which also gives us the invariant for the noninterference
proof.

Definition 4.4.5 (Noninterference Invariant) The noninterference invariant is a pred-
icate on machine configurations, written Γ ‖K � 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉, that
holds if there exist substitutions γ1, γ2, k1, k2 and terms e′1 and e′2 such that the following
conditions are all met:

(i) e1 = γ1(k1(e
′
1)) and e2 = γ2(k2(e

′
2)).

(ii) Γ ; K [pc1] � e′1 and Γ ; K [pc2] � e′2
(iii) Either (a) pc1 = pc2 � ζ and e′1 ≡α e′2 or

(b) pc1 � ζ and pc2 � ζ.
(iv) Γ � γ1 ≈ζ γ2 and Γ ‖K � k1 ≈ζ k2

(v) Loc(e1) ⊆ dom(M1) and Loc(e2) ⊆ dom(M2)
and M1 ≈ζ M2.

(vi) Both e′1 and e′2 satisfy the letlin invariant.

The main technical work of the noninterference proof is a preservation argument
showing that the Noninterference Invariant holds after each transition. When the pc is
low, equivalent configurations execute in lock step (modulo high-security data). After
the program branches on high-security information (or jumps to a high-security contin-
uation), the two programs may temporarily get out of sync, but during that time they
may affect only high-security data. If the program counter drops low again (via a linear
continuation), both computations return to lock-step execution.

We first show that ζ-equivalent configuration evaluate in lock step as long as the
program counter has low security.

Lemma 4.4.1 (Low-pc Step) Suppose

• Γ ‖K � 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉
• pc1 � ζ and pc2 � ζ

79

• 〈M1, pc1, e1〉 → 〈M ′
1, pc′1, e′1〉

then 〈M2, pc2, e2〉 → 〈M ′
2, pc′2, e′2〉 and there exist Γ ′ and K ′ such that:

Γ ′ ‖K ′ � 〈M ′
1, pc′1, e′1〉 ≈ζ 〈M ′

2, pc′2, e′2〉
Proof: Let e1 = γ1(k1(e

′′
1)) and e2 = γ2(k2(e

′′
2)) where the substitutions are as de-

scribed by the conditions of the Noninterference Invariant. Because pci � ζ, clause (iii)
implies that e′′1 and e′′2 must be α-equivalent expressions and pc1 = pc2 = pc. Hence
the only difference in their behavior arises due to the substitutions or the different mem-
ories. We proceed by cases on the transition step taken by the first program. The main
technique is to reason by cases on the security level of the value used in the step—if
it’s low-security, by α-equivalence, both programs compute the same values, otherwise
we extend the substitutions γ1 and γ2 to contain the high-security data. We show a few
representative cases in detail to give the flavor of the argument, the remainder follow in
a similar fashion.

λCPS
SEC-EVAL-LETPRIM

〈M, pc, prim〉 ⇓ v

〈M, pc, let x = prim in e〉 → 〈M, pc, e{v/x}〉
In this case, e′′1 and e′′2 must be of the form let x = prim in e, consequently e2

must also transition via rule λCPS
SEC-EVAL-LETPRIM. Because M1 = M ′

1 and M2 =
M ′

2, and the locations found in terms e′1 and e′2 are found in e1 and e2 respectively,
condition (v) of the Noninterference Invariant holds after the transition.

It suffices to find an e′ and γ′
i such that e′1 = γ′

1(k1(e
′)) and e′2 = γ′

2(k2(e
′)).

If prim is a value, then take γ′
i = γi and let e′ = e{prim/x}. These choices

satisfy the conditions. Otherwise, prim is not a value. Consider the evaluation
〈M1, pc, γ1(prim)〉 ⇓ bv�. There are two cases.

If � � ζ then prim cannot contain any free variables, for otherwise condition (iv)
would be violated—evaluation rules λCPS

SEC-EVAL-PRIM and λCPS
SEC-EVAL-BINOP

imply that the label of the resulting value be higher than the label of any con-
stituent, and all the values of γ1 have label higher than ζ. Thus, γ1(prim) =
prim = γ2(prim). 〈M2, pc, γ2(prim)〉 ⇓ bv′

�′ and because M1 ≈ζ M2 we
have bv� ≈ζ bv′

�′ : s. Thus, there exist Γ ′′, γ′′
1 , γ′′

2 and values v1 ≡α v2 such that
Γ ′′ � γ′′

1 ≈ζ γ′′
2 and bv� = γ′′

1 (v1) and bv′
�′ = γ′′

2 (v2). Thus, we take γ′
1 = γ1 ∪ γ′′

1 ,
γ′

2 = γ2 ∪ γ′′
2 and e′′i = e{vi/x}. Conditions (iv), (v), and (vi) hold trivially;

conditions (i), (ii), and (iii) are easily verified based on the operational semantics
and the fact that pc1 = pc2 = pc.

If � � ζ then 〈M2, pc, γ2(prim)〉 ⇓ bv′
�′ where it is also the case that �′ � ζ.

(prim either contains a variable, which forces �′ to be high, or prim contains a

80

value explicitly labeled with a high-label.) It follows that bv� ≈ζ bv′
�′ : s and we

take γ′
1 = γ1{x �→ bv�} and γ′

2 = γ2{x �→ bv′
�′}, and e′′i = e, which are easily

seen to satisfy the conditions.

λCPS
SEC-EVAL-LETREF

� � pc � label(s) Ls ∈ dom(M)

〈M, pc, let x = refsbv� in e〉
→ 〈M [Ls �→ bv��pc], pc, e{Ls

pc/x}〉
In this case, e′′1 and e′′2 must be of the form let x = refsv in e where v = bv�.
Note that γ1(v) ≈ζ γ2(v) : s so it follows that M ′

1 = M1[L
s �→ γ1(v) � pc] is

ζ-equivalent to M ′
2 = M2[L

s �→ γ2(v) � pc], satisfying invariant (v). Now we
simply take γ′

i = γi, and note that e′1 = γ1(e{Ls
pc/x}) and e′2 = γ2(e{Ls

pc/x})
satisfy the required invariants.

λCPS
SEC-EVAL-LETLIN

〈M, pc, letlin y′ = lv in e〉 → 〈M, pc, e{lv/y′}〉

If lv = halts , then the Noninterference Invariant holds trivially after the transi-
tion. Otherwise, lv = λ〈pc′〉(x : s). e′. In this case, e′′1 and e′′2 are letlin y′ =
λ〈pc′〉(x : s). e′ in e. If pc′ � ζ, simply take K ′ = K, y′ : s → 0 and choose
k′

i = ki ∪ {y′ �→ λ〈pc′〉(x :s). e′}, which satisfies invariant (iv) because k1 ≈ζ k2

and the terms e′′1 and e′′2 are well-typed. In the case that pc′ � ζ, we take k′
i = ki

and choose each e′i to be e{λ〈pc′〉(x :s). e′/y′} which again satisfies invariant (iv)
and the letlin-invariant, (vi). The remaining invariants are easily seen to hold
because the memories and ordinary value substitutions do not change.

λCPS
SEC-EVAL-COND1

〈M, pc, if t� then e′a else e′b〉 → 〈M, pc � �, e′a〉
In this case, e′′1 and e′′2 must be of the form if v then ea else eb. If v is not a vari-
able, then by α-equivalence, e2 must also transition via rule λCPS

SEC-EVAL-COND1.
Because M1 and M2 don’t change, it is easy to establish that all of the invariants
hold. When v is a variable, γ1(v) = t� for � � ζ. Similarly, γ2(v) = b�′ for �′ � ζ.
Because b could be either t or f, we don’t know whether the second program
transitions via λCPS

SEC-EVAL-COND1 or λCPS
SEC-EVAL-COND2, but in either case it

is easy to establish that the resulting configurations are ≈ζ . Clause (i) holds via
the original substitutions; clause (ii) follows from the fact that the configurations
are well-typed; clause (iii) holds because part (b) lets us relate any high-security
programs; clauses (iv) through (vi) are a simple consequence of ζ-equivalence of
e1 and e2.

81

λCPS
SEC-EVAL-GOTO

pc � pc′ v = (λ[pc′] f (x :s). y :κe)�

〈M, pc, goto v v′ lv〉 → 〈M, pc′ � �, e{v/f}{v′ � pc/x}{lv/y}〉
In this case, each e′′i = goto v v′ lv. It must be the case that γ1(v) = (λ[pc′]f(x :
s, y : κ). e)�. If � � ζ, then v = (λ[pc′]f(x : s, y : κ). e′)� where e′ = γ1(e)
because, by invariant (iii), the continuation could not be found in γ1. Note that
γ1(v

′) ≈ζ γ2(v
′) : s. There are two sub-cases, depending on whether γ1(v

′) has
label � ζ. If so, it suffices to take Γ ′ = Γ , K ′ = K, and leave the substitutions
unchanged, for we have e′i = γi(ki(e{v/f}{γi(v

′) � pc/x}{lv/y})). Otherwise,
if the label of γ1(v

′) � ζ, we take Γ ′ = Γ , x : s and γ′
i = γi{x �→ γi(v

′) � pc}.
The necessary constraints are then met by e′i = γ′

i(ki(e{v/f}{lv/y})).
The other case is that � � ζ, and hence the label of γ2(v) is also � ζ. Thus,
pc′1 = pc � � � ζ and pc′2 � ζ. The resulting configurations satisfy part (b) of
clause (iii). The bodies of the continuations are irrelevant, as long as the other
invariants are satisfied, but this follows if we build the new value substitutions as
in the previous paragraph

λCPS
SEC-EVAL-LGOTO This follows analogously to the previous case, except that the

stronger constraints that relate linear contexts imply that the continuations being
invoked are actually α-equivalent.

�

Next, we prove that linear continuations do indeed get called in the order described
by the linear context. The proof follows directly from Subject Reduction and the linear-
ity built into the type system.

Lemma 4.4.2 (Linear Continuation Ordering) Assume K = yn : κn, . . . , y1 : κ1 for
some n ≥ 1, each κi is a linear continuation type, and ·; K [pc] � e. If · � k |= K,
then in the evaluation starting from any well-formed configuration 〈M, pc, k(e)〉, the
continuation k(y1) will be invoked before any other k(yi).

Proof: The operational semantics and Subject Reduction are valid for open terms.
Progress, however, does not hold for open terms. Consider the evaluation of the open
term e in the configuration 〈M, pc, e〉. If the computation diverges, none of the yi’s
ever reach an active position, and hence are not invoked. Otherwise, the computation
must get stuck (it can’t halt because Subject Reduction implies that all configurations
are well-typed; the halt expression requires an empty linear context). The stuck term
must be of the form lgoto yi v, and because it is well-typed, rules λCPS

SEC-LVAR and
λCPS

SEC-LGOTO together imply that yi = y1. �

82

We use the stack ordering property of linear continuations, as made explicit in the
Progress Lemma, to prove that equivalent high-security configurations eventually return
to equivalent low-security configurations.

Lemma 4.4.3 (High-pc Step) Suppose

• Γ ‖K � 〈M1, pc1, e1〉 ≈ζ 〈M2, pc2, e2〉
• pc1 � ζ and pc2 � ζ

• 〈M1, pc1, e1〉 → 〈M ′
1, pc′1, e′1〉

then either e2 diverges or 〈M2, pc2, e2〉 �−→∗ 〈M ′
2, pc′2, e′2〉 and there exist Γ ′ and K ′

such that Γ ′ ‖K ′ � 〈M ′
1, pc′1, e′1〉 ≈ζ 〈M ′

2, pc′2, e2〉.
Proof: By cases on the transition step of the first configuration. Because pc1 � ζ
and all rules except λCPS

SEC-EVAL-LGOTO increase the program-counter label, we may
choose zero steps for e2 and still show that ≈ζ is preserved. Condition (iii) holds via
part (b). The other invariants follow because all values computed and memory locations
written to must have labels higher than pc1 (and hence � ζ). Thus, the only memory
locations affected are high-security: M ′

1 ≈ζ M2 = M ′
2. Similarly, λCPS

SEC-LETLIN forces
linear continuations introduced by e1 to have pc � ζ. Substituting them in e1 maintains
clause (v) of the invariant.

Now consider λCPS
SEC-EVAL-LGOTO. Let e1 = γ1(k1(e

′′
1)), then e′′1 = lgoto lv v1

for some lv. If lv is not a variable, clause (vi) ensures that the program counter in lv’s
body is � ζ. Pick 0 steps for the second configuration as above, and it easily follows
that the resulting configurations are ≈ζ under Γ and K. Otherwise, lv is the variable y.
By assumption, k1(y) = λ〈pc〉(x :s). e, where pc � ζ. Assume e2 does not diverge. By
the Progress Lemma 〈M2, pc2, e2〉 �−→∗ 〈M ′

2, pc′2, lgoto k2(y) v2〉 (by assumption,
it can’t diverge). Simple induction on the length of this transition sequence shows that
M2 ≈ζ M ′

2, because the program counter may not become � ζ. Thus, M ′
1 = M1 ≈ζ

M2 ≈ζ M ′
2. By invariant (iv), k2(y) ≡α k1(y). Furthermore, λCPS

SEC-LGOTO requires that
label(s) � ζ. Let Γ ′ = Γ , x :s, γ′

1 = γ1{x �→ γ1(v1)�pc1}, γ′
2 = γ2{x �→ γ2(v2)�pc2};

take k′
1 and k′

2 to be the restrictions of k1 and k2 to the domain of the tail of K, which
we choose for K ′. Finally, let e′1 = γ′

1(k
′
1(e)) and e′2 = γ′

2(k
′
2(e)). All of the necessary

conditions are satisfied as is easily verified via the operational semantics. �

Finally, we use the above lemmas to prove noninterference. Assume a program that
computes a low-security Boolean has access to high-security data. Arbitrarily changing
the high-security data does not affect the program’s result.

First, some convenient notation for the initial linear continuation: Let

stop(s)
def
= λ〈⊥〉(x :s). halts x

It has type κstop(s) = s → 0.

83

Theorem 4.4.1 (Noninterference) Suppose

• x :s; y :boolζ → 0 [⊥] � e for some initial program e.

• label(s) � ζ

• · � v1, v2 : s

Then 〈∅, ⊥, e{v1/x}{stop(boolζ)/y}〉 �−→∗ 〈M1, ζ, haltboolζ n�1〉 and
〈∅, ⊥, e{v2/x}{stop(boolζ)/y}〉 �−→∗ 〈M2, ζ, haltboolζ m�2〉
imply that M1 ≈ζ M2 and n = m.

Proof: Let e1 be the term e{v1/x} and let e2 be the term e{v2/x}. It is easy to verify
that

x :s ‖ y :boolζ → 0 � 〈∅, ⊥, e1〉 ≈ζ 〈∅, ⊥, e2〉
by letting γ1 = {x �→ v1}, γ2 = {x �→ v2}, and k1 = k2 = {y �→ y}. Induction on the
length of the first expression’s evaluation sequence, using the Low- and High-pc Step
lemmas plus the fact that the second evaluation sequence terminates, implies that

Γ ‖K � 〈M1, ζ, haltboolζ n�1〉 ≈ζ 〈M2, ζ, haltboolζ m�2〉
Clause (v) of the Noninterference Invariant implies that M1 ≈ζ M2. Soundness implies
that �1 � ζ and �2 � ζ. This means, because of clause (iv), that neither n�1 nor m�2 are
in the range of γ′

i. Thus, the Booleans present in the halt expressions do not arise from
substitution. Because ζ � ζ, clause (iii) implies that haltboolζ n�1 ≡α haltboolζ m�2 ,
from which we obtain n = m as desired.

�

4.5 Translation

The source types of λREF
SEC are like those of λCPS

SEC, except that instead of continuations,
λREF

SEC has functions. The type translation from λREF
SEC types to λCPS

SEC types, following
previous work on typed CPS conversion [HL93], is given in terms of three mutually
recursive functions: (−)∗, for base types, (−)+ for security types, and (−)− to linear
continuation types:

unit∗ = unit

bool∗ = bool

(s ref)∗ = s+ ref

([�]s1 → s2)
∗ = [�](s+

1 , s−2) → 0

t+� = (t∗)�

s− = s+ → 0

84

λREF
SEC -VAL

Γ � v : s pc � label(s)

[[Γ [pc] � v : s]]y
�

lgoto y [[v]]

λREF
SEC -APP

Γ [pc] � e : ([pc′]s′ → s)� Γ [pc] � e′ : s′ pc � pc′

[[Γ [pc] � e e′ : s � �]]y
�

letlin k1 = λ〈pc〉(f : ([pc′]s′ → s)+
�).

letlin k2 = λ〈pc〉(x :s′+). goto f x y
in [[Γ [pc] � e′ : s′]]k2

in [[Γ [pc] � e : ([pc′]s′ → s)�]]k1

λREF
SEC -PRIM

Γ [pc] � e1 : bool� Γ [pc] � e2 : bool�

[[Γ [pc] � e1 ⊕ e2 : bool�]]y
�

letlin k1 = λ〈pc〉(x1 :bool+
�).

letlin k2 = λ〈pc〉(x2 :bool+
�).

let x = x1 ⊕ x2 in lgoto y x
in [[Γ [pc] � e2 : bool�]]k2

in [[Γ [pc] � e1 : bool�]]k1

λREF
SEC -REF

Γ [pc] � e : s

[[Γ [pc] � refse : s refpc]]y
�

letlin k = λ〈pc〉(x :s+).
let r = refs x in lgoto y r

in [[Γ [pc] � e : s]]k

Figure 4.11: CPS translation

85

λREF
SEC -DEREF

Γ [pc] � e : s ref�

[[Γ [pc] � !e : s � �]]y
�

letlin k = λ〈pc〉(r :s ref+
�).

let x = !r in lgoto y x
in [[Γ [pc] � e : s ref�]]k

λREF
SEC -ASSN

Γ [pc] � e1 : s ref� Γ � e2 : s � � label(s)

[[Γ [pc] � e1 := e2 : unitpc]]y
�

letlin k1 = λ〈pc〉(x1 :s ref+
�).

letlin k2 = λ〈pc〉(x2 :s+).
let x1 := x2 in lgoto y 〈〉pc

in [[Γ � e2 : s]]k2

in [[Γ [pc] � e1 : s ref�]]k1

λREF
SEC -COND

Γ [pc] � e : bool� Γ [pc � �] � ei : s i ∈ {1, 2}
[[Γ [pc] � if e then e1 else e2 : s]]y

�
letlin k = λ〈pc〉(x :bool+

�).
if x then [[Γ [pc � �] � e1 : s]]y

else [[Γ [pc � �] � e1 : s]]y
in [[Γ [pc] � e : bool�]]k

λREF
SEC -EXPRSUB

Γ [pc] � e : s � s ≤ s′

[[Γ [pc] � e : s′]]y
�

[[Γ [pc] � e : s]]y

Figure 4.12: CPS translation (continued)

86

Figures 4.11 and 4.12 show the term translation as a type-directed map from source
typing derivations to target terms. The rules are of the form:

P1 . . .Pn

[[Γ [pc] � esource : s]]y
�

etarget

Here, thePi’s represent premises of the inference rule in the source type system. The
semantic brackets around the conclusion of the inference rule indicate the typing context
and the source expression to be translated, assuming that the result of the computation
is to be passed to the continuation stored in the λCPS

SEC-variable y. The translation of
esource is the term etarget, which may mention the translations of types appearing in the
inference rule. Recursive translation of a subexpressions of esource, as directed by the
premise P of the inference rule, are indicated in etarget as [[P]]. For instance, the rule for
translating λREF

SEC -PRIM depends on translating the two subexpressions.
Because λREF

SEC and λCPS
SEC agree on the values for unit and bool, the translation of

those values or variables is just the identity. Functions are the only values whose trans-
lation is not the identity, their translation is mutually recursive with the translation for
program expressions:

[[x]] = x
[[〈〉�]] = 〈〉�
[[b�]] = b� (b ∈ {t, f})
[[Ls]] = Ls+

[[(λ[pc] f (x :s). e)�]] = (λ[pc]f(x :s+
1 , y :s−2). [[Γ , f :s′, x :s1 [pc] � e : s2]]y)�

where s′ = ([pc]s1 → s2)�

For simplicity, we present an un-optimizing CPS translation, although we expect
that first-class linear continuations will support more sophisticated translations, such as
tail-call optimization [DF92]. To obtain the full translation of a closed term e of type s,
we pass in the initial continuation instantiated at the correct type:

[[e]] = letlin y = stop(s+) in [[·[pc] � e : s]]y

As expected, linear continuations are introduced by the translation at points that
correspond (via the structure of the source program) to pushing an activation record
on to the stack, and lgotos are introduced where pops occur. The linear variable y
represents the current “top of stack” continuation; invoking it will cause the activation
stack to be popped, after executing the body of the continuation y. Note that all of the
implicit control flow of the source language is expressed by ordered linear continuations;

87

ordinary continuations are used only to express source-level functions, which, because
they might be copied or never invoked, are inherently nonlinear. However, the unique
return continuation of a function is represented by a linear continuation.

The basic lemma for establishing type correctness of the translation is proved by
induction on the typing derivation of the source term. This result also shows that the
CPS language is at least as precise as the source.

Lemma 4.5.1 (Type Translation)
If Γ [pc] � e : s then Γ+; y :s− [pc] � [[Γ [pc] � e : s]]y.

Proof: Straightforward. The necessary lattice inequalities to give a target derivation
are established by simply following the source derivation. �

To show that this CPS translation is operationally correct, we would like to estab-
lish the following lemma. Giving a complete proof is beyond the scope of this thesis.
However, the result should follow by a simulation argument similar to those used by
Danvy and Filinski [DF92]. There are some subtleties with the simulation that arise be-
cause of the presence of mutable state. Because this is an unoptimizing version of CPS
translation, it is also necessary to allow administrative redexes to remain in the resulting
terms [DF92]. Doing so complicates the exact strengthening of the simulation relations,
but it can be done [Plo75, Rie89].

Lemma 4.5.2 (Operational Correctness) Suppose e is a λREF
SEC term such that Γ [⊥] �

e : s and that M is a λREF
SEC memory such that Loc(e) ⊆ |M |. Then

〈M, ⊥, e〉 ⇓ 〈M ′, v〉 ⇔ 〈[[M]], ⊥, [[e]]〉 �−→∗ 〈[[M ′]], ⊥, halts+

[[v]]〉
Proof (sketch): The proof goes by strengthening the induction hypothesis to handle
the case where the linear continuation isn’t known to be stop(s∗), the program counter
may be different from ⊥, and the programs are related up to administrative redexes.
Additional interesting points include:

1. Binary operations are compatible in both languages.

2. There is a caveat that the memory allocation must be somehow coherent—that is,
the locations that are created “fresh” in the source can be mapped isomorphically
onto those created “fresh” in the target.

3. It’s important that the target can take multiple evaluation steps to simulate a
source evaluation rule, because there can be multiple lgoto operations involved
in threading the control through the target.

�

88

4.6 Related work

Pottier and Simonet [PS02] give a proof technique for proving noninterference in a
security-typed version of core ML, which is similar to λREF

SEC . Their approach differs
from the one presented here by using a nonstandard operational semantics in which two
program evaluations can be represented simultaneously. Their construction reduces the
noninterference result for the source language to the subject-reduction theorem for the
nonstandard language.

The constraints imposed by linearity can be seen as a form of resource manage-
ment [Gir87], in this case limiting the set of possible future computations.

There are many similarities between the stack-like nature of ordered linear contin-
uations and other type systems for regulating resource consumption. For example, the
capabilities calculus uses linearity constraints to manage regions of memory [CWM99];
the regions obey a stack discipline. Linearity has been widely used in the context of
memory management [Abr93, CWM99, Wad90, Wad93].

Linear continuations have been studied in terms of their category-theoretic seman-
tics [Fil92] and for their role in a computational interpretation of classical logic [Bie99].
Polakow and Pfenning have investigated the connections between ordered linear-logic,
stack-based abstract machines, and CPS [PP00]. Berdine, et al., have also studied a
number of situations in which continuations are used linearly [BORT01].

CPS translation has been studied in the context of program analysis [FB93, Nie82].
Sabry and Felleisen observed that increased precision in some CPS data flow analyses
is due to duplication of analysis along different execution paths [SF94]. They also note
that some analyses “confuse continuations” when applied to CPS programs. Our type
system distinguishes linear from nonlinear continuations to avoid confusing “calls” with
“returns.” More recently, Damian and Danvy showed that CPS translation can improve
binding-time analysis in the λ-calculus [DD00], suggesting that the connection between
binding-time analysis and security [ABHR99] warrants more investigation.

Linear continuations appear to be a higher-order analog to post-dominators in a
control-flow graph. Algorithms for determining post-dominators in control-flow graphs
(see Muchnick’s text [Muc97]) might yield inference techniques for linear continuation
types. Conversely, linear continuations might yield a type-theoretic basis for correctness
proofs of optimizations based on post-dominators.

Linearity also plays a role in security types for concurrent process calculi such as
the π-calculus [HVY00, HY02]. Because the usual translation of the λ-calculus into the
π-calculus can be seen as a form of CPS translation, it is enlightening to investigate the
connections between security in process calculi and low-level code. These connections
are made more explicit in the next chapter.

Chapter 5

Secure Concurrent Programs

Concurrent programs—programs in which multiple threads of control are permitted to
evaluate simultaneously—are invaluable for building systems that must react to or con-
trol ongoing activities in their environments [Sch97]. Typical examples of concurrent
programs include operating systems, databases, web servers, and user interfaces.

Clearly, there are information security concerns when designing such programs, yet
the problem of checking information flow properties in concurrent programming lan-
guages has not been solved satisfactorily. This chapter considers this problem, and pro-
poses a new language, called λCONCUR

SEC whose type system and accompanying definition
of information security avoid some of the limitations of previous work.

Languages for concurrent programming vary widely in the details of the features
they provide, but they share some essential traits: support for multiple threads of execu-
tion and the ability to describe interthread communication. One key difference between
concurrent languages and sequential languages is that they are nondeterministic: a sin-
gle machine configuration m may transition to two different machine configurations m1

and m2, reflecting a choice of which of multiple threads of execution to run.
The nondeterminism in the operational semantics is important, because it allows

the behavior of the thread scheduler to depend on details of run-time context that are
not under the programmer’s control: for instance, the operating system, the available
resources, or the presence of other threads managed by the scheduler. However, the
nondeterministic behavior of concurrent programs can also permit multiple threads to
interact in unwanted (and often unpredictable) ways. Practical languages for concurrent
programs provide synchronization mechanisms to help avoid this problem.

Concurrency adds several new difficulties for regulating information flows:

1. How nondeterminism is resolved in an implementation of the language plays an
important role in the information flows of a concurrent program. An observer with
knowledge of the scheduler implementation might be able to deduce more infor-

89

90

mation from the behavior of the program. These information leaks are sometimes
called refinement attacks [Ros95].

2. Communication between concurrently running threads also creates information
flows. More problematically, race conditions can arise that might leak information
if the outcome of a race is influenced by high-security data. Such race conditions
often involve timing flows, covert channels that have long been considered difficult
to control [Lam73].

3. Synchronization itself exchanges information between threads and hence creates
information flows. However, synchronization may also eliminate race conditions
and other forms of resource contention—thereby preventing potentially insecure
information flows.

Security-typed concurrent languages must address all of these issues. However,
dealing with them in a way that permits useful programs and a tractable program anal-
ysis is challenging. Previous work has approached the problem by either using sim-
ple while-based programs with shared-memory thread communication [SV98, SV00,
VS00, Smi01, Sab01] or by using the pi calculus [HY02, Pot02], a widely studied pro-
cess calculus [MPW92]. The language λCONCUR

SEC introduced in this chapter is based on
Fournet’s join calculus [Fou98], a process calculus whose syntax more closely resem-
bles that of λCPS

SEC. λCONCUR
SEC differs from previous approaches in the way that it treats

synchronization and timing.
Despite their importance for practical concurrent programming and their impact on

information-flow properties, synchronization mechanisms have only recently been stud-
ied in the context of information security [Sab01, HY02, Pot02]. λCONCUR

SEC incorporates
a controlled form of synchronization that uses linearity constraints similar to those on
the linear continuations of Chapter 4. Linear synchronization provides structure that
allows the type system to more accurately describe information flows that arise due to
synchronization. Although not complete—there are secure synchronization behaviors
that are not expressible in this framework—λCONCUR

SEC provides the ability to write pro-
grams with useful synchronization behavior.

In contrast to many previous security-typed language approaches for concurrent
programs [SV98, SV00, VS00, Smi01, Sab01, HY02, Pot02, BC02], the definition of
information-flow presented in this chapter permits high-security information to affect
the termination behavior and external timing behavior of the program. Instead, the pro-
posal here controls information flows by eliminating certain race conditions between
threads. This approach draws a distinction between the internally and externally observ-
able timing behavior of programs. External observations are those made by an observer
outside the system, timing the program with mechanisms external to the computing
system. Internal observations are those made by other programs running on the same

91

system. In principle, internal observations are more easily controlled because other pro-
grams can be subjected to a validation process before being allowed to run. Typically, in-
ternal observations also offer greater potential for high-bandwidth information transfer,
so they may also be more important to control. In this work the focus is on controlling
information flows that are internal to the system. Because there are many external flows,
some of which are difficult to control (e.g., conversation), and other techniques that can
be applied to controlling them (e.g., auditing or dynamically padding total execution
time), this decision seems reasonable.

The λCONCUR
SEC security model is based on observational determinism. Suppose that

we have two well-formed initial configurations m and m′ that differ only in some high-
security inputs (m ≈ζ m′), where evaluating m may result in a trace of machine states
T and evaluating m′ may result in a trace T ′. We require T ≈ζ T ′. Two traces are con-
sidered equivalent if they are equivalent up to stuttering and prefixing at every memory
location, considered independently of other memory locations.

To be more precise, let M , a memory, be a finite map from locations L to values
v. Then M(L) is the contents of location L. Let T (L) be the projection of the trace
T onto a single memory location L; that is, if T = [M0,M1,M2, . . .] then T (L) =
[M0(L),M1(L),M2(L), . . .]. A sequence of values [v0, v1, v2, . . .] is equivalent to an-
other sequence of values [v′

0, v
′
1, v

′
2, . . .] if vi ≈ζ v′

i for all i up to the length of the shorter
sequence. Then T ≈ζ T ′ if for all locations L, T (L) is equivalent up to stuttering to
T ′(L), or vice versa.

This security condition allows high-security information to affect the external ter-
mination and timing behavior of a program, while preventing any effect on internally
observable termination and timing behavior. Two aspects of this definition merit dis-
cussion. First, allowing one sequence to be a prefix of the other permits an external
nontermination channel that leaks one bit of information, but removes the obligation
to prove program termination. Second, considering each memory location indepen-
dently is justified because internal observations of the two locations can only observe
the relative ordering of their updates by using code that contains a race—and programs
containing races are disallowed. By requiring only per-location ordering of memory op-
erations, this definition avoids the restrictiveness incurred when timing may not depend
on high-security data.

The next section discusses the issues of information-flow, concurrency, and synchro-
nization more thoroughly, motivating the design of λCONCUR

SEC and informally introducing
its syntax. Section 5.2 presents the concrete language, its type operational semantics and
type system. Section 5.3 gives a proof of subject reduction. Section 5.4 formally defines
noninterference and race freedom and proves that the λCONCUR

SEC type system provides
noninterference. This chapter concludes with further comparison to related work.

92

5.1 Thread communication, races, and synchronization

This section describes information flows that arise in concurrent languages and infor-
mally introduces the syntax for λCONCUR

SEC .
The syntax for running two processes concurrently is P1 | P2. A process1 itself

may consist of multiple concurrent subprocesses. For example, P1 might be the process
Q1 | Q2. The order in which the threads are written is unimportant: the program
P1 | P2 is equivalent to the program P2 | P1. Similarly, the | operator is associative,
so the programs (P1 | P2) | P3 and P1 | (P2 | P3) are equivalent.

The operational semantics for λCONCUR
SEC allow any possible interleaving of the evalu-

ations of two parallel processes. Informally2, there are two rules for evaluating P1 | P2:

P1 → P ′
1

P1 | P2 → P ′
1 | P2

P2 → P ′
2

P1 | P2 → P1 | P ′
2

These two rules directly exhibit the nondeterminism of the operational semantics.

5.1.1 Shared memory and races

One basic means by which threads can communicate is shared memory. In shared mem-
ory models, one thread can write to a shared location and a second thread can read from
it, thereby transferring information from the first thread to the second.

Due to concurrency, two threads might try to write to the same location simultane-
ously or one thread might attempt to write to a location concurrently with a read by a
second thread, as illustrated below in examples (1) and (2) below:

(1) (l := t) | (l := f)

(2) (l := t) | (y := !l)

Both programs might behave nondeterministically. In example (1), the final value
stored in location l depends on the order in which the two threads are executed. Simi-
larly, in example (2), the final contents of y might depend on whether the read of location
l is scheduled before the write.

These write–write and write–read races can be used to leak confidential information
due to the relative timing behavior of the two threads. For example, the following pro-
gram sets up a race to assign to location l. The amount of time it takes the first thread
to reach the assignment depends on high-security data h. As an example, consider the
following program that might leak information about h via a write–read race:

1The terms thread and process are used interchangeably.
2The actual operational semantics of λCONCUR

SEC is given in Figures 5.4 and 5.5

93

(3) x := t;

(if h then delay(100) else skip; x := f)

| (delay(50); l := x; ...) l likely to equal h

This program initializes variable x to be true and then spawns two threads. The first
thread assigns x the value false either immediately or after a long delay. The second
thread waits long enough so that the assignment to x is likely to have occurred when
h is false; this second thread then assigns l the value of x. Depending on the thread-
scheduler implementation, this program can reliably copy the contents of h into the
variable l—a potentially insecure information leak.

Termination behavior also plays a role in the information flows possible in concur-
rent programs. For example, the following program copies the value of h to l, assuming
that LOOP() is a function that diverges:

(4) (if h then LOOP() else skip; l := f)

| (if (not h) then LOOP() else skip; l := t)

In this example, exactly one of the threads will terminate and only one assignment to
l will take place. Some third thread that can read from l could poll its value to learn
the contents of h. This example also depends on the assumption of a fair scheduler—
an unfair scheduler could run the LOOP() code forever, never giving the other thread a
chance to make its assignment.

Suppose that the variable h used in the examples contains high-security data and l

is a low-security variable. Whether to consider these programs secure is dependent on
what the low-security observer knows about the thread scheduler implementation. We
have already observed that if the scheduler is fair, meaning that each thread is given
eventually given a chance to run, then example (4) is not secure—it copies the contents
of h into l.

Similarly, if it is known that the thread scheduler alternates between threads (starting
with the first) and runs each for exactly 200 operational steps before switching, example
(3) has deterministic behavior with respect to the variable l—by the time the second
thread tests x it is always false. In this case, the program should be considered secure.
In contrast, if the scheduler runs each thread for fewer than 100 steps before switching,
example 3 does leak h to l and should be considered insecure.

As these examples have shown, whether a concurrent program is secure depends on
what information about the thread scheduler is available to the low-level observer of the
program. Examples (1) and (2) could be considered insecure if the low-level observer
knows that the schedule chosen depends on high-security information—even though
neither example mentions high-security data.

It might be reasonable to assume some characteristics about the thread scheduler, for
instance, that it is fair, or that it schedules processes uniformly at random. However, it is

94

still difficult to rule out programs that are insecure due to races. The existing type sys-
tems that follow this approach lead to extremely restrictive models of programming. For
example, Smith and Volpano consider only a fixed number of threads [SV98, Smi01].
Both their definition of noninterference and most other definitions [SS01, MS01, Sab01,
BC02, HY02, Pot02, SM02] forbid low-security computation from depending on the
timing or termination behavior that is influenced by high-security data. These ap-
proaches correctly rule out examples (3) and (4) as insecure while permitting programs
(1) and (2). However, due to the restrictions on high-security data, those type systems
also rule out the following single-threaded programs because the assignment to l se-
quentially follows computation whose external timing or termination behavior depends
on high-security data.

(5) while (h < 100) do { h := h + 1 }; l := 1;

(6) if h then LOOP() else skip; l := 1;

Type systems that rule out these programs implicitly assume that there may be other
unknown threads running concurrently with the program being analyzed and that those
other threads have access to the memory locations used in the program in question. This
makes the noninterference analysis very compositional, but quite restrictive—examples
(5) and (6) are considered insecure.

A different approach is to observe that examples (1)–(4) share a simple common
feature: there is a race on a low-security variable.3 As we have seen, whether such races
leak high-security information depends both on the threads that are running and on what
the low-security observer knows about the thread scheduler. Therefore, a natural way
to eliminate the information flows that arise from concurrency is to eliminate races to
low-security memory locations. Such race freedom requires that the sequence of values
stored in every memory location is deterministic. The definition of noninterference in
concurrent languages used here is based on low-security observational determinism. A
similar proposal has been made by Roscoe in the context of a labeled-transition seman-
tics for CSP [Ros95]. One benefit of this approach is that, under the caveat that the
variable l is local to the program being analyzed, examples (5) and (6) are considered
secure. As with previous work, examples (3) and (4) are considered insecure. How-
ever, with this definition of noninterference examples (1) and (2) are not considered
secure. Another benefit of this approach is that it yields a very strong kind of scheduler-
independence: determinism of the low-security memory writes implies that the same

3Whether there is a race in example (4) is debatable because we know ahead of time that at most one
assignment to l will ever take place. Because detecting races is, in general, undecidable (replace h with
an undecidable predicate), any static analysis sophisticated enough to determine that there is no race in
programs like this one could detect the information flow from h to l and hence rule this program out as
insecure.

95

sequence of reads and writes will be seen regardless of what decisions are made by the
thread scheduler.

We have seen that noninterference in the presence of concurrency relies crucially
on the absence of races. Of course, eliminating race conditions can itself be difficult,
particularly due to aliasing. For instance, we must reject the following program that has
a write–write race on the memory location aliased by l and l’:

let l’ = l in

(l’ := 1) | (l := 0)

The simplest way to rule out race conditions on shared memory is to eliminate shared
memory altogether. A less severe, yet sufficient, approach is to restrict the memory
shared between two threads to be read-only, thereby eliminating write–write and write–
read races. This strategy does not prohibit writable memory locations; it requires that
mutable state be local to a single thread.

Alias analysis plays a crucial role in establishing thread locality of memory re-
sources, and hence whether a program is race free. However, developing such an analy-
sis is beyond the scope of this thesis. Instead, we assume the existence of such an anal-
ysis for λCONCUR

SEC programs. The abstract requirements of a race-freedom analysis and
some potential implementations in terms of alias analysis are described in Section 5.2.3.

Because we do not make any assumptions about the thread scheduler, the condition
of race-freedom and the lack of synchronization together rule out interthread communi-
cation via shared memory. However, for concurrency to be useful, the threads still need
some means of exchanging data. Therefore λCONCUR

SEC allows a form of message passing
to compensate for the lack of general shared memory. The message-passing constructs
have a built-in synchronization mechanism that can be used to prevent race conditions
and to encode secure forms of shared-memory communication.

5.1.2 Message passing

In message-passing models (see Schneider’s text [Sch97] for an overview), one thread
may send a message on a channel; a second thread may then receive the message from
the channel. Synchronous message passing requires that the sending thread block until
the receiving thread has received the message, and, symmetrically, the receiving thread
must block until a message is sent.

Asynchronous message passing allows the sender of the message to continue before
the message has necessarily been received; a symmetric construct allows the receiver
to accept a message if one has been sent, or continue processing otherwise. λCONCUR

SEC

provides asynchronous message passing; synchronous message passing can be encoding
using the synchronization mechanisms, as shown below.

96

The λCONCUR
SEC notation for sending a value v on a channel c is c(v). Messages may

contain no data, in which case the send is written c(), or they may contain multiple
values, in which case the send is written c(v1,...,vn).

The way a λCONCUR
SEC process reacts when it receives a message on a channel is de-

scribed by a message handler (or simply handler). The syntax for a handler is illustrated
below:

c(x) � l := x

This handler waits for a message on channel c. When it receives such a message the
handler creates a new thread that executes the program l := x with the contents of the
message bound to the variable x. For example, when the handler receives the message
c(t), it creates a new thread that performs the assignment l := t. The message is
consumed by the handler.

Handlers definitions are introduced via let-syntax, just as the continuations of λCPS
SEC

or the functions of λREF
SEC are introduced. The channel name defined in the handler is in

scope within the body of the let. As an example, a λCONCUR
SEC program that sends the

message as described above is:

let c(x) � l := x in

c(t)

In full generality, multiple threads might attempt to send messages on a channel
concurrently. This situation is similar to the write–write race condition possible with
shared memory; information implicit in the thread scheduler might affect the outcome
of the communication. Such send contention occurs when multiple threads try to send
concurrently on the same channel, as illustrated in this example:

let c(x) � l := x in

c(t) | c(f)

This example also shows how send contention can lead to a race condition. The handler
above will react to the two messages by spawning a new thread to handle each; therefore
this example effectively evaluates to this program, which clearly exhibits a race:

let c(x) � l := x in

(l := t) | (l := f)

Handlers like the ones above remain permanently in the program environment once
declared. They are thus able to react to any number of messages sent on the channels
they define. Note that lexical scoping of channel names makes it impossible to introduce
read contention, which multiple handlers vie for a message. In the program below, the
second handler definition for the channel c shadows the first:

97

let c(x) � l := x in

let c(x) � l := t in

c(f)

λCONCUR
SEC permits channels to be used in a first-class way. This means that they may

be passed as values in the messages sent on other channels. For example, the channel
double sends two (empty) messages on any channel it is given as an argument:

let double(c) � c() | c() in

let d() � P in

double(d)

Just as recursive functions may mention the name of the function inside its body,
handler definitions may mention the channels they define. This makes it possible for
λCONCUR

SEC handler definitions to encode recursive functions. For example, the following
program creates an infinite loop:

let c(x) � c(x) in

c(t)

To further illustrate the connection between handlers and functions, compare the handler
definition to a similar recursive function written in λREF

SEC :

λ[⊥] f (x :s). f x

The handler for a channel is like a continuation: both accept a value and then perform
some computation based on that value. The ordered linear continuations of Chapter 4
imposes enough structure on sequential programs to establish a noninterference result.
Similarly, λCONCUR

SEC provides linear channels, on which exactly one message must be
sent. The symbol� is used in place of � to indicate that a message handler is linear.

For example, the following program declares a linear channel k that must be used
exactly once along each execution path:

let k(x) � l := x in

if h then k(t) else k(f)

The following programs are ill-formed, because they violate linearity of the channel
k. The first uses k in two separate threads, the second discards k in the second branch
of the conditional:

let k(x) � l := x in

k(t) | k(f)

98

let k(x) � l := x in

if h then k(t) else (l := f)

Importantly, linear handlers can never be used to create nondeterminism because, in
contrast to nonlinear handlers, there is never any send contention. This observation justi-
fies a weaker program-counter label constraint for using linear channels in the λCONCUR

SEC

type system, just as the λCPS
SEC rules for linear continuations introduce weaker constraints

than the rules for nonlinear continuations.
Channels may be seen as generalizing the abstraction of memory locations. A mem-

ory location is a channel that accepts messages that are pairs of the form (set, v) or
(get, c) where v is the value assigned by a set operation and c is itself the name of a
channel on which to return the contents of the memory cell.

Channels fundamentally exhibit the same difficulties that shared references do, so
why consider adding both to a concurrent language? Including both mechanisms pro-
vides a separation of concerns: references are used to structure the data of a compu-
tation, whereas channels (and message passing) are used to structure the behavior of a
computation.

5.1.3 Synchronization

λCONCUR
SEC provides a synchronization mechanism that allows a single handler definition

to block waiting for messages on multiple channels.
A handler definition defines a set of channels that all share the same continuation.

As a simple example, consider this handler definition:

input1(x) | input2(y) � let z = x ∧ y in output(z)

It declares two channel names input1 and input2 that block, each waiting to receive
a message. After both messages have been received, the handler triggers. In this case,
the data in the message received on input1 is bound to the variable x and the data in
the message received on input2 is bound to the variable y. The body of this handler
computes x ∧ y and then sends the result on a third channel, output.

As another example, the handler definition below declares two channels c and d.
Channel c accepts messages containing a single value and channel d accepts messages
that contain no data:

let c(x) | d() � P (x) in Q

If the process Q sends messages on both channels c and d, the handler will react by
creating a new thread P in which the value sent on c is bound to the variable x. If Q
never sends a message on one of the two channels, the handler will never be triggered.

For example, the following program sends memory location l on channel c, but only
sends a message on channel d if the value of h is true:

99

let l = ref f in

let c(x) | d() � x := t in

c(l) | (if h then d() else 0)

This construct provides synchronous message passing between two threads. Sup-
pose thread P1 wants to send the message m synchronously to thread Q1 after which
it continues as P2. Thread Q1 blocks waiting for the message m and then continues
as thread Q2(m). In a traditional message-passing notation, this situation might be ex-
pressed by the following program:

cobegin (P1;sendc(m);P2) | (Q1;recvc(x);Q2(x)) coend

Here, sendc(m) sends the message m on channel c, blocking until the message has been
received. Symmetrically, recvc(x) blocks until channel c has been sent the message m,
which it binds to variable x.

Using the syntactic sugar P1; P2 to denote sequential composition of (sequential)
processes P1 and P2, this example can be written using λCONCUR

SEC ’s synchronization
mechanisms:

let sendc(x) | recvc() � P2 | Q2(x)
in

P1;sendc(m) | Q1;recvc()

λCONCUR
SEC also allows synchronization on linear channels. For example, the program

below declares a handler for two linear channels k0 and k1:

let k0() | k1(x) � P in Q

As with the linear continuations of λCPS
SEC, channels k0 and k1 must be used exactly once

in each possible execution path of the process Q.
The channel synchronization mechanism in λCONCUR

SEC provides a flexible way of
structuring inter-thread communication.

The left half of Figure 5.1 illustrates a nested synchronization structure possible
for λCONCUR

SEC programs. The wavy arrows in this picture denote sequential threads of
execution. Forks in the computation are indicated by two solid arrows leaving a thread;
synchronization between threads is indicated by two solid arrows joining together—the
lines are labeled with the (linear) channels on which the synchronization takes place .
The corresponding program is:

let k0() | k1() � S in

P;(Q1;(let k2() | k3() � k1() in

(R1; k3() | R2; k2()))

| Q2; k0())

100

·
P��

��

·
����

��
�

		�
��

��

·
Q1 ��

��
·

Q2

��
��
��
��
��
��
��
��
��
��
��
��

·
����

��
�

		�
��

��

·
R1 ��

��
·

R2��
��

·
k3 		�

��
�� ·

k2����
��

�

·
k1 		�

��
�� ·

k0����
��

�

·
S��

��

·

·
P��

��

·
����

��
�

���������

·
Q1 ��

��
·

Q2

��
��
��
��
��
��
��
��
��

·
����

��
�

		�
��

��

·

R1

��
��
��
��
��
��
��
��
��

·
R2 ��

��

·
k3 		�

��
�� ·

k2����
��

�

·
S��

��

·
k1

��������� ·

k0����
��

�

·
T��

��

·

Figure 5.1: Synchronization structures

101

More complex synchronization behavior is also possible. For instance, the following
program has the synchronization structure pictured in the right part of Figure 5.1.

let k0() | k1() � T in

let k2() | k3() � S; k0() in

P;(Q1;(R1; k1()

| R2; k3())

| Q2; k2())

Note that this program uses channel k0 inside the body of the handler defining channels
k2 and k3.

5.2 λCONCUR
SEC : a secure concurrent calculus

This section introduces the formal semantics for λCONCUR
SEC , including its syntax, opera-

tional semantics. and type system.

5.2.1 Syntax and operational semantics

Figure 5.2 shows the syntax for λCONCUR
SEC programs.

Base values in λCONCUR
SEC are channel names c, memory locations L, or Booleans t

and f. The metavariable f ranges over channels and variables that have channel or linear
channel type. Primitive operations are defined exactly as in λCPS

SEC.
A process4, P consists of a sequence of let-declarations and primitive operations

followed by either 0, the terminal process, an if expression, or the concurrent composi-
tion of two processes, written P1 | P2. The terminal process 0 is analogous to the halt
instruction of λCPS

SEC, except that it does not “return” any final output.
If c is a channel, then the syntax c(�v)denotes a message with contents(�v) sent on

channel c. Message sends are asynchronous; but message handlers are blocking.
A join pattern J = f1(�x1)| . . . | fn(�xn)is a generalization of the binding construct

λf(x) found in λCPS
SEC

5. A join pattern declares a set of channels (or channel variables)
f1 . . . fn. Each channel fi accepts a vector of arguments that will be bound to the vector
variables �xi.

There are two kinds of join patterns. Nonlinear join patterns may bind linear vari-
ables y (although they are not required to), and thus can include channel declarations

4The words thread and process are used interchangeably Because λCONCUR
SEC does not have explicit

thread (or process) identifiers, the concept is somewhat nebulous.
5The word “join” here comes from “fork” and “join” terminology of multithreading, not the “join” of

the security lattice.

102

x, f ∈ V Variable names

bv ::= c Channel value
| L Reference value
| t | f Boolean values

v ::= x Variables
| bv� Secure values

lv ::= y | c Linear values

prim ::= v Values
| v ⊕ v Boolean operations
| !v Dereference

f ::= x | y | c Variables or channels

J ::= f(�x, y) Nonlinear channel
| f(�x) Linear channel
| J | J Join pattern

P ::= let x = prim in P Primitive operation
| let x = ref v in P Reference creation
| set v := v in P Assignment
| let J � P in P Handler definition
| let J � P in P Linear handler definition
| v(�v, lvopt) Message send
| lv(�v) Linear message send
| if v then P else P Conditional
| (P | P) Parallel processes
| 0 Inert process

Figure 5.2: Process syntax

103

of the form f(�x, y). Linear join patterns never bind linear variables—they contain only
channel declarations of the form f(�x).

The restriction that linear channels are not permitted to carry other linear channels
prevents sequencing problems like the ones encountered for continuations in λCPS

SEC. For
example, the λCPS

SEC program (D) of Figure 4.1 can be encoded straightforwardly into
λCONCUR

SEC . Join patterns introduce another means by which deterministic ordering of
linear continuations can be violated. For example, if linear channels were permitted to
carry other linear channels, the following program would contain an information flow
from h to l because the two assignments to l occur in different orders depending on the
value of h.

letlin k0() � 0 in

letlin k1(y1) � set l := t in y1() in

letlin k2(y2) � set l := f in y2() in

letlin k3(y3) | k4(y4) �
(letlin k() � y3(k0) in y4(k))

in

if h then k3(k1) | k4(k2)

else k3(k2) | k4(k1)

Although it would be possible to generalize the ordering constraints on the linear contin-
uations of λCPS

SEC to the linear channels of λCONCUR
SEC , doing so complicates the type system

substantially. Instead, the race-freedom requirement implies an appropriate ordering on
the usage of linear channels.

As described informally in the previous section, a handler definition is the λCONCUR
SEC

generalization of a continuation. Formally, it consists of a join pattern and a process P
called the body of the handler. The syntax for nonlinear handlers is J � P . The syntax
for linear handlers is J � P .

Just like nonlinear continuations, nonlinear channels may be duplicated and freely
used; however to prevent race conditions from arising, nonlinear handlers must be re-
entrant in a sense described below. Each linear channel must be used exactly once in all
possible future paths of computation.

It is helpful for writing examples to define a sequential subset of λCONCUR
SEC .

Definition 5.2.1 (Sequential processes) A λCONCUR
SEC process P is sequential if it does

not contain the | symbol.
If P (y) is a sequential process that contains one free linear channel variable y, the

process P; Q is defined as: let y() � Q in P (y).

Note that if P and Q are both sequential processes, then P; Q is also a sequential
process. Also observe that the sequential sublanguage of λCONCUR

SEC is the same (modulo
syntax) as the language λCPS

SEC.

104

M ::= M [L �→ v] Memory location L storing v
| M [pc : J � P] Message handler
| ·

S ::= S[pc : J � P] Linear handler
| ·

N ::= · | N | [pc : P] Network

m = 〈M, S, N〉 Machine configuration

Figure 5.3: Dynamic state syntax

Figure 5.3 shows the syntax for λCONCUR
SEC memories, synchronization environments,

networks and machine configurations. These structures make up the dynamic state of a
λCONCUR

SEC program.
Unlike λCPS

SEC, the memories of λCONCUR
SEC contain channel handler definitions in addi-

tion to the ordinary mapping between locations and their values. The new syntax for a
memory M is the binding [pc : J � P]. We generalize the domain of a memory M to
include the join patterns J it provides definitions to.

The memory M of the λCONCUR
SEC abstract machine consists of a collection of bindings

of the form [L �→ v] and [pc : J �P], as shown in Figure 5.2. The domain of M , written
dom(M), is the set of locations L and join patterns J that appear in M . If L ∈ dom(M)
then we write M(L) for the value v such that [L �→ v] ∈ M . Similarly, if J ∈ dom(M),
we write M(J) for the (open) process P .

A synchronization environment, denoted by S, stores the linear handler definitions
that have been declared by the program. Notation similar to that of memories is used to
describe the domain of a synchronization environment.

In order to track the information flows through a concurrent program, each thread
must have its own pc label. λCONCUR

SEC associates a process P with its pc label using the
syntax [pc : P]. A collection of such threads running concurrently is called a network.
This terminology is chosen in anticipation of the developments of Chapter 7, where
threads may be running on distinct hosts—for λCONCUR

SEC , a network can be thought of as
a pool of threads running on a single host. The syntax for a network N is shown near
the bottom of Figure 5.2.

In λCONCUR
SEC , a machine configuration m is a triple 〈M, S, N〉, where M is a mem-

ory, S is a synchronization environment, and N is a network.

105

M, pc |= prim ⇓ v 〈M1, S1, N1〉 → 〈M2, S2, N2〉

λCONCUR
SEC -EVAL-PRIM M, pc |= v ⇓ v � pc

λCONCUR
SEC -EVAL-BINOP M, pc |= n� ⊕ n′

�′ ⇓ (n[[⊕]]n′)���′ � pc

λCONCUR
SEC -EVAL-DEREF

M(L) = v

M, pc |= !L ⇓ v � pc

λCONCUR
SEC -EVAL-LETPRIM

M, pc |= prim ⇓ v

〈M, S, (N | [pc : let x = prim in e])〉 → 〈M, S, (N | [pc : e{v/x}])〉

λCONCUR
SEC -EVAL-LETREF

〈M, S, (N | [pc : let x = ref v in P])〉
→ 〈M [L �→ v], S, (N | [pc : P{Lpc/x}])〉 (L fresh)

λCONCUR
SEC -EVAL-SET

〈M, S, (N | [pc : set L @ h := v′ in P])〉
→ 〈M [L �→ v′ � � � pc], S, (N | [pc : P])〉

Figure 5.4: λCONCUR
SEC operational semantics

Figures 5.4 and 5.5 contain the operational semantics for λCONCUR
SEC . The rules define

a transition relation m1 → m2 between machine configurations. Evaluation of primitive
operations, reference creation, assignment, and conditionals is essentially the same as
in λCPS

SEC; such evaluation is defined by the relation M, pc |= prim ⇓ v. The description
below concentrates on the new features of λCONCUR

SEC , shown in Figure 5.5.
The rules λCONCUR

SEC -EVAL-HANDLER and λCONCUR
SEC -EVAL-LINHANDLER allocate

fresh channel names for each variable fi in the join pattern of the handler. The channels
declared in nonlinear handlers may be used recursively (inside the body of the handler),
so the fresh channel names are substituted in the body. Nonlinear handlers are placed
in the memory of the machine configuration. Linear handlers are put into the synchro-
nization environment. Both kinds of handlers capture the pc label of the introduction
context and record it in the machine state.

Rule λCONCUR
SEC -EVAL-SEND describes how a nonlinear handler is invoked. It uses

the syntactic abbreviation |i Pi
def
= 0 | P1 | . . . | Pn. Suppose the handler

[pc : c1(�x1)| . . . | cn(�xn)� P]

106

〈M1, S1, N1〉 → 〈M2, S2, N2〉

λCONCUR
SEC -EVAL-HANDLER

〈M, S, (N | [pc : let f1(�x1)| . . . | fn(�xn)� P1 in P2])〉
→ 〈M [c1(�x1)| . . . | cn(�xn)� P1{(ci)pc/fi}], S, (N | [pc : P2{(ci)pc/fi}])〉

where the ci are fresh

λCONCUR
SEC -EVAL-LINHANDLER

〈M, S, (N | [pc : let f1(�x1)| . . . | fn(�xn)� P1 in P2])〉
→ 〈M, S[pc : c1(�x1)| . . . | cn(�xn)� P1], (N | [pc : P2{ci/fi}])〉

where the ci are fresh

λCONCUR
SEC -EVAL-COND1

〈M, S, (N | [pc : if t� then P1 else P2])〉
→ 〈M, S, (N | [pc � � : P1])〉

λCONCUR
SEC -EVAL-COND2

〈M, S, (N | [pc : if f� then P1 else P2])〉
→ 〈M, S, (N | [pc � � : P2])〉

λCONCUR
SEC -EVAL-SEND

〈M [c1(�x1, y
opt
1)|. . .| cn(�xn, yopt

n)� P], S, (N |i [pci : ci�i(�vi, lv
opt
i)])〉

→ 〈M [c1(�x1, y
opt
1)|. . .| cn(�xn, yopt

n)� P], S, (N | [� : P{�vi � pci/�xi}{lvi/yi}opt])〉
where � = ipci � �i

λCONCUR
SEC -EVAL-LINSEND

〈M, S[pc : c1(�x1)| . . . | cn(�xn)� P], (N |i [pci :ci(�vi)])〉
→ 〈M, S, (N | [pc : P{�vi � pci/�xi}])〉

λCONCUR
SEC -EVAL-FORK

〈M, S, (N | [pc : P | Q])〉
→ 〈M, S, (N | [pc : P] | [pc : Q])〉

Figure 5.5: λCONCUR
SEC operational semantics (continued)

107

PROCUNIT P | 0 ≡ P
PROCCOMM P1 | P2 ≡ P2 | P1

PROCASSOC (P1 | P2) | P3 ≡ P1 | (P2 | P3)

Figure 5.6: Process structural equivalence

is in the memory. If there are messages ci(�vi)waiting at each of the channels ci, the
handler triggers, causing process P to execute with the message contents substituted
for the formal parameters. The program counter label of the new process is the join of
the pc labels that were present when the messages were sent. Joining the pc’s prevents
implicit flows due to synchronization. Importantly, the nonlinear handler remains in the
memory after being triggered—it can be invoked many times (or never).

The rule for invoking linear handlers, λCONCUR
SEC -EVAL-LINSEND, is similar to the

rule for nonlinear handlers, except for two differences. First, the program counter label
of the new process is the same as the one when the handler was declared. This rule is
analogous to one used for linear continuations in λCPS

SEC—see rule λCPS
SEC-EVAL-LGOTO of

Figure 4.3. Second, the linear handler is removed from the synchronization environment
after it is used, so no further invocations of it are possible.

The last rule, λCONCUR
SEC -EVAL-FORK, says that a forked process inherits the pc label

of the point at which it was spawned.
The operational semantics in the figure are too rigid: they require the right-most pro-

cesses to take part in the computational step. Because thread scheduling should ignore
the syntactic ordering of networks and processes running concurrently, we introduce the
notion of structural equivalence. The process structural equivalence relation says that
the syntactic order of concurrent processes is irrelevant. Network structural equivalence
says that the syntactic order of the processes in a network is irrelevant and that there is
no distinction between the syntax for a halted process, 0, and an empty network.

Structural equivalence is an instance of a congruence relation on program terms.
Congruence relations respect the structure of the syntax of the language—if two terms
are congruent, then placing them in identical program contexts yields two congruent
terms.

Let Proc be the set of all process terms. Let Net be the set of all network terms.

Definition 5.2.2 (Network congruence) A relation R ⊆ Net × Net is a congruence
on networks if it contains the =α relation, and, furthermore, N1RN2 implies that for
any N ∈ Net it is the case that

(N1 | N)R(N2 | N) and (N | N1)R(N | N2)

108

NETUNIT N | · ≡ N
NETCOMM N1 | N2 ≡ N2 | N1

NETASSOC (N1 | N2) | N3 ≡ N1 | (N2 | N3)
NETPROC [pc : P1] ≡ [pc : P2] (if P1 ≡ P2)
NETZERO [pc : 0] ≡ ·

Figure 5.7: Network structural equivalence

Definition 5.2.3 (Process congruence) Let t[·] be a term with a single ‘hole’ in it ob-
tained from the grammar in Figure 5.2 by extending the set of processes to include
P ::= . . . | [·]. For any process P , let t[P] be the ordinary process term obtained
from t[·] by filling the single instance of a hole in t[·] with the process P . A relation
R ⊆ Proc × Proc is a congruence on processes if it contains the =α relation, and,
furthermore, P1RP2 implies that for any t[·] it is the case that (t[P1])R(t[P2]).

Definition 5.2.4 (Structural equivalence) Structural equivalence on processes, writ-
ten ≡, is the least symmetric, transitive process congruence satisfying the axioms given
in Figure 5.6. Structural equivalence on networks, also written≡, is the least symmetric,
transitive network congruence satisfying the axioms given in Figure 5.7.

The structural equivalence on networks extends to a structural equivalence on ma-
chine configurations. In addition, we allow machine configurations in which the names
of locations or channels are systematically changed to be considered equivalent.

Definition 5.2.5 (Configuration structural equivalence) Two machine configurations
〈M1, S1, N1〉 and 〈M2, S2, N2〉 are structurally equivalent, written 〈M1, S1, N1〉 ≡
〈M2, S2, N2〉, if they are α-equivalent (where locations and channel definitions in a
memory or synchronization environment are considered binding occurrences of loca-
tions and channels) and N1 ≡ N2 .

The syntax-independent operational semantics is given by the transition relation�
defined from the→ relation and structural equivalence as shown in the following rule.

λCONCUR
SEC -EQSTEP

〈M1, S1, N1〉 ≡ 〈M ′
1, S ′

1, N ′
1〉

〈M ′
1, S ′

1, N ′
1〉 → 〈M ′

2, S ′
2, N ′

2〉
〈M ′

2, S ′
2, N ′

2〉 ≡ 〈M2, S2, N2〉
〈M1, S1, N1〉� 〈M2, S2, N2〉

109

5.2.2 λCONCUR
SEC type system

Figure 5.8 shows the types for λCONCUR
SEC programs. As with λCPS

SEC, types are divided into
nonlinear security types and linear types. Base types, t, consist of Booleans, channel
types, and references.

The channel type [pc](�s, kopt) has any number of nonlinear arguments and at most
one linear argument. The [pc] component of a channel type is, as in λCPS

SEC, a lower bound
on the security level of memory locations that might be written to if a message is sent on
this channel. Note that the channel type [pc](s, k) corresponds precisely to the nonlinear
continuation type [pc](s, k) → 0 used in λCPS

SEC.
The linear types are channels (�s) that accept some number of nonlinear arguments.

Sending a message on a linear channel does not itself reveal information about the send-
ing context (although the message contents might), so linear channel types do not require
the [pc] component. The linear channel type (s) corresponds precisely to the linear con-
tinuation type (s) → 0. The security lattice is lifted to a subtyping relation on λCONCUR

SEC

types, as shown in Figure 5.9.
A type context Γ is a finite map from nonlinear variables to their types. If Γ1 and

Γ2 are type contexts, the notation Γ1,Γ2 forms there disjoint union: Γ1,Γ2 = Γ1 ∪ Γ2

whenever dom(Γ1) ∩ dom(Γ2) = ∅. Linear type contexts K are finite maps from linear
variables to linear types. Disjoint union of linear contexts K1, K2 is defined similarly to
the case for nonlinear type contexts.

A memory type, H (for heap), is a mapping from locations and channels to their
types. Memory types were implicit in λCPS

SEC because each location value was tagged with
its associated type. For λCONCUR

SEC , because memories also store handler definitions, it is
syntactically less cumbersome to factor the type information for locations and channels
into these explicit memory types. A synchronization state type T similarly maps linear
channels to their linear types.

The type system for λCONCUR
SEC is shown in Figure 5.13. These judgments make use

of auxiliary judgments that ensure values and linear values are well-typed (Figures 5.10
and 5.11), primitive operations are well-typed (Figure 5.12), and that memories and
synchronization environments are well-formed (Figures 5.16 and 5.17).

The type system is designed to guarantee the following properties:

1. Explicit and implicit insecure information flows are ruled out.

2. Channel names introduced in a linear handler are used linearly.

λCONCUR
SEC typing judgments have the form H;Γ ; T ; K [pc] � P . This judgment

asserts that process P is well-typed. The contexts H and Γ map locations, nonlinear
channels, and nonlinear variables to their types as described above. T is a linear context
that maps linear channels to their types and K maps linear variables to their types. Un-
like λCPS

SEC the linear contexts are unordered—the necessary ordering on linear channels

110

pc, � ∈ L Security labels

s ::= t� Security types

t ::= bool Booleans
| [pc](�s, kopt) Channel types
| s ref Reference types

k ::= (�s) Linear channel types

Γ ::= · | Γ , x :s Type contexts

H ::= · Empty memory type
| H, [L :s] Location type
| H, [c :s] Channel definition type

K ::= · | K, y :k Linear type contexts

T ::= · | T, c :k Synchronization state types

Figure 5.8: Process types

111

� t1 ≤ t2 � s1 ≤ s2 � k1 ≤ k2

λCONCUR
SEC -TREFL � t ≤ t

λCONCUR
SEC -TTRANS

� t ≤ t′ � t′ ≤ t′′

� t ≤ t′′

λCONCUR
SEC -TCHANSUB

pc′ � pc � s′i ≤ si (� κ′ ≤ κ)opt

� [pc](�s, κopt) ≤ [pc′](�s′, κ′opt)

λCONCUR
SEC -SLAB

� t ≤ t′ � � �′

� t� ≤ t′�′

λCONCUR
SEC -TLINSUB

� s′i ≤ si

� (�s) ≤ (�s′)

Figure 5.9: λCONCUR
SEC subtyping

H;Γ � v : s

λCONCUR
SEC -VAR H;Γ � x : Γ (x)

λCONCUR
SEC -TRUE H;Γ � t� : bool�

λCONCUR
SEC -FALSE H;Γ � f� : bool�

λCONCUR
SEC -LOC H;Γ � L� : H(L) � �

λCONCUR
SEC -CHAN H;Γ � c� : H(c) � �

λCONCUR
SEC -SUB

� s1 ≤ s2 H;Γ � v : s1

H;Γ � v : s2

Figure 5.10: λCONCUR
SEC value typing

112

T ; K � lv : k

λCONCUR
SEC -LINVAR ·; y :k � y : k

λCONCUR
SEC -LINCHAN c :k; · � c : k

λCONCUR
SEC -LINSUB

� k1 ≤ k2 T ; K � lv : k1

T ; K � lv : k2

Figure 5.11: λCONCUR
SEC linear value types

H;Γ [pc] � prim : s

λCONCUR
SEC -VAL

H;Γ � v : s pc � label(s)

H;Γ [pc] � v : s

λCONCUR
SEC -BINOP

H;Γ � v : bool� H;Γ � v′ : bool� pc � �

H;Γ [pc] � v ⊕ v′ : bool�

λCONCUR
SEC -DEREF

H;Γ � v : s ref� pc � label(s � �)

H;Γ [pc] � !v : s � �

Figure 5.12: λCONCUR
SEC primitive operation types

113

H;Γ ; T ; K [pc] � P

λCONCUR
SEC -PRIM

H;Γ [pc] � prim : s
H;Γ , x :s; T ; K [pc] � P

H;Γ ; T ; K [pc] � let x = prim in P

λCONCUR
SEC -REF

H;Γ � v : s pc � label(s)
H;Γ , x :s refpc; T ; K [pc] � P

H;Γ ; T ; K [pc] � let x = refv in P

λCONCUR
SEC -ASSN

H;Γ � v : s ref� H;Γ ; T ; K [pc] � P
H;Γ � v′ : s pc � � � label(s)

H;Γ ; T ; K [pc] � set v := v′ in P

λCONCUR
SEC -IF

H;Γ [pc] � v : bool�

H;Γ ; T ; K [pc � �] � Pi (i ∈ {1, 2})
H;Γ ; T ; K [pc] � if v then P1 else P2

λCONCUR
SEC -ZERO H;Γ ; ·, · [pc] � 0

Figure 5.13: Process typing

is induced by the race-freedom assumption. As in λCPS
SEC, nonlinear contexts Γ permit

weakening and contraction, whereas linear contexts K do not.

The type system, like that of λCPS
SEC, uses the pc label to approximate the information

that can learned by seeing that the program execution has reached a particular point.
The [pc] component is the program counter security label that is a lower bound on the
label of memory locations that may be written to by the process P . The critical rule is
λCONCUR

SEC -IF, which checks that after the program has branched on �-level data there are
no writes to memory locations lower than �.

The typing rules λCONCUR
SEC -PRIM, λCONCUR

SEC -REF, and λCONCUR
SEC -ASSN introduce the

same label constraints that primitive operations and references do in λCPS
SEC. These con-

straints are sufficient to prevent unwanted information flows due to reference creation
or assignment, and they approximate the information flows due to binary operations.

Rule λCONCUR
SEC -IF propagates the label of the conditional into the pc labels for check-

ing the branches. Because the linear resources must be used no matter which branch is
taken, both branches have access to all of the linear context.

114

H;Γ ; T ; K [pc] � P

λCONCUR
SEC -PAR

H;Γ ; Ti; Ki [pc] � Pi (i ∈ {1, 2})
H;Γ ; T1, T2; K1, K2 [pc] � P1 | P2

λCONCUR
SEC -LET

J �pc 〈Γf ; Γargs; Kargs〉
H;Γ ,Γf ,Γargs; ·, Kargs [pc] � P1

H;Γ ,Γf ; T,K [pc] � P2

H;Γ ; T ; K [pc] � let J � P1 in P2

λCONCUR
SEC -LETLIN

J � 〈Kf ; Γargs〉
H;Γ ,Γargs; T1; K2 [pc] � P1

H;Γ ; T2; K1, Kf [pc] � P2

H;Γ ; T1, T2; K1, K2 [pc] � let J � P1 in P2

λCONCUR
SEC -SEND

H;Γ � v : [pc′](�s, kopt)�

H;Γ [pc] � vi : si

T ; K � lvopt : kopt

pc � � � pc′

H;Γ ; T ; K [pc] � v(�v, lvopt)

λCONCUR
SEC -LINSEND

T ; K � lv : (�s)
H;Γ [pc] � vi : si

H;Γ ; T ; K [pc] � lv(�v)

Figure 5.14: Process typing (continued)

115

J �pc 〈Γf ;Γargs; K〉 J � 〈K;Γargs〉

f(�x)�pc 〈f : [pc](�s), �x :�s, ∅〉

f(�x, y)�pc 〈f : [pc](�s, k), �x :�s, y :k〉

J1 �pc 〈Γf1; Γargs1; K1〉
J2 �pc 〈Γf2; Γargs2; K2〉

J1 | J2 �pc 〈Γf1,Γf2; Γargs1,Γargs2; K1,K2〉

f(�x)� 〈f : (�s), �x :�s〉

J1 � 〈K1; Γargs1〉 J2 � 〈K2; Γargs2〉
J1 | J2 � 〈K1,K2; Γargs1,Γargs2〉

Figure 5.15: Join pattern bindings

Rule λCONCUR
SEC -ZERO says that the null process type-checks only if all of the linear

resources have been used.
Concurrent processes P1 | P2 are checked using the program-counter label of the

parent process, as shown in rule λCONCUR
SEC -PAR of Figure 5.14. The two processes have

access to the same nonlinear resources, but the linear resources must be partitioned
between them.

The typing rules λCONCUR
SEC -LET and λCONCUR

SEC -LETLIN make use of auxiliary oper-
ations that extract variable binding information from handler definitions. A join pattern
J yields a collection Γf of channels it defines and a set of variables bound in the body of
the handler definition Γargs. For nonlinear join patterns, the linear variables form a syn-
chronization context K. The operation J �pc 〈Γf ; Γargs; K〉, defined in Figure 5.15
collects these channel names and variables for nonlinear join patterns and assigns them
types. A similar operation J � 〈K; Γargs〉 defined for linear join patterns extracts the
synchronization point K and the context for the handler body, Γargs.

Rule λCONCUR
SEC -LET is analogous to λCPS

SEC-CONT from λCPS
SEC (see Figure 4.5). It

checks the body of the handler under the assumption that the arguments bound by the
join pattern have the appropriate types. Nonlinear handlers cannot capture free linear
values or channels, because that would potentially violate their linearity. Consequently,
the only linear resources available inside the body P1 are those explicitly passed to
the handler: Kargs. Note that the channels defined by the nonlinear handler (Γf) are

116

H �M

λCONCUR
SEC -HEAP-EMPTY H � ·

λCONCUR
SEC -HEAP-LOC

H � M H; · � v : H(L)

H � M [L �→ v]

λCONCUR
SEC -HEAP-HANDLER

H � M
H(ci) = [pc](�si, k

opt
i)

H; �x1 : �s1 . . . �xn : �sn; yopt
1 :kopt

1 . . . yopt
n :kopt

n [pc] � P

H � M [c1(�x1, y
opt
1)| . . . | cn(�xn, yopt

n)� P]

Figure 5.16: λCONCUR
SEC heap types

available inside the handler body, which allows recursion. The process P2 has access to
the newly defined channels (in Γf) and to the previously available resources.

Rule λCONCUR
SEC -LETLIN shows how linear resources are manipulated when a linear

handler is declared. The join pattern J defines a collection of linear channels Kf and
arguments Γargs. The arguments (Γargs), as well as some of previously defined linear
channels (T1 and K1), are available in the linear handler’s body (P1). The rest of the
linear resources (T2 and K2), plus the newly defined linear channels, are available in the
process P2.

The rule for type-checking messages sends on nonlinear channels requires that the
channel type and the types of the values passed in the message agree. Also, the program
counter at the point of the send must be protected by the label of message handler; this
constraint rules out implicit information flows. Rule λCONCUR

SEC -SEND shows how these
constraints are required.

Sending a message on a linear channel does not impose any constraints on the pc
label at the point of the send, reflecting that fact that there is no information revealed
by the fact that a message is sent on a linear channel. Note that the contents of the
messages are labeled with the pc label—the message sent on a linear channel might
contain information about the program counter.

A memory M is a well-formed with heap type H when H � M can be derived
according to the rules in Figure 5.16. Furthermore, no channel name should be defined
in more than one handler definition appearing in M : for all distinct join patterns J1 and
J2 in dom(M) if J1 �pc 〈Γf1 ;−;−〉 and J2 �pc 〈Γf2 ;−;−〉, then

dom(Γf1) ∩ dom(Γf2) = ∅

117

H; T1 � S; T2

λCONCUR
SEC -S-EMPTY H; T � ·; ·

λCONCUR
SEC -S-HANDLER

H; T � S; T1

T (ci) = (�si) T2 ⊆ T
H; �x1 : �s1 . . . �xn : �sn; T2, · [pc] � P

H; T � S[pc : c1(�x1) | . . . cn(�xn)� P]; T1, T2

Figure 5.17: λCONCUR
SEC synchronization environment types

H;Γ ; T ; K � N

λCONCUR
SEC -NET-EMPTY H;Γ ; ·; · � ·

λCONCUR
SEC -NET-PROC

H;Γ ; T1; K1 � N
H;Γ ; T2; K2 [pc] � P

H;Γ ; T1, T2; K1, K2 � N | [pc : P]

Figure 5.18: Network typing rules

Note that the heap type H may contain more bindings than are present in M .
A synchronization environment S has type T when no channel name in T is defined

in more than one handler, dom(S) = dom(T), and H; T � S; T ′ can be derived ac-
cording to the rules in Figure 5.17. Any linear channel in T must be used in at most
one of the handlers present in the synchronization environment. The type T ′ records
which channels have been used in S. The channels in T \ T ′ must be used within
the program accompanying the synchronization environment, as required by the rule
λCONCUR

SEC -CONFIG (given below).
A network of processes is well-typed whenever each of the processes in the network

is well-typed and the linear resources are completely used, as shown in Figure 5.18.
Finally, a configuration 〈M, S, N〉 is well-typed if its components are and all of the
linear channels defined in S are used exactly once in either S or N :

λCONCUR
SEC -CONFIG

H �M H; T1, T2 � S; T1 H; ·; T2; · � N

H; T1, T2 � 〈M, S, N〉

118

5.2.3 Race prevention and alias analysis

As we have seen, two concurrently running threads might leak confidential information
if they have write–write or read–write races. This section discusses how to formalize
race freedom and how program analysis techniques can potentially be used to establish
that a program is race free.

Consider example (1) from Section 5.1.1. In the λCONCUR
SEC syntax, it can be written

as the program P1:

P1
def
= (set L1 := t in 0) | (set L1 := f in 0)

The possible evaluation sequences of this program, starting from the memory [L1 �→ t]
are shown in the next diagram.6

〈[L1 �→ t], ·, set L1 := f in 0〉 � 〈[L1 �→ f], ·, 0〉
〈[L1 �→ t], ·, P1〉

�

� 〈[L1 �→ f], ·, set L1 := t in 0〉 � 〈[L1 �→ t], ·, 0〉
The evaluation is nondeterministic because of the concurrency. Once the choice of

which thread to run first is made, the evaluations become distinct —the nondeterministic
choice becomes apparent from the program state. Importantly, the nondeterminism is
visible solely by watching the contents of location L1. Example (2) from Section 5.1.1
exhibits similar properties.

Contrast those programs with the following race-free program, P2:

P2
def
= (set L1 := t in 0) | (set L2 := f in 0)

The possible evaluation sequences of this program starting from the memory M1 =
[L1 �→ f][L2 �→ f] are shown below:

〈M1[L1 �→ t], ·, set L2 := f in 0〉 �
〈M1, ·, P1〉

�

�
〈[L1 �→ t][L2 �→ f], ·, 0〉

〈M1[L2 �→ f], ·, set L1 := t in 0〉 �

In this case, even though there is still nondeterminism in the evaluation, the evaluation
of one thread does not disrupt the computation of the other thread. Evaluation of the two
threads commutes, which implies that the scheduler is free to choose any ordering—the
eventual outcome of the program is unaffected.

These observations lead to the following definition of race freedom, which requires
that any configuration reachable from the starting configuration satisfy the commutativ-
ity property.

6For the sake of clarity, the network syntax [pc : P1] has been omitted from this description, because
the program counter label is irrelevant.

119

Definition 5.2.6 A configuration m is race free whenever m �∗ m′ and m′ � m1

and m′ � m2 and m1 ≡ m2 imply that there exists an m′′ such that m1 � m′′ and
m2 � m′′. Pictorially, this can be seen as:

m1

�
≡m �∗ m′

�

�
m′′

m2

�

An open term is race free whenever all of its closed instances are race free. Formally,
N is race free if ·;Γ ; ·; · � N and for every substitution γ such that · |= γ : Γ the
configuration 〈·, ·, γ(N)〉 is race free.

This is a strong notion of race freedom. For example, under this definition the fol-
lowing program has a race:

let h(x) | g() = let a = x in 0 in

h(t) | h(f) | g()

Here, the program evolves into one of two distinct possible configurations that have net-
works containing either the (unhandled) message send h(t) or the (unhandled) message
send h(f) —such nondeterminism corresponds to send contention.

This definition of race freedom is certainly sufficient to rule out the timing leaks that
may occur between threads. However, it is stronger than necessary if the only externally
observable aspect of the machine configuration is the memory (and not the program
counter or channel states). It is possible to weaken the definition of race freedom to
consider harmful only nondeterminism apparent from the memory, in which case side-
effect free programs (like the one above) are permitted to exhibit nondeterminism.

However, even with a weakened definition of race freedom, the nondeterminism on
nonlinear channels can cause races. For example, the following program nondetermin-
istically stores either t or f into the reference l because there is a race between the two
sends on channel h.

let h(x) | g() = set l := x in 0 in

h(t) | h(f) | g()

The channels involved in the race need not carry values (as in the program above). In-
stead, the handler itself may contain state that introduces the nondeterminism, as shown
here:

120

let h() � let z = !a in set a := ¬z in 0 in

h() | h()

As a last example, the following program exhibits a race to the assignment of the
location a. It shows a slightly more subtle way to create a race to the send on channel h:

let h(x) � set a := x in 0 in

let g(h1, h2) � h1(t) | h2(f) in

g(h, h)

Observe that all of the examples of races involve two aliases of either a reference or
a channel used concurrently. Consequently, preventing races relies on detecting possi-
ble aliasing of references and channels and disallowing aliases to be used by multiple
threads. Rather than formulate a specific alias analysis for fine-grained control over
the resources available to each thread, this thesis instead assumes that the concurrent
program is race-free.

There are a number of ways that race freedom can be established. One useful ap-
proach is to use alias analysis to (soundly) approximate the set of locations and channels
written to (or sent messages) by a thread. Call this set by write(P). By determining
which locations are potentially read by P (a set read(P)), an analysis can prevent races
by requiring that, for any subprograms P1 and P2 that might occur during evaluation:

write(P1) ∩ (read(P2) ∪ write(P2)) = ∅
∧ write(P2) ∩ (read(P1) ∪ write(P1)) = ∅

Alias analyses construct finite models of the dynamic behavior of a program so that
which references are dynamically instantiated with which memory locations can be stat-
ically approximated. The more closely the abstract model agrees with the true behavior
of the system, the more accurate the aliasing information can be. An abstract interpreta-
tion is sound if it faithfully models the behavior of the system—it does not give answers
that disagree with the actual behavior of the system. Here, the alias analysis can be used
to approximate the sets read(−) and write(−) sufficient to establish race freedom.7

As an extreme, one sound analysis is to simply assume that any process might read
or write any reference. Such a rough approximation to the actual aliasing would require
that the program be sequential. Another possibility is to approximate alias information
using types: a reference of type bool ref can never alias a reference of type int ref,
for example. This scheme would allow concurrent threads to mutate parts of the heap
that contain different types of data.

A second possibility is to ensure that references and nonlinear channels do not cause
races is to require them to be used sequentially. Simple syntactic constraints similar to

7Although it is beyond the scope of this thesis, it should be possible to prove that this application of
alias analysis implies the semantic definition of race freedom.

121

linearity that can force a handler to be used sequentially. (See, for example, Reynolds’
original work on syntactic control of interference [Rey78].) Consider the handler dec-
laration let J � P in Q. If the channel names defined in J are used affinely (at most
once statically) in P and affinely in Q, then the body of the handler (P) will never
execute concurrently with another instance of itself—the handler must be used sequen-
tially. One can formulate sequentiality in the type system (as shown by Honda et al.
[HVY00, HY02]), but doing so is rather complex.

Another possibility is to track aliasing directly in the type system [SWM00, WM00].
Such an approach would potentially permit very fine-grained control of concurrency.
More generally, pointer or shape analysis can be used to approximate the read(−) and
write(−) sets. Most relevant to this thesis are interprocedural analyses [LR92, Deu94],
analyses that deal with function pointers [EGH94], and the work on pointer analysis for
multithreaded programs [RR99].

There are also a number of type systems that regulate locking protocols to prevent
race conditions [FA99b, FA99a, FF00]. Instead of using aliasing information directly,
these analyses ensure that an appropriate lock is held before a memory location is ac-
cessed; they introduce ordering constraints on locks to serialize the memory accesses.
Although not intended to guarantee the strong race-freedom requirement needed here
(these analyses still permit nondeterministic ordering of memory writes), it might be
possible to use them as a starting point.

It is worth noting that linear channels may never be aliased because they cannot be
duplicated or stored in the memory. Linear type information can therefore be used by the
alias analysis. However, we have not yet addressed the connection between the ordered
linear continuations of λCPS

SEC and the linear channels of λCONCUR
SEC .

The type system presented in Figures 5.13 and 5.14 does not explicitly enforce any
ordering constraints on the use linear channels. Instead, the ordering is induced by the
race-freedom requirement because it restricts how linear channels may be mentioned in
the program.

To see how linear channels, sequentiality, and race prevention are related, consider
the following program.

let h(x) � P in

h(t) | h(f)

The channel h itself is nonlinear and hence can be used multiple times. It may step to
a configuration containing the process P{3/x} or P{4/x} nondeterministically. Any
sequencing between invocations of h must be encoded explicitly using linear channels;
the linear message acknowledges that the channel has received one message and is wait-
ing for another. To ensure that the message h(f) is consumed before h(t), the above
example would be changed to:

122

let h(x,k) � P;k() in

let k1() � h(t, k0) in

h(f, k1)

Here, the linear channel k1 expresses the causal connection between the send of f on
h and the send of t on h. Note that k0 is unspecified: It expresses the causal relation
between the send of f on h and any future sends. Importantly, k0 is free in the body of
the handler for k1.

The linearity of the acknowledgment channels is crucial: duplicating the acknowl-
edgment messages allows multiple “futures” to take place, destroying sequentiality:

let h(x,k) � P;k() in

let k1() � h(t, k0) in

h(f, k1) | h(t, k1)

Note that because of synchronization between linear channels, the causal ordering
can be more complex. Consider the following example.

let k1() | k2() � P in

let k3() � Q;k1() in

k2() | R;k3()

In this program, threads R, Q, and P must be evaluated in that order, even though
there is a message sent on channel k2 (potentially) before the send on channel k3. The
sequentiality is guaranteed because the handler body for k3 sends the message on k1—
the message on k3 must take place before the synchronization on k1 and k2.

Race freedom rules out the following program because there is no causal ordering
between the handlers for k1 and k2, even though they are used linearly:

let k1() � set a := t in 0 in

let k2() � set a := f in 0 in

k1() | k2()

The following similar program does establish a total ordering between k1 and k2, so
it is permitted by the race-freedom condition.

let k1() � set a := t in 0 in

let k2() � set a := f in k1() in

k2()

Race freedom implies that there is a causal ordering relationship between the linear
synchronization handlers and that any two handlers that interfere are totally ordered.
This constraint ensures that interfering linear handlers are used sequentially, which im-
plies that updates to memory locations mentioned in them are deterministic.

123

5.3 Subject reduction for λCONCUR
SEC

This section establishes a subject reduction theorem for λCONCUR
SEC . It follows the same

general outline as the subject reduction proof for λCPS
SEC. As with λCPS

SEC the subject reduc-
tion property is key to establishing noninterference for λCONCUR

SEC .
We first establish the standard lemmas.

Lemma 5.3.1 (Substitution 1) Suppose H;Γ , x : s; T,K [pc] � P and H; · � v : s
then H;Γ ; T,K [pc] � P{v/x}.

Proof (sketch): The proof first strengthens the hypothesis to allow substitution in all of
the syntactic classes of λCONCUR

SEC . The result then follows from mutual induction on the
structure of the typing derivation. The argument is similar to the proof of Lemma 4.3.1.

�

Lemma 5.3.2 (Substitution 2) Suppose H;Γ ; T1, K1, y : k [pc] � P and T2; K2 � lv :
k then H;Γ ; T1, T2, K1, K2 [pc] � P{lv/y}.

Proof (sketch): The proof first strengthens the hypothesis to allow substitution in all
of the syntactic classes of λCONCUR

SEC . The result then follows from mutual induction on
the structure of the derivation that P is well-typed. The base cases follow directly from
the rules in Figure 5.11. �

Lemma 5.3.3 (Program counter variance) If H;Γ ; T,K [pc] � P and pc′ � pc then
H;Γ ; T,K [pc′] � P .

Proof: By induction on the derivation that P is well-typed under [pc]. Note that all
lattice inequalities involving the program counter appear to the left of�. Thus, replacing
pc by pc′ in a typing derivation will still yield a valid derivation. �

Lemma 5.3.4 (Primitive evaluation) If H; · [pc] � prim : s and M, pc |= prim ⇓ v
then H; · � v : s.

Proof (sketch): The proof is nearly identical to that of Lemma 4.3.5. �

Lemma 5.3.5 (Heap weakening) If H ′ extends H and H appears to the left of � in
the conclusion of a typing derivation, then replacing H by H ′ in the conclusion yields a
valid typing judgment.

124

Proof (sketch): By induction on the typing derivations. The base case follows from
the fact that H ′ extends H (and hence agrees with H on their common domain), so rules
λCONCUR

SEC -HEAP-LOC and λCONCUR
SEC -HEAP-HANDLER hold with H ′ instead of H .

�

Because λCONCUR
SEC has a more complicated operational semantics, we also need to

show that the additional components of the machine configuration are well-typed.

Lemma 5.3.6 (Synchronization environment weakening) If H; T1 � S; T2 and T ′ is
any synchronization state type such that dom(T ′)∩dom(T1) = ∅ then H; T1, T

′ � S; T2

Proof: By induction on the typing derivation. The base case follows immediately
from the rule λCONCUR

SEC -S-EMPTY. �

The structural equivalence of machine configurations allows us to disregard the syn-
tactic order of processes in a program. The following lemma establishes, as expected,
that reordering the processes in a configuration does not affect its typing properties.

Lemma 5.3.7 (Equivalence preserves typing) If H; T � 〈M, S, N〉 and configura-
tion 〈M, S, N〉 ≡ 〈M ′, S ′, N ′〉 then there exists a renaming H ′ of H and a renaming
T ′ of T such that H ′; T ′ � 〈M ′, S ′, N ′〉.
Proof (sketch): This lemma follows from several observations:

1. The rules λCONCUR
SEC -NET-EMPTY and λCONCUR

SEC -ZERO agree on the linear portion
of the context.

2. Partitioning of linear contexts is commutative and associative (and hence agrees
with the requirements of rules λCONCUR

SEC -NET-PROC and λCONCUR
SEC -PAR).

3. Consistent renaming of memory locations or channel names does not change their
associated types.

�

Using the above lemmas, we prove the following lemma.

Lemma 5.3.8 (Subject reduction) Suppose H; T � 〈M, S, N〉 and

〈M, S, N〉� 〈M ′, S ′, N ′〉
Then there exists H ′ and T ′ such that H ′; T ′ � 〈M ′, S ′, N ′〉.
Proof: This proof follows as a corollary of the strengthened version below, using
Lemma 5.3.7 twice to recover the result for � from the case for → and the structural
evaluation rule λCONCUR

SEC -EQSTEP. �

125

Lemma 5.3.9 (Strengthened subject reduction) Suppose H; T � 〈M, S, N〉 and

〈M, S, N〉 → 〈M ′, S ′, N ′〉

Then there exists H ′ and T ′ such that H ′; T ′ � 〈M ′, S ′, N ′〉. Furthermore, H ′ extends
H and T and T ′ agree on the channels in their intersection.

Proof: The proof is by cases on the evaluation step used.

λCONCUR
SEC -EVAL-LETPRIM This case follows immediately from Lemmas 5.3.4 and

5.3.1. Note that neither the memory nor the synchronization environment change.

λCONCUR
SEC -EVAL-LETREF It must be that N = N ′′ | [pc : let x = ref v in P] and

N ′ = N ′′ | [pc : P{L/x}] and M ′ = M [L �→ v]. Let H ′ = H[L : s ref]. By
the rule’s side condition, the location L does not occur in the domain of H or M .
Therefore, H ′ extends H . Because N is well-typed, it follows that H; ·; T1; · � N ′′

and H; x : s refpc; T2, · [pc] � P where T = T1, T2. Furthermore, it must be the
case that H; · � v : s. By Lemma 5.3.5, we then have H ′; ·; T1; · � N ′′ and
H ′; x : s ref; T2, · [pc] � P and H ′; · � v : s. Note that H ′ � M ′ follows from
Lemma 5.3.5 and λCONCUR

SEC -HEAP-LOC. The fact that N ′ is well-typed follows
from Lemma 5.3.1 and rule λCONCUR

SEC -NET-PROC.

λCONCUR
SEC -EVAL-SET This case follows almost exactly as the previous one.

λCONCUR
SEC -EVAL-HANDLER This case is like the one for λCONCUR

SEC -EVAL-LETREF ex-
cept that weakening (Lemma 5.3.5) and rule λCONCUR

SEC -HEAP-HANDLER are used
to establish that substitution applies. Note that substitution must be performed on
the handler body. This case also relies on the operation �pc agreeing with the
requirements of rule λCONCUR

SEC -HEAP-HANDLER. The freshness of the channel
names is needed to establish that H ′ extends H .

λCONCUR
SEC -EVAL-LINHANDLER It must be the case that N = N ′′ | P where P =

[pc : let J � P1 in P2] and J � 〈Kf ;Γargs〉. Suppose that

Kf = {f1 : (�s1), . . . , fn : (�sn)}

Because the configuration is well-typed under H and T , we also have H � M
and H; T � S; T1 and H; ·; T2; · � N , where T = T1, T2. Inversion of rule
λCONCUR

SEC -NET-PROC yields H; ·; T3; · � N ′′ and H; ·; T4, · [pc] � P , where T2 =
T3, T4. Inversion of rule λCONCUR

SEC -LETLIN yields H;Γargs; T5, · [pc] � P1 and
H; ·; T6, Kf [pc] � P2 where T4 = T5, T6. Let T ′

i = {ci : Kf (fi)} for 1 ≤ i ≤ n
and the ci chosen according to the transition rule and let T7 =

⋃n
i T ′

i . Then

126

by rule λCONCUR
SEC -LINCHAN we have T ′

i ; · � ci : Kf (fi). By n applications of
Lemma 5.3.2 we obtain H; ·; T6, T7, · [pc] � P2{�ci/fi}.
Applying rule λCONCUR

SEC -NET-PROC to the antecedents

H; ·; T3; · � N ′′ and H; ·; T6, T7, · [pc] � P2{�ci/fi}

we obtain
H; ·; T3, T6, T7; · � N ′′ | [pc : P2{�ci/fi}]

We have already shown that H;Γargs; T5, · [pc] � P1 and H; T � S; T1 hold. By
weakening (Lemma 5.3.6) it follows that H; T, T7 � S; T1. Note that T5 ⊆ T4 ⊆
T2 ⊆ T ⊆ T, T7 and that, by construction (T, T7)(ci) = Kf (xi). Therefore, we
may apply rule λCONCUR

SEC -S-HANDLER to obtain

H; T, T7 � S[pc : J � P1]; T1, T5

Now we must account for the linearity of the channels:

T, T7 = T1, T2, T7 = T1, T3, T4, T7 = T1, T3, T5, T6, T7

Resources T1 and T5 are used in S ′ = S[pc : J � P1] and resources T3, T6, and
T7 are used in N ′ = N ′′ | [pc : P2{�ci/fi}], so we may apply λCONCUR

SEC -CONFIG

to conclude H; T, T7 � 〈M, S ′, N ′〉, as required.

λCONCUR
SEC -EVAL-COND1 We have N = N ′′ | [pc : if t� then P1 else P2]. Be-

cause the configuration is well-typed under H and T , we also have H � M
and H; T � S; T1 and H; ·; T2; · � N , where T = T1, T2. Inversion of rule
λCONCUR

SEC -NET-PROC yields H; ·; T3; · � N ′′ and

H; ·; T4, · [pc] � if t� then P1 else P2

where T2 = T3, T4. From λCONCUR
SEC -IF, it follows that H; · � t� : bool�′

where � � �′ and that H; ·; T4, · [pc � �′] � P1. By program counter vari-
ance (Lemma 5.3.3) it follows that H; ·; T4, · [pc � �] � P1. Applying rule
λCONCUR

SEC -NET-PROC yields H; ·; T3, T4; · � N ′′ | [pc � � : P1], from which
we can use λCONCUR

SEC -CONFIG to conclude H; T1, T3, T4 � 〈M, S, N ′〉, where
N ′ = N ′′ | [pc � � : P1]. Recall that T3, T4 = T2 and that T1, T2 = T , so we have
the desired result.

λCONCUR
SEC -EVAL-COND2 This case is nearly identical to the previous case.

127

λCONCUR
SEC -EVAL-SEND We have N = N ′′ |i [pci : ci�i

(�vi, lv
opt
i)] and it is also the

case that M = M ′′[c1(�x1, y
opt
1) | . . .| cn(�xn, y

opt
n)� P]. Because the configu-

ration is well-typed under H and T , we also have H � M and H; T � S; T1

and H; ·; T2; · � N , where T = T1, T2. Inversion of rule λCONCUR
SEC -NET-PROC n

times yields H; ·; T3; · � N ′′ and H; ·; T ′
i , · [pci] � ci�i

(�vi, lv
opt
i)where T2 = T3, T4

and T4 = T ′
1, . . . , T

′
n. For each i ∈ {1, . . . , n} the rule λCONCUR

SEC -SEND yields
H; · � ci�i

: [pc′i](�si, ki
opt)�′i where pci � �′i � pc′i and �i � �′i. Furthermore, we

also have H; · � vij : sij where pci � label(sij) and T ′
i ; · � lvopt

i : kopt
i .

Because pci � label(sij), we have H; · � vij � pci : sij .

From H �M and rule λCONCUR
SEC -HEAP-HANDLER we have

H; �x1 : �s1, . . . , �xn : �sn; ·; yopt
1 :kopt

1 , . . . , yopt
n :kopt

n [pc] � P

Applying the substitution Lemmas 5.3.1 and 5.3.2 we obtain

H; ·; T4, · [pc] � P{�vi � pci/�xi}{lvi/yi}opt

Note that rule λCONCUR
SEC -SEND requires that pc′i � pc and because pci � �i � pc′i

we have
� =

n
i (pci � �i) � n

i pc′i � pc

By Lemma 5.3.3 it follows that H; ·; T4, · [�] � P{�vi � pci/�xi}{lvi/yi}opt.

Applying λCONCUR
SEC -NET-PROC, we obtain

H; ·; T3, T4; · � N ′′ | [� : P{�vi � pci/�xi}{lvi/yi}opt]

Lastly, we observe that T2 = T3, T4 so rule λCONCUR
SEC -CONFIG yields the desired

result.

λCONCUR
SEC -EVAL-LINSEND This case is similar to the previous case, except that we

note that the T ′ is T minus the linear channels used in the step.

λCONCUR
SEC -EVAL-FORK This case follows straightforwardly from the two typing rules

λCONCUR
SEC -NET-PROC and λCONCUR

SEC -PAR and the fact that set union (for linear
contexts) is associative.

�

Note that progress, as it is usually stated, does not hold for λCONCUR
SEC . A nonlinear

channel may never be sent a message, causing the corresponding handler to block for-
ever waiting. For example, the following program either runs the subprocess P or gets
stuck, depending on the value of l, but it should be typable:

128

let h() | g() � P in

h() | (if l then 0 else g())

There is a weaker analog to progress in this setting. A program may not get stuck
if there are still outstanding linear channels that have not yet received communication.
One could formulate type-soundness without using a progress lemma, for instance, by
adding an explicit bad state and then showing that the type system prevents a well-typed
program from stepping to the bad state. Such a result is unimportant for the discussion
of noninterference in the next section; subject reduction is the key lemma.

5.4 Noninterference for λCONCUR
SEC

This section establishes that λCONCUR
SEC programs that are well typed and satisfy a race-

freedom condition obey noninterference. Recall that the ultimate goal of the noninter-
ference result is to establish that altering the high-security parts of the program does
not affect the deterministic behavior of the low-security parts of the store. Because this
definition of noninterference ignores external timing channels and internal timing chan-
nels are prevented by eliminating races, it suffices to show that the low-security memory
access behavior of the program can be simulated by another deterministic program that
differs in its high-security parts.

A program meets race-freedom requirement if all of its low-security simulations are
race free. Intuitively, a low-security simulation of a λCONCUR

SEC program P is another
λCONCUR

SEC program that differs from P in high-security values; the low-security simu-
lation also forces high-security computation to terminate in exactly one step. A low-
security simulation of P reflects the possible behavior of P as seen by a low-security
observer. Because high-security computation in the simulation terminates after one step,
the resulting security condition is timing and termination insensitive.

Importantly, because the simulation of a program P is itself a λCONCUR
SEC program,

establishing that the simulation is race free is no harder than establishing that a λCONCUR
SEC

program is race free. Any of the techniques discussed in Section 5.2.3 can be used to
ensure the race-freedom requirement. Also, because the simulations of a program can be
treated as abstract interpretations of the program, it is plausible that all of the simulations
of a program can be determined to be race free simultaneously.

In order to state the determinism property formally, we must first build some addi-
tional technical machinery. For now, we state the noninterference result informally.

Theorem 5.4.1 ((Informal) Noninterference for λCONCUR
SEC) If N is well-typed and ζ-

equivalent simulations are race free, then for any low-security memory location L and
any two high-security values v1 and v2 the sequence of values stored in memory location

129

L during the evaluation of 〈·, ·, N{v1/x}〉 is a prefix of the sequence of values stored
in L by 〈·, ·, N{v2/x}〉 (or vice-versa).

At a high level, the proof strategy is similar to that used in λCPS
SEC. We first establish an

appropriate notion of ζ-equivalence that equates values that should not be distinguish-
able to an observer with security clearance less-than ζ. We then use this equivalence to
construct a faithful low-security simulation of the process; the relevant lemmas are the
λCONCUR

SEC analog of 4.4.1 and 4.4.3. Using these results, it we establish the noninterfer-
ence result by induction on the evaluation sequence of the original program, using the
fact that secure programs are race free.

5.4.1 ζ-equivalence for λCONCUR
SEC

We first define ζ-equivalence, which indicates when two values (or substitutions) look
the same to a ζ-level observer.

Definition 5.4.1 (ζ-equivalence) Let ζ-equivalence (written ≈ζ) be the family of sym-
metric binary relations inductively defined as follows.

• For values:

H;Γ |= v1 ≈ζ v2 : t� ⇔ H;Γ � vi : t� ∧ (� � ζ ⇒ v1 = v2)

• For linear values:

T |= c1 ≈ζ c2 : k ⇔ T (ci) = k ∧ c1 = c2

• For nonlinear substitutions: H |= γ1 ≈ζ γ2 : Γ iff

H; · � γi |= Γ ∧ ∀x ∈ dom(Γ). H; · |= γ1(x) ≈ζ γ2(x) : Γ (x)

• For linear substitutions: T |= σ1 ≈ζ σ2 : K iff

T � σi |= K ∧ ∀y ∈ dom(K). T |= σ1(y) ≈ζ σ2(y) : K(y)

Generalizing ζ-equivalence to processes is more involved for λCONCUR
SEC than for

λCPS
SEC. The problem is that because of concurrency, there can be both high-security

and low-security computations running simultaneously, so relating corresponding parts
of subprograms is more complicated. In particular, the approach used for λCPS

SEC, which
required lock-step bisimulation for low transitions, is no longer appropriate in a concur-
rent setting. Rather than giving a bisimulation directly, we instead give a simulation �ζ

130

relation. Two programs are then ζ-equivalent if they can both be simulated by the same
machine.

The simulation relation is induced by the typing structure of a source machine con-
figuration. Intuitively, if H; T � m �ζ m′ then configuration m′ can simulate the low-
security behavior of m while ignoring both the timing and termination behavior of the
high-security computation in m.

Definition 5.4.2 (ζ-simulation) Let ζ-approximation, written �ζ , be the relation (mu-
tually) inductively defined as shown in Figures 5.19,5.20, 5.21, 5.22 and in the rules
below.

For configurations:

SIM-CONFIG

H �M1 �ζ M2

H; T1, T2 � S1 �ζ S2, T2

H; ·; T2; · � N1 �ζ N2

H; T1, T2 � 〈M1, S1, N1〉 �ζ 〈M2, S2, N2〉
For processes with pc � ζ:

SIM-HIGH-PROC

pc � ζ T (ci) =(�si) H;Γ � �vi : �si

H;Γ ; T ; · [pc] � P �ζ |i ci(�vi)

For processes that are well-typed with a program counter � ζ, the �ζ relationship
acts homomorphically on the typing rule of the term, replacing the judgment H;Γ �
v : s with the equivalence rule H;Γ � v1 ≈ζ v2 : s (and similarly for primitive
operations). For example, the simulation for conditionals is derived from the typing rule
λCONCUR

SEC -IF:

SIM-IF

pc � ζ
H;Γ [pc] � v1 �ζ v2 : bool�

H;Γ ; T ; · [pc � �] � P1i �ζ P2i i ∈ {1, 2}
H;Γ ; T ; · [pc] � if v1 then P11 else P12 �ζ if v2 then P21 else P22

The most important part of the �ζ relation is rule SIM-HIGH-PROC. This rule says
that any process that is well typed with a pc label not protected by ζ can be simulated
by the process that just sends a response on each of the linear channels. Intuitively,
this simulation bypasses all of the potential high-security computation performed in P
and simply returns via the linear-channel invocations. Importantly, for a high-security
process P such that P �ζ P ′ the simulation P ′ always terminates, even if P does not.
The simulation ignores the termination behavior of P .

Observe that all of the values returned from a high-security context via linear chan-
nels must themselves be high-security. (See the premise of rule λCONCUR

SEC -LINSEND

131

H;Γ [pc] � prim1 �ζ prim2 : s

SIM-VAL

H;Γ |= v1 ≈ζ v2 : s pc � label(s)

H;Γ [pc] � v1 �ζ v2 : s

SIM-BINOP

H;Γ |= v11 ≈ζ v12 : bool� H;Γ |= v21 ≈ζ v22 : bool� pc � �

H;Γ [pc] � v11 ⊕ v12 �ζ v21 ⊕ v22 : bool�

SIM-DEREF

H;Γ |= v1 ≈ζ v2 : s ref� pc � label(s � �)

H;Γ [pc] � !v1 �ζ !v2 : s � �

Figure 5.19: Primitive operation simulation relation

in Figure 5.14, which uses the value rule from Figure 5.12. λCONCUR
SEC -VAL requires a

lower bound of pc for the label of the value.) Therefore, it does not matter what values
are returned in the ζ-simulation because these values are not observable anyway.

Also note that if there are no linear channels in the context, SIM-HIGH-PROC says
that P �ζ 0—the high-security process P has no way of affecting low-security memory
locations, so from the low-security view, P may as well not exist.

In this setting the �ζ relation is more fundamental and easier to work with than ≈ζ .
However, two machine configurations are ζ-equivalent if they are both simulated by the
same configuration.

Definition 5.4.3 (ζ-equivalence for configurations) Configurations m1 and m2 are ζ-
equivalent, written H; T |= m1 ≈ζ m2, if and only if there exists a configuration m
such that H; T � m1 �ζ m and H; T � m2 �ζ m.

To prove that λCONCUR
SEC satisfies noninterference, we follow a similar strategy to the

proof for λCPS
SEC. We first establish some basic properties of the simulation relations and

show that the simulations are faithful. Next, we prove the analogs of Lemmas 4.4.1 and
4.4.3, which show that the low-security parts of the computation are simulated correctly.
Lastly, we combine these lemmas to show that altering the high-security inputs to the
program does not affect its low-security deterministic behavior.

Lemma 5.4.1 (Simulation preserves typing) If H; T � m and H; T � m �ζ m′

then H; T � m′.

Proof: By induction on the derivation of H; T � m; the inductive hypothesis must
be extended to the other judgment forms. The one interesting case is SIM-HIGH-PROC,

132

H �M1 �ζ M2

SIM-HEAP-EMPTY

H � M
∀L ∈ dom(M).label(H(L)) � ζ
∀c ∈ dom(M).label(H(c)) � ζ

H � M �ζ ·

SIM-HEAP-LOC

H � M1 �ζ M2 H |= v1 ≈ζ v2 : H(L)

H � M1[L �→ v1] �ζ M2[L �→ v2]

SIM-HEAP-HANDLER

H � M1 �ζ M2

J �pc 〈{ci :H(ci)}; {�xi : �si}; {yopt
i :kopt

i }〉
H(ci) = [pc](�si, k

opt
i)

H; �xi : �si; ·; {yopt
i :kopt

i } [pc] � P1 �ζ P2

H � M1[J � P1] �ζ M2[J � P2]

Figure 5.20: Memory simulation relation

H; T1 � S1 �ζ S2, T2

SIM-S-EMPTY

H; T � S; T ′

∀[pc : J � P] ∈ S.pc � ζ

H; T � S �ζ ·, T ′

SIM-S-HANDLER

H; T � S1 �ζ S2, T1

J � 〈{ci :T (ci)}; {�xi : �si}〉
T (ci) = (�si) T2 ⊆ T
H; �xi : �si; T2; · [pc] � P1 �ζ P2

H; T � S1[pc : J � P1] �ζ S2[pc : J � P2], T1, T2

Figure 5.21: Synchronization environment simulation relation

133

H;Γ ; T ; K � N1 �ζ N2

SIM-NET-EMPTY H;Γ ; ·; · � · �ζ ·

SIM-NET-PROC

H;Γ ; T1; K1 � N �ζ N ′ H;Γ ; T2; K2 [pc] � P �ζ P ′

H;Γ ; T1, T2; K1, K2 � N | [pc : P] �ζ N ′ | [pc : P ′]

SIM-NET-EQUIV

N1 ≡ N2 H;Γ ; T ; K � N2 �ζ N3 N3 ≡ N4

H;Γ ; T ; K � N1 �ζ N4

Figure 5.22: Network simulation relation

which holds because each free linear channel ci mentioned in P is used exactly once in
the simulation |i ci(�vi). �

The following lemmas show that substitution of ζ-equivalent values preserves the
simulation relation.

Lemma 5.4.2 (�ζ-Substitution) If H;Γ ; T ; K [pc] � P1 �ζ P2 and H |= γ1 ≈ζ γ2 :
Γ then H; ·; T ; K [pc] � γ1(P1) �ζ γ2(P2).

Proof: Easy induction on the derivation of the simulation relation. �

Lemma 5.4.3 (�ζ-Linear-Substitution) Suppose that

H;Γ ; T1; K [pc] � P1 �ζ P2 and H; T2 |= σ1 ≈ζ σ2 : K

Then it is the case that H;Γ ; T1, T2; · [pc] � σ1(P1) �ζ σ2(P2).

Proof: Easy induction on the derivation of the simulation relation. �

The next lemma shows that evaluation of a primitive operation in two related con-
figurations yields related results.

Lemma 5.4.4 (Primitive Simulation) Suppose that

H �M1 �ζ M2 and H; ·[pc] � prim1 �ζ prim2 : s and Mi, pc |= primi ⇓ vi

Then it is the case that H; ·[pc] � v1 �ζ v2 : s

Proof: By cases on the primitive operations involved. �

Now we establish that the simulation respects the operational semantics.

134

Lemma 5.4.5 (�-Simulation) Suppose that H; T |= m1 �ζ m2 and m1 � m′
1. Then

either m′
1 �ζ m2 or there exists H ′, T ′, and m′

2 such that m2 � m′
2 and, furthermore,

H ′, T ′ |= m′
1 �ζ m′

2.

Proof: This result follows directly from the→-Simulation lemma below and the rule
SIM-NET-EQUIV. �

Because we want to show that high-security computation does not affect the low-
security behavior, we need a way of distinguishing the high-security transition steps
from the low-security ones.

Definition 5.4.4 (ζ-low and ζ-high evaluation steps) Let configuration m → m′ and
let [pci : Pi] be the processes reduced during the single step, i.e.

m ≡ 〈M, S, N | |i[pci : Pi]〉

where N and the [pci : Pi] processes define a redex according to Figure 5.4 or Fig-
ure 5.5.

Then m is said to take a ζ-low evaluation step if (ipci) � ζ. Otherwise, m is said
to take a ζ- high evaluation step.

We next prove the analog of Lemma 4.4.1. It says that any ζ-low evaluation step
performed by one configuration can also be performed by its simulation.

Lemma 5.4.6 (ζ-low simulation) If H; T |= m1 �ζ m2 and m1 → m′
1 via a ζ-low

evaluation step then there exists H ′, T ′, and m′
2 such that m2 → m′

2 and, furthermore,
H ′, T ′ |= m′

1 �ζ m′
2. Pictorially, this requirement is:

m1 ��

�ζ

m′
1

�ζ

m2 �� m′
2

Proof: By cases on the evaluation step taken by m1. Because the pc of each process
involved in the redex is � ζ, the reduced processes in m1 are homomorphic to some
process in m2. Therefore, most of the cases follow from straightforwardly unwinding
the definitions and applying either primitive simulation (Lemma 5.4.4) or one of the
substitution lemmas (Lemma 5.4.2 or 5.4.3).

The interesting cases are when the process resulting from the redex has pc � ζ,
which can occur when evaluating a conditional or invoking a nonlinear handler. A rep-
resentative case considered in detail below; similar arguments holds for evaluation via
rules λCONCUR

SEC -EVAL-COND2 or λCONCUR
SEC -EVAL-SEND.

135

λCONCUR
SEC -EVAL-COND1 Then m1 = 〈M1, S1, N1 | [pc : if t� then P11 else P12]〉.

Because pc � ζ, and H; T � m1 �ζ m2, we must have

m2 = 〈M2, S2, N2 | [pc : if v then P21 else P22]〉

Furthermore, m′
1 = 〈M1, S1, N1 | [pc� � : P11]〉. If � � ζ, then H; ·[pc] � t� �ζ

v : bool� implies that v = t�′ for some �′ � ζ, but then m2 transitions via rule
λCONCUR

SEC -EVAL-COND1 to 〈M2, S2, N2 | [pc � � : P21]〉. Because pc � � � ζ,
the definition of �ζ yields H; ·; T1; · [pc � �] � P11 �ζ P21, so the result follows
from SIM-NET-PROC and SIM-CONFIG.

The other case is when � � ζ. It follows from SIM-IF and SIM-HIGH-PROC that

H; ·; T1; · [pc � �] � Pj �ζ |i ci(�vi)

for j ∈ {1, 2}. Therefore even though m2 may transition either via the rule
λCONCUR

SEC -EVAL-COND1 or via the rule λCONCUR
SEC -EVAL-COND2, both transitions

yield the same configuration

m′
2 = 〈M2, S2, N2 | [pc � � : |i ci(�vi)]〉

In both cases, the resulting configurations satisfy H; T � m′
1 �ζ m′

2 as required.

�

The analog of Lemma 4.4.3 says that if a configuration transitions by a ζ-high step,
then the transition can be simulated by zero or one steps. Rather than using some analog
of the linear continuation ordering lemma, the SIM-HIGH-PROC rule builds the appro-
priate linear channel invocation into the simulation.

Lemma 5.4.7 (ζ-high simulation) If H; T |= m1 �ζ m2 and m1 → m′
1 via a ζ-high

evaluation step then either m′
1 �ζ m2 or there exists H ′, T ′, and m′

2 such that m2 → m′
2

and H ′, T ′ |= m′
1 �ζ m′

2. Pictorially, these requirements are:

m1 ��

�ζ

m′
1

m2

�ζ

or m1 ��

�ζ

m′
1

�ζ

m2 �� m′
2

Proof: By cases on the transition step. In all cases except λCONCUR
SEC -EVAL-SEND

and λCONCUR
SEC -EVAL-LINSEND there is only one process involved in the redex. In those

cases, m1 = 〈M1, S1, N1 | [pc : P]〉 and from the definition of SIM-NET-PROC we
have that m2 ≡ 〈M1, S1, N2 | [pc : |i ci(�vi)]〉 where the ci are the free linear channels

136

occurring in P . It must be the case that m′
1 = 〈M ′

1, S ′
1, N1 | [pc : P ′]〉 for P ′ defined

according to the transition relation. Observe that because the configuration is well-
typed, λCONCUR

SEC -EVAL-REF and λCONCUR
SEC -EVAL-ASSN imply that M ′

1 and M1 differ
in only locations that have label � ζ. Similarly, S ′

1 may differ from S1 only on linear
handlers with pc � ζ. Therefore, it is easy to establish that there is a H ′ and T ′ such
that H ′ � M1 �ζ M ′

1 and H ′; T ′ � S1 �ζ S ′
1, . Furthermore, subject reduction

implies that the free linear channels of P ′ are the same as the free linear channels of P ,
so H ′; ·; T ′; · [pc] � P ′ �ζ |i ci(�vi)by SIM-HIGH-PROC. This is enough to establish
that H ′; T ′ � m′

1 �ζ m2, as required.
The case for λCONCUR

SEC -EVAL-SEND follows because the body of the handler is well-
typed with pc � ζ. Lemma 5.4.3 implies that the body is simulated by the corresponding
sends on the linear channels. Thus, as above, we have H; T � m′

1 �ζ m2 as needed.
Finally, consider the case for λCONCUR

SEC -EVAL-LINSEND. If the pc label of the target
handler is � ζ, then the result follows exactly as above. Otherwise, it is the case that
the program counter is being reset to some label � ζ. Note that because the synchro-
nization environments satisfy H; T � S1 �ζ S2, T

′ it is possible for m2 to step via
λCONCUR

SEC -EVAL-LINSEND. The resulting configuration m′
2 satisfies H; T ′ � m′

1 �ζ

m′
2 by construction of the �ζ relation and an application of Lemma 5.4.2. �

Lemma 5.4.8 (→-simulation) If H; T |= m1 �ζ m2 and m1 → m′
1 then either m′

1 �ζ

m2 or there exists H ′, T ′, and m′
2 such that m2 → m′

2 and H ′, T ′ |= m′
1 �ζ m′

2.

Proof: Follows immediately from the ζ-low and ζ-high simulation lemmas. �

Next, we formally specify the determinism condition. Intuitively, we are interested
in establishing that during the evaluation of a secure program, the sequence of updates
to a particular memory location L is deterministic.

First we define some useful notation that makes it easier to isolate memory updates to
particular locations. For any configuration m = 〈M, S, N〉 and location L ∈ dom(M)
let m(L) = M(L). Two configurations that are well-typed under memory type H are

ζ-equivalent at L, written m1
L∼ζ m2, if they agree on the value stored at location L:

m1
L∼ζ m2 ⇔ H; · � m1(L) ≈ζ m2(L) : H(L)

Because we are interested in the determinism of writes to the low-security memory
locations, it is helpful to separate the transition relations into those that affect a particu-
lar location and those that do not. Therefore we partition the� relation into two cases:

transition m
L

�ζ m′ informally says that configuration m writes to location L; a transi-

tion m
L

�ζ m′ says that the transition does not affect location L. Formally, we define

137

these transition relations using the ≈ζ relation. Treating these relations as sets of pairs,
we have:

L

�ζ
def
= � ∩

L

∼ζ

L

�ζ
def
= (� ∩ L∼ζ)∪ ≡

Now we establish some properties relating the
L

�ζ relation to race conditions.

Lemma 5.4.9 (L-transitions write to L) If m1

L

�ζ m2 then m1 ≡ 〈M, S, N | [pc :
set L := v in P]〉.
Proof: By definition, the memory location L must change. By inspection of the
operational semantics, we see that m1 must contain an assignment to location L. �

Lemma 5.4.10 (Two writes) If m1

L

�ζ m2 and m1

L

�ζ m3 and m2

L

∼ζ m3 then

m1 ≡ 〈M, S, N | [pc : set L := v in P] | [pc : set L := v′ in P ′]〉
where H; · � v ≈ζ v′.

Proof: By two applications of the lemma above, we see that m1 must contain two
distinct assignments. By inspection of the syntax and the definition of ≡, the only way
this may occur is if m1 has the form required. �

The following lemma says that race freedom implies that there are no write–write
conflicts—the next update of any location L is deterministic.

Lemma 5.4.11 (Write–write race) If m is race free then it is not the case that there

exists m′,m1,m2 such that m�∗ m′ and m′ � m1 and m′ � m2 and m1

L

∼ζ m2.

Proof: Note that because m1

L

∼ζ m2 it must be the case that m1 ≡ m2. Hence the
definition of race free implies that there exists m3 such that m1 � m3 and m2 � m3.

Observe that because m3
L∼ζ m3 it must be the case that the transitions from m1 and m2

both assign ζ-equivalent values to L. Therefore, there exist v1 ≈ζ v2 such that:

m1 ≡ 〈M1, S1, N1 | [pc1 : set L := v1 in P1]〉
m2 ≡ 〈M2, S2, N2 | [pc2 : set L := v2 in P2]〉

By applying Lemma 5.4.10 to configuration m′, we also have that there exist v′
1 ≈ζ v′

2

such that:

m′ ≡ 〈M ′, S ′, N ′ | [pc : set L := v′
1 in Q1] | [pc : set L := v′

2 in Q2]〉

138

Because the evaluation rule λCONCUR
SEC -EVAL-SET involves the reduction of only one

network term, it must be the case that N1 contains the assignment set L := v′
2 in Q2

and N2 contains the assignment set L := v′
1 in Q1. It follows that N1 ≡ N2 because

they both evolved from the same configuration. But this yields a contradiction, because
m3 ≡ 〈M3, S3, N1 | P1〉 and m3 ≡ 〈M3, S3, N2 | P2〉, which is impossible when
N1 ≡ N2 (even if P1 ≡ P2). �

Next we establish two key technical lemmas that show how
L

�ζ and
L

�ζ transitions
interact.

Lemma 5.4.12 (L–L square) Suppose that m
L

�ζ m1 and m
L

�ζ m2 with m1 ≡ m2.

If there exists m3 such that m1 � m3 and m2 � m3 then m1

L

�ζ m3 and m2

L

�ζ m3.
Pictorially, this situation is:

m
L
�ζ

L
�ζ

m1

��≡

m2 � m3

⇒
m
L
�ζ

L
�ζ

m1

L
�ζ

m2
L
�ζ

m3

Proof: Because m1 ≡ m2, the configurations must differ in some respect. Note that

since m
L∼ζ m and m1 and m2 are reached from m by a transition that does not affect

location L, it must be the case that m
L∼ζ m1 and m

L∼ζ m2. It is not possible that

m1

L

�ζ m3 and m2

L

�ζ m3 because then, by definition of
L

�ζ and
L

�ζ , we would have
this contradiction:

m
L∼ζ m1

L

∼ζ m3
L∼ζ m2

L∼ζ m

Similarly, it is not possible that m1

L

�ζ m3 and m2

L

�ζ m3. Finally, reasoning similar

to that used in Lemma 5.4.11 shows that m1

L

�ζ m′
3 and m2

L

�ζ m′′
3 implies m′

3 ≡ m′′
3.

Therefore, the only remaining possibility is for m1

L

�ζ m3 and m2

L

�ζ m3, as required.
�

Lemma 5.4.13 (L–L square) Suppose that m
L

�ζ m1 and m
L

�ζ m2 with m1 ≡ m2.

If there exists m3 such that m1 � m3 and m2 � m3 then m1

L

�ζ m3 and m2

L

�ζ m3.
Pictorially, this situation is:

m
L
�ζ

L
�ζ

m1

��≡

m2 � m3

⇒
m
L
�ζ

L
�ζ

m1

L
�ζ

m2
L
�ζ

m3

139

Proof: This proof is similar to that of 5.4.12, so we sketch it only briefly. Note that

by definition m
L

∼ζ m1 and m
L∼ζ m2. Therefore, to reach a common m3, at least one

of m1 and m2 must perform a write to L. It can’t be m1 because then reasoning similar
to that in 5.4.11 yields a contradiction. Therefore m2 must perform a write to L. �

Lemma 5.4.14 If m(0,0) is race free and

m(0,0) (
L

�ζ)i m(i,0)

L

�ζ m(i+1,0)

and m(0,0)

L

�ζ m(0,1) then there exists a sequence of configurations m(j,1) for 0 ≤ j ≤
i + 1 such that for all 0 ≤ k < i either m(k,1) ≡ m(k+1,1) or m(k,1)

L

�ζ m(k+1,1) and

m(i,1)

L

�ζ m(i+1,1), where m(i+1,1)
L∼ζ m(i + 1, 0). Pictorially, this lemma says that the

following diagram:

m(0,0)

L
�ζ

L
�ζ

m(1,0) (
L
�ζ)(i−1) m(i,0)

L
�ζ

m(i+1,0)

m(0,1)

can be completed to a diagram or the form:

m(0,0)

L
�ζ

L
�ζ

m(1,0) (
L
�ζ)(i−1)

L
�ζ

m(i,0)
L
�ζ

L
�ζ

m(i+1,0)

L
�ζ

m(0,1)
L
�ζ

m(1,1) (
L
�ζ)(i−1) m(i,1)

L
�ζ

m(i+1,1)

Proof: By induction on i. The base case, for i = 0 follows directly from Lemma 5.4.13.
The induction step follows because m(0,0) is race free, using Lemma 5.4.12 to complete
the first square in the diagram. �

The following lemma is crucial to establishing the determinism of secure programs.

Lemma 5.4.15 (Race freedom implies determinism) Suppose that both

m(0,0) (
L

�ζ)i m(i,0)

L

�ζ m(i+1,0)

and

m(0,0) (
L

�ζ)j m(0,j)

L

�ζ m(0,j+1)

then m(i+1,0)
L∼ζ m(0,j+1).

140

Proof: By induction on (i, j). For the base case, (i, j) = (0, 0) we have the following
diagram:

m(0,0)

L
�ζ

L
�ζ

m(1,0)

m(0,1)

Applying Lemma 5.4.11, we obtain m(1,0)
L∼ζ m(0,1) as desired.

For the induction step, we have i > 0 or j > 0. Without loss of generality, assume
that i > 0 (the case for j > 0 is symmetric). In the case that j = 0 we have the following
diagram:

m(0,0)

L
�ζ

L
�ζ

m(1,0) (
L
�ζ)(i−1) m(i,0)

L
�ζ

m(i+1,0)

m(0,1)

It must be the case that m(1,0)

L

∼ζ m(0,1), which implies that m(1,0) ≡ m(0,1). Therefore,
because m(0,0) is race free, there must exist a configuration m(1,1) such that m(1,0) �
m(1,1) and m(0,1) � m(1, 1). So, by Lemma 5.4.13 we can complete the diagram above
to:

m(0,0)

L
�ζ

L
�ζ

m(1,0) (
L
�ζ)(i−1)

L
�ζ

m(i,0)
L
�ζ

m(i+1,0)

m(0,1)
L
�ζ

m(1,1)

Note that m(0,1)
L∼ζ m(1,1). Finally, the induction hypothesis applies to the configuration

m(1,0) because it is race free. Therefore, we obtain m(0,1)
L∼ζ m(1,1)

L∼ζ m(i+1,0) as
required.

Now suppose that j > 0. Then we have the following diagram:

m(0,0)

L
�ζ

L
�ζ

m(1,0) (
L
�ζ)(i−1) m(i,0)

L
�ζ

m(i+1,0)

m(0,1)

(
L
�ζ)(j−1)

m(0,j)

L
�ζ

m(0,j+1)

141

By Lemma 5.4.14 we can complete the diagram above to:

m(0,0)

L
�ζ

L
�ζ

m(1,0) (
L
�ζ)(i−1)

L
�ζ

m(i,0)
L
�ζ

m(i+1,0)

m(0,1)

(
L
�ζ)(j−1)

L
�ζ

m(1,1)

(
L
�ζ)(j−1)

m(0,j)

L
�ζ

L
�ζ

m(1,j)

L
�ζ

m(0,j+1)
L
�ζ

m(1,j+1)

Note that m(0,j+1)
L∼ζ m(1,j+1) and that m(1,0) is race free. Therefore, we use the in-

duction hypothesis applied to m(1,0) to obtain that m(1,j+1)
L∼ζ m(i+1,0) from which we

conclude m(0,j+1)
L∼ζ m(i+1,0) as needed.

�

The following lemma says that starting from a configuration with an open network
and closing the network under similar substitutions yields ≈ζ configurations. It lets us
establish that two programs that differ only in their high-security inputs can be simulated
by the same low-simulation. The noninterference theorem, proved next, uses the shared
simulation, together with the race-freedom requirement to show that related programs
update memory deterministically and identically.

Lemma 5.4.16 (Simulations and High-substitution) Suppose the following:

• H � M

• H; T1, T2 � S; T1

• H;Γ ; T2; · � N

• H |= γ1 ≈ζ γ2 : Γ

• ∀x ∈ dom(Γ). label(Γ (x)) � ζ

then for any configuration m, H; T |= 〈M, S, γ1(N)〉 �ζ m implies that H; T |=
〈M, S, γ2(N)〉 �ζ m.

Proof: By an easy induction on the typing derivation for network N . The base case for
values follows from rule SIM-VAL and the requirement that label(Γ (x)) � ζ. The case
for primitive operations follows from the fact that if the primitive operation involves a

142

variable in Γ , then its result is � ζ. The inductive cases follow from the construction of
the �ζ relation. �

Finally, we can prove noninterference for λCONCUR
SEC .

Theorem 5.4.2 (Noninterference for λCONCUR
SEC) Let ζ be an arbitrary label in the se-

curity lattice. Suppose that H; x : s; ·; · � N is derivable. Let an initial memory M be
given such that H � M and suppose that whenever H; · � 〈M, ·, N〉 �ζ m the sim-
ulation m is race free. Let location L ∈ dom(H) be given such that label(H(L)) � ζ.
Further suppose that label(s) � ζ. Then for any two values v1 and v2 such that
H; · � vi : s the sequence of values stored in memory location L during the evaluation of
〈M, ·, N{v1/x}〉 is a prefix of the sequence of values stored in L by 〈M, ·, N{v2/x}〉
(or vice-versa).

Proof: Let m(1,0) = 〈M, ·, N{v1/x}〉 and m(2,0) = 〈M, ·, N{v2/x}〉. Note that
by Lemma 5.4.16 there exists a configuration m′ such that H; · � m1 �ζ m′ and
H; · � m2 �ζ m′. Furthermore, note that m′ must be race free. Suppose, for the sake
of contradiction, that the evaluations disagree on the n + 1st update to the location L.

We derive a contradiction by induction on n. For the base case, n = 0 and there
must exist evaluation sequences:

m(1,0) (
L

�ζ)i m(1,i)

L

�ζ m(1,i+1)

m(2,0) (
L

�ζ)j m(2,i)

L

�ζ m(2,j+1)

where m(1,i+1)

L

∼ζ m(2,j+1). However, by induction on the lengths of these sequences
applying Lemma 5.4.5, we obtain the following simulations:

m′ ≡ m′
(1,0) (

L

�ζ)i m′
(1,i)

L

�ζ m′
(1,i+1)

m′ ≡ m′
(2,0) (

L

�ζ)j m′
(2,i)

L

�ζ m′
(2,j+1)

Because the location L is visible at ζ, it must be that m(1,i+1)
L∼ζ m′

(1,i+1) and

m(2,j+1)
L∼ζ m′

(2,j+1). We may also apply Lemma 5.4.15 to conclude that m′
(1,i+1)

L∼ζ

m′
(2,j+1), but that is a contradiction.

The inductive step follows similarly to the inductive step of Lemma 5.4.5. �

143

5.5 Related work

A few researchers have investigated noninterference-based type systems for concurrent
languages and process calculi. Smith and Volpano have studied multithreaded pro-
grams, although they assumed a fixed number of threads and a uniform thread scheduler
[SV98]. Their subsequent work refines the original type system to account for prob-
abilistic thread scheduling and to relax the constraints due to timing channels [SV00,
VS00, Smi01].

Roscoe [Ros95] was the first to propose a determinism-based definition of noninter-
ference for labeled-transition systems. This approach has not been used previously in
type systems for programming languages.

Focardi and Gorrieri [FG97] have implemented a flow-checker for a variant of Mil-
ner’s calculus of concurrent systems (CCS). Honda, Vasoncelos, and Yoshida have pro-
posed a similar system for the π-calculus in which they can faithfully encode Smith and
Volpano’s language [HVY00, HY02]. Their work relies on a sophisticated type sys-
tem that distinguishes between linear channels, affine channels, and nonlinear channels
while also tracking information about stateful computations. Both of these approaches
use techniques of bisimulation to prove noninterference properties. A similar approach
is taken by Abadi and Gordon to prove the correctness of cryptographic protocols in the
Secure Pi Calculus [AG99], but the security policies they enforce are not information-
flow policies.

Hennessy and Riely consider information-flow properties in the asynchronous pi-
calculus [Hen00, HR00]. Their may-testing definition of noninterference is quite sim-
ilar to the definition used here, because it is timing and termination insensitive. How-
ever, their language does not support synchronous communication or refinement of the
information-flow analysis via linearity constraints.

Pottier [Pot02] gives an elementary proof of noninterference for a variant of the
pi-calculus, but its type system is quite restrictive because it does not make a distinc-
tion between linear and nonlinear channel usage. Pottier observes that bisimulation-
based definitions of noninterference give stronger security guarantees than those based
on may-testing (i.e. [Hen00]) in the presence of race conditions. However, as described
in this thesis, it is not clear that permitting races is desirable, so the additional constraints
imposed by a type system that permits races may not be warranted.

Sabelfeld and Sands have considered concurrent languages in a probabilistic setting
[SS00]. They use a novel probabilistic bisimulation approach to specify noninterference
properties, and have used the techniques to prove correct Agat’s program transformation
for eliminating timing channels [Aga00]. Mantel and Sabelfeld have also considered
type systems for multithreaded secure languages [MS01].

Reitman was among the earliest to consider message-passing primitives and their
impact on information flows [Rei78]. However, there were no correctness proofs es-

144

tablished for his security logic. Banâtre, Bryce, and Le Metáyer [BBL84] give a static
analysis for discovering information flows in a nondeterministic language, but their ap-
proach appears to be unsound (see the discussion in [VSI96]).

The design of λCONCUR
SEC was inspired by concurrent process calculi such as the pi

calculus [MPW92] and especially the join calculus [FG96].

Chapter 6

Downgrading

Security properties based on information flow, such as the noninterference policy con-
sidered to this point in this thesis, provide strong guarantees that confidentiality and
integrity are maintained. However, programs often need to leak some amount of confi-
dential information in order to serve their intended purpose. Consider these examples:

• A secure e-mail reader might release encrypted confidential mail.

• The password-checking function of an operating system operates on confidential
passwords, but granting or denying access leaks some information about the cor-
rect password.

• An on-line auction program might release the value of the winning bid after all
secret bids have been made.

Similarly, programs often need to assert the integrity of a piece of data. For instance,
after verifying a check sum or a digital signature a program might wish to consider a
piece of data to be more trustworthy.

Consequently, realistic systems include a means of downgrading—allowing the se-
curity label of the data to be shifted downwards in the security lattice. For confiden-
tiality, this process is called declassification; for integrity, it is called endorsement. The
ability to escape from the strict confines of noninterference is both essential and dan-
gerous: unregulated use of downgrading can easily result in unexpected release of con-
fidential information or in corruption of supposedly trustworthy data.

To see the problem, first consider the simplest way to add a declassification operation
to a security-typed language. We extend the syntax:

e ::= . . . | let x = declassify(v, �)in e

145

146

and add the following typing judgment

BAD-DECLASSIFY

Γ � v : t�′ Γ , x : t� [pc] � e

Γ [pc] � let x = declassify(v, �)in e

This judgment says that a value v with an arbitrary label can be given any other arbitrary
label by declassification. This clearly breaks noninterference because high-security data
can now be made low-security. Declassification is intended for this purpose, but this
rule is too permissive—it can be used at any point to release confidential information.
Consequently, adding such a rule to the languages studied in this thesis completely in-
validates their noninterference theorems. We get no guarantees about the security of
programs that use declassification, and the program may as well have been written with-
out security types.

Because it is potentially dangerous, downgrading should only be used in certain,
well-defined ways. One could imagine generalizing information-flow security policies
to include specifications of exactly under what circumstances declassification or en-
dorsement may occur. The problem with such an approach is that establishing that a
given program meets the specifications of the security policy can be extremely difficult:
It is the problem of proving that a program meets an arbitrary specification. Moreover,
even stating these formal specifications of security policies is hard.

The noninterference policies specified using the lattice model for labels approximate
the information flows in the program to avoid the difficulty of doing full-scale program
verification. The next section describes Myers’ and Liskov’s decentralized label model,
a particular security lattice designed to help govern the use of declassification opera-
tions. It avoids the full verification problem by introducing the notion of authority,
which allows coarse-grained control over where declassifications may be used.

There is still a problem with regulating downgrading, even with the authority model.
The last section of this chapter describes the problem and proposes a solution in which
downgrading operations tie together integrity and confidentiality constraints.

6.1 The decentralized label model

The decentralized label model (DLM) proposed by Myers and Liskov [ML00] adds
additional structure to the security lattice in order to regulate how declassification is
used by a program.

Central to the model is the notion of a principal, which is an entity (e.g., user, pro-
cess, party) that can have a confidentiality or integrity concern with respect to data.
Principals can be named in information-flow policies and are also used to define the
authority possessed by the running program. The authority A at a point in the program
is a set of principals that are assumed to authorize any action taken by the program at

147

that point—in particular, principals may authorize declassifications of data. Different
program points may have different authority, which must be explicitly granted by the
principals in question.

A simple confidentiality label in this model is written {o:r1,r2,...,rn}, meaning
that the labeled data is owned by principal o, and that o permits the data to be read by
principals r1 through rn (and, implicitly, o).

Data may have multiple owners, each controlling a different component of its label.
For example, the label {o1:r1,r2; o2:r1,r3}, contains two components and says that
owner o1 allows readers r1 and r2 and owner o2 allows readers r1 and r3. The interpre-
tation is that all of the policies described by a label must be obeyed, only r1 will be able
to read data with this annotation. Such composite labels arise naturally in collaborative
computations: for example, if x has label {o1:r1,r2} and y has label {o2:r1,r3}, then
the sum x + y has the composite label int{o1:r1,r2; o2:r1,r3}, which expresses the
conservative requirement that the sum is subject to both the policy on x and the policy
on y.

In the lattice, �1 � �2 if the label �1 is less restrictive than the label �2. Intuitively, data
with label �1 is less confidential than data with label �2—more principals are permitted
to see the data, and, consequently, there are fewer restrictions on how data with label �1

may be used. For example, {o:r} � {o:} holds because the left label allows both o

and r to read the data, whereas the right label admits only o as a reader.
The formal definition of � for the decentralized label model is given in Myers’ the-

sis [Mye99]. His thesis also shows that the relation � is a pre-order whose equivalence
classes form a distributive lattice. The label join operation combines the restrictions
on how data may be used. As an example, if x has label {o:r1,r2} and y has label
{o:r1,r3}, the sum x + y has label {o:r1}, which includes the restrictions of both.

In this thesis, the decentralized label model is extended with label components that
specify simple integrity constraints. The label {?:p1,...,pn} specifies that principals
p1 through pn trust the data—they believe the data to be computed by the program as
written. (Because integrity policies have no owner, a question mark is used in its place.)
Note that the integrity label {?:} specifies a piece of data trusted by no principals; it is
the label of completely untrusted data.

This is a weak notion of trust; its purpose is to protect security-critical informa-
tion from damage by subverted hosts. Labels combining integrity and confidentiality
components also arise naturally.

For any DLM label �, the functions C(�) and I(�) extract the confidentiality and
integrity parts of L, respectively. Because confidentiality and integrity are duals (see the
discussion in Section 2.1), if �1 � �2, then �2 must specify at least as much confiden-
tiality and at most as much integrity as �1. This interpretation is consistent with the idea
that labels represent restrictions on how data may be used; data with higher integrity has
fewer restrictions on its use.

148

To emphasize that security labels are drawn from the decentralized label model, as
opposed to some unspecified lattice, we shall sometimes refer to them as DLM labels.

We can now consider how the concept of authority helps control declassification in
the decentralized label model. Consider the expression declassify(e, �). It allows
a program acting with sufficient authority to declassify the expression e to label �. A
principal p’s authority is needed to perform declassifications of data owned by p. For
example, owner o can add a reader r to a piece of data x by declassifying its label from
{o:} to {o:r} using the expression declassify(x, {o:r}).

The rule for declassification in the decentralized label model is:

DLM-DECLASSIFY

A, Γ � v : t�′ A,Γ , x : t� [pc] � e auth(�, �′) ⊆ A

A,Γ [pc] � let x = declassify(v, �)in e

Here, the function auth(�, �′) returns the set of principals whose policies are weakened
by moving from label �′ down to label � in the lattice. For example:

auth({o:}, {o:r}) = {o}
The authority A is a set of principals associated with this point of the program, and is
introduced at function boundaries. Therefore, the typing rule for functions is:

DLM-FUN

A′,Γ , x :s′ [pc′] � e : s

A,Γ [pc] � λ[A′, pc′](x :s′). e : [A′, pc′]s′ → s

The function type [A, pc′]s′ → s indicates that the function has authority A and so may
perform declassifications on behalf of the principals in A. The programmer can delimit
where declassifications may take place by constraining the authority available to a given
function.

The caller of a function must establish that it has the authority necessary to carry out
any of the declassifications that might occur inside the function call. This requirement
is reflected in the function application rule:

DLM-APP

A,Γ [pc] � e : [A′, pc′]s′ → s
A,Γ , [pc] � e′ : s′

A′ ⊆ A pc � pc′

A′,Γ [pc] � e e′ : s

6.2 Robust declassification

Despite the increased control of downgrading offered by the decentralized label model,
there is a weakness in its simple, authority-based approach. The problem is illustrated
in Figure 6.1.

149

int{root:} secret = ...; // compute the secret

let check = λ[{root},⊥](x:int{?:}).
if x then print(declassify(secret, {}));

else skip;

int x{?:} = Network.read();

check(x)

Figure 6.1: The need for robust declassification

The program in the figure contains a function named check that tests its argument x
and uses its value to decide whether to release the secret, using the authority of the prin-
cipal root. Note that the privacy component of the label is declassified from {root:}

to {}—the most public DLM label. The problem is that the value x, used to regulate
the declassification, is completely untrusted by the root principal. This situation is
exacerbated in the distributed setting discussed in the next section, because the com-
putation that determines whether declassification should take place (the if x part) can
potentially reside on a different host than the actual declassification itself.

Rather than give authority to the entire function body, it seems more natural to as-
sociate the required authority with the decision to perform the declassification. The
program counter at the point of a declassify expression is already a model of the in-
formation used to reach the declassification. Therefore, to enforce that the decision to
do the declassification is sufficiently trusted, we simply require that the program counter
have high enough integrity.

These intuitions are captured in the following rule for declassification:

ROBUST-DECLASSIFY

Γ � v : t�′ Γ , x : t� [pc] � e I(pc) � {?:auth(�, �′)}
Γ [pc] � let x = declassify(v, �)in e

This approach equates the authority of a piece of code with the integrity of the pro-
gram counter at the start of the code, simultaneously simplifying the typing rules—no
authority context A is needed—and strengthening the restrictions on where declassifi-
cation is permitted. This version of declassification rules out the program in Figure 6.1.

The benefit of tying downgrading to integrity is that the noninterference proofs given
for the security-typed language say something meaningful for programs that include
declassification. Note that the declassification operation does not change the integrity
of the data being declassified. Projecting the noninterference result onto the integrity
sublattice yields the following lemma as a corollary.

150

Lemma 6.2.1 (Robust Declassification) Suppose that x :s[⊥] � e : s′ and the integrity
labels satisfy I(label(s)) � I(label(s′)). Then for any values v1 and v2 such that � vi : s
it is the case that e{v1/x} ⇓ v ⇔ e{v2/x} ⇓ v.

This lemma holds regardless of whether e contains declassification operations. It
is a weak guarantee: Intuitively, low-integrity data cannot interfere with what data is
declassified. This lemma does not say anything about what high-security information
might be declassified. Nevertheless, it is better than giving up all security properties
when declassifications are used.

One could generalize robust declassification by associating with each distinct declas-
sification expression in the program a separate principal d and requiring that I(pc) �
{?:d} in the declassification typing judgment. This constraint allows the programmer
to name particular declassifications in security policies so that, for instance a value with
integrity label {?:d1, d2} could possibly be declassified at points d1 and d2 but not at
a declassification associated with point d3 in the program.

Whether such a generalization would be useful in practice, and how to precisely
characterize the confidentiality properties of the resulting programs remains for future
work.

6.3 Related work

The simplest and most standard approach to declassification is to restrict its uses to
those performed by a trusted subject, similar to the DLM requirement that a function
possess the proper authority. This approach does not address the question of whether
an information channel is created. Many systems have incorporated a more limited
form of declassification. Ferrari et. al [FSBJ97] augment information flow controls in
an object-oriented system with a form of dynamically-checked declassification called
waivers. However, these efforts provide only limited characterization of the safety of
the declassification process.

The interplay between authority and declassification is similar to Java’s stack in-
spection security model [WF98, WAF00, FG02]. In Java, privileged operations (like
declassification) can require that they be invoked only in the context of some authoriza-
tion clause, and, that, dynamically, no untrusted methods are between the authorization
and the use of the privileged operation on the call stack. These constraints on the run-
time stack are similar to the authority constraints used in the decentralized label model,
but weaker than the robust declassification mechanism proposed here. The difference
is that the stack-inspection approach does not track the integrity of data returned by an
untrusted piece of code, so untrusted data might still influence privileged operations.

Using untrusted data to regulate privileged operations is related to an extremely com-
mon bug found in the C libraries. The string formatting utilities assume that strings are

151

properly delimited and do not check their bounds. Programs that use the libraries with-
out the appropriate checks are vulnerable to attacks that occur when strings are read from
an untrusted source such as the network. The analysis that is able to find such format
string vulnerabilities in C [STFW01] is quite similar to an integrity-only information-
flow analysis.

Intransitive noninterference policies [Rus92, Pin95, RG99] generalize noninterfer-
ence to describe systems that contain restricted downgrading mechanisms. The work by
Bevier et al. on controlled interference [BCY95] is most similar to this work in allowing
the specification of policies for information released to a set of agents. The idea of ro-
bust declassification has been formalized in an abstract, state-machine model [ZM01a].

Chapter 7

Distribution and Heterogeneous Trust

So far, the security-typed languages in this thesis have addressed information-flow se-
curity in systems executed on a single, trusted host. This assumption is unrealistic,
particularly in scenarios for which information-flow policies are most desirable—when
multiple principals need to cooperate but do not entirely trust one another. Simple exam-
ples of such scenarios abound: email services, web-based shopping and financial plan-
ning, business-to-business transactions, and joint military information systems. Such
sophisticated, collaborative, inter-organizational computation is becoming increasingly
common; some way is needed to ensure that data confidentiality is protected.

The general problem with these collaborative computations is ensuring that the secu-
rity policies of all the participants are enforced. When participants do not fully trust each
others’ hosts, it is necessary to distribute the data and computational work among the
hosts. This distribution creates a new threat to security: the hosts used for computation
might cause security violations—either directly, by leaking information, or indirectly,
by carrying out computations in a way that causes other hosts to leak information.

Of course, the program itself might also cause security violations. Because the ex-
isting single-host techniques developed in this thesis address this problem, this chapter
focuses on the new threat, untrusted hosts.

The goal of this chapter is to extend λCONCUR
SEC to account for the problem of infor-

mation-flow security in distributed systems with mutually untrusting hosts. λDIST
SEC is a

core language for studying information-flow security properties in distributed systems.
As with λCONCUR

SEC , it abstracts away from many of the details of actual computation and
instead focuses on the key aspects of distributed computing: message passing, synchro-
nization, and the notion of hosts with distinct identities levels of trust.

The defining characteristic of a distributed system is the absence of shared mem-
ory [Sch97]. In λCONCUR

SEC , the requirements imposed by information-flow considerations
have already restricted interthread communication to a message-passing style similar to
that needed in a distributed setting. However, there are still a number of differences

152

153

between a the universally trusted, single-platform setting and a heterogeneously trusted,
distributed setting:

• The lack of shared memory in a distributed setting implies that reading from a
remote memory location involves sending a message to the host that is storing the
data. The distributed computing model must make all interhost communication
explicit, which, in contrast to a single-platform model, introduces read channels:
implicit flows that arise due to the additional communication necessary to read a
remote location.

• The failure mode in a heterogeneously-trusted system is different from that of a
single trusted platform. In the universally-trusted host setting, once the platform
has been compromised or subverted, the confidentiality or integrity of any data in
the system might be endangered. In the heterogeneous setting, the failure of one
host should affect only those principals who have declared some degree of trust in
that host.

• Confidential information can be leaked based on which of two hosts sends a mes-
sage to a receiver, even if the message contents are otherwise identical.

• There are more abstraction-violation attacks in a distributed setting. For example,
an attacker might learn some information by watching the network traffic gener-
ated by a distributed program. Such an attack is an external channel according to
the classification of information flows in the introduction of this thesis because the
global state of the links on a network is not available at the programming language
level of abstraction.

The next section describes the heterogeneous trust model for the distributed setting;
it is based on the decentralized labels presented in the previous chapter and permits
an appropriate strengthening of noninterference. The following section sketches the
modifications to the type system of λCONCUR

SEC needed to achieve such security.

7.1 Heterogeneous trust model

This section presents one model network environment and shows how the decentralized
label model can describe the trust relationship between principals and hosts. There
are many plausible models for network communication and its security properties; this
model was chosen because it fits well with the operational semantics of λCONCUR

SEC , it
seems reasonable to implement, and it is sufficient to describe additional information
flows that might arise in a distributed setting.

154

Let H be a set of known hosts, among which the system is to be distributed. Pairwise
communication between two members of H is assumed to be reliable: messages cannot
be lost. Communication is assumed to be asynchronous: sending hosts do not block
waiting for the destination host to receive the message, nor is there a bound on the
amount of time it takes for a message to be delivered.

This model also assumes that messages cannot be intercepted by hosts outside H or
by the other members of H . Protection against interception can be achieved efficiently
through well-known encryption techniques (e.g, [SNS88, Ylo96]); for example, each
pair of hosts can use symmetric encryption to exchange information, with key exchange
via public-key encryption. that the same encryption mechanisms permit each member
of H to authenticate messages sent and received by one another.

In addition to the underlying communication model, for security purposes, it is nec-
essary to relate the available hosts to the principals on whose behalf the system is sup-
posed to run. This relation is called a trust configuration, and it consists of two labels
associated with each host.

• A confidentiality label Ch that is an upper bound on the confidentiality of informa-
tion that can be sent securely (either explicitly or implicitly) to host h.

• An integrity label Ih describing an upper bound on the integrity of data that may
be received from h.

Intuitively, the confidentiality label specifies which principals trust host h not to leak
their confidential data, and the integrity label specifies which principals trust h not to
corrupt their data.

As an example, consider a host A owned by Alice but untrusted by Bob, and a host
B owned by Bob and untrusted by Alice. A reasonable trust configuration might be:

CA = {Alice:} IA = {?:Alice}

CB = {Bob:} IB = {?:Bob}

Because Bob does not appear as an owner in the label CA, this description acknowl-
edges that Bob is unwilling to send his private data to host A. Similarly, Bob does not
trust information received from A because Bob does not appear in IA. The situation is
symmetric with respect to Alice and Bob’s host.

Next, consider hosts T and S that are partially trusted by Alice and Bob:

CT = {Alice:;Bob:} IT = {?:Alice}

CS = {Alice:;Bob:} IS = {?:}

Alice and Bob both trust T not to divulge their data incorrectly; on the other hand,
Bob believes that T might corrupt data—he does not trust the integrity of data received

155

from T . Host S is also trusted with confidential data, but neither Alice nor Bob trust
data generated by S.

These trust declarations are public knowledge—that is, they are available on all
known hosts—and are signed by the principals involved. Consequently, this hetero-
geneous trust model assumes the existence of a public-key infrastructure that makes
such digital signatures feasible. (See for example, the work on public-key encryp-
tion [SNS88] and certification authorities [Zho01, ZSv00].)

The goal is to ensure that the threats to a principal’s confidential data are not in-
creased by the failure or subversion of an untrusted host.

The security of a principal is endangered only if one or more of the hosts that the
principal trusts is bad. Suppose the host h is bad and let Le be the label of an expres-
sion in the program. The confidentiality of the expression’s value is endangered only if
C(Le) � Ch; correspondingly, the expression’s integrity may have been corrupted only
if Ih � I(Le).

If Alice’s machine A from above is compromised, only data owned by Alice may
be leaked, and only data she trusts may be corrupted. Bob’s privacy and integrity are
protected. By contrast, if the semi-trusted machine T malfunctions or is subverted, both
Alice and Bob’s data may be leaked, but only Alice’s data may be corrupted because
only she trusts the integrity of the machine.

When there are multiple bad machines, they might cooperate to leak or corrupt more
data. The type system described in the next section enforces the following property in
addition to the standard noninterference:

Definition 7.1.1 (Distributed Security Assurance) The confidentiality of a program
expression e is not threatened by a set Hbad of bad hosts unless C(Le) � h∈Hbad

Ch; its
integrity is not threatened unless h∈hbad

Ih � I(Le).

Note that in the case that there are no compromised hosts (Hbad = ∅), this definition
degenerates to standard noninterference.

Providing this level of assurance involves two challenges: (1) Data with a confiden-
tiality label (strictly) higher than Ch should never be sent (explicitly or implicitly) to h,
and data with an integrity label lower than Ih should never be accepted from h. (2) Bad
hosts should not be able to exploit the downgrading abilities of more privileged hosts,
causing them to violate the security policy of the source program.

7.2 λDIST
SEC : a secure distributed calculus

The λCONCUR
SEC language guarantees noninterference for concurrent processes running on

a single, universally trusted platform. This section describes an extension to λCONCUR
SEC ,

called λDIST
SEC , that enforces the distributed security assurance property.

156

7.2.1 Syntax

Programs in λDIST
SEC consist of a collection of λCONCUR

SEC processes, each process executing
at a particular host. To describe this situation, we need to make only a few modifications
to the λCONCUR

SEC syntax. A λCONCUR
SEC network is:

N ::= · | N | h[pc : P]

Here, the syntax h[pc : P] denotes a host h running a process P whose current program
counter label is pc.

Processes, P are identical to those of λCONCUR
SEC , but λDIST

SEC must also keep track
of the host that allocates each memory location or synchronization handler definition.
Consequently, locations and channel values are tagged with the host that created them:

bv ::= t | f | c @ h | L @ h

In λDIST
SEC , each host has a local store. The global state of the distributed system

is therefore defined just like the memories used in λCONCUR
SEC , except that the memory

contents are tagged by their hosts:

M ::= M,h[L �→ v] | M,h[pc : J � P] | ·

7.2.2 Operational semantics

The operational semantics of λDIST
SEC is given in Figures 7.1 and 7.2. It is, for the most

part, identical to the semantics for λCPS
SEC. Primitive operations must take place on a spe-

cific host, as indicated by the @ h to the left of the symbol |= . Rule λDIST
SEC -EVAL-DEREF

requires that the host performing the dereference be the same as the host that allocated
the reference—hosts have local state.

Whenever data leaves a host h its security label is stamped with the integrity label Ih,
reflecting the fact that only those principals that trust h not to corrupt data are willing to
trust any value h generates. The rules λDIST

SEC -EVAL-SEND and λDIST
SEC -EVAL-LINSEND

show this behavior.

7.2.3 Type system

The type system for λDIST
SEC modifies the type system for λCONCUR

SEC to add additional
constraints reflecting the hosts’ levels of trust.

The intuition is that whenever data leaves a host h, it is constrained so that its in-
tegrity is no more than Ih. Similarly, when data arrives at a host h, it must have confi-
dentiality no higher than Ch.

157

λDIST
SEC -EVAL-PRIM M, pc @ h |= v ⇓ v � pc

λDIST
SEC -EVAL-BINOP M, pc @ h |= n� ⊕ n′

�′ ⇓ (n[[⊕]]n′)���′ � pc

λDIST
SEC -EVAL-DEREF

M = M ′, h[L �→ v]

M, pc @ h |= !L @ h ⇓ v � pc

λDIST
SEC -EVAL-LETPRIM

M, pc @ h |= prim ⇓ v

〈M, S, (N | h[pc : let x = prim in e])〉 → 〈M, S, (N | h[pc : e{v/x}])〉

λDIST
SEC -EVAL-LETREF

〈M, S, (N | h[pc : let x = ref v in P])〉
→ 〈M, h[L �→ v], S, (N | h[pc : P{Lpc @ h/x}])〉 (L fresh)

λDIST
SEC -EVAL-SET

〈M, h[L �→ v], S, (N | h[pc : set L� @ h := v′ in P])〉
→ 〈M, h[L �→ v′ � � � pc], S, (N | h[pc : P])〉

Figure 7.1: λDIST
SEC operational semantics

158

λDIST
SEC -EVAL-HANDLER

〈M, S, (N | h[pc : let f1(�x1)| . . . | fn(�xn)� P1 in P2])〉
→ 〈M, h[pc : c1(�x1)| . . . | cn(�xn)� P1{(ci)pc/fi}], S,

(N | h[pc : P2{(ci)pc/fi}])〉
where the ci are fresh

λDIST
SEC -EVAL-LINHANDLER

〈M, S, (N | h[pc : let f1(�x1)| . . . | fn(�xn)� P1 in P2])〉
→ 〈M, S, h[pc : c1(�x1)| . . . | cn(�xn)� P1], (N | h[pc : P2{ci/fi}])〉

where the ci are fresh

λDIST
SEC -EVAL-COND1

〈M, S, (N | h[pc : if t� then P1 else P2])〉
→ 〈M, S, (N | h[pc � � : P1])〉

λDIST
SEC -EVAL-COND2

〈M, S, (N | h[pc : if f� then P1 else P2])〉
→ 〈M, S, (N | h[pc � � : P2])〉

λDIST
SEC -EVAL-SEND

〈M, h[pc : c1(�x1, y
opt
1)|...| cn(�xn, yopt

n)� P], S, (N |i hi[pci : ci�i(�vi, lv
opt
i)])〉

→ 〈M, h[pc : c1(�x1, y
opt
1)|...| cn(�xn, yopt

n)� P], S,
(N | h[� : P{�vi � pci � Ihi/�xi}{lvi/yi}opt])〉

where � = ipci � �i

λDIST
SEC -EVAL-LINSEND

〈M, S, h[pc : c1(�x1)| . . . | cn(�xn)� P], (N |i hi[pci :ci(�vi)])〉
→ 〈M, S, (N | h[pc : P{�vi � pci � Ihi/�xi}])〉

λDIST
SEC -EVAL-FORK

〈M, S, (N | h[pc : P | Q])〉 → 〈M, S, (N | h[pc : P] | h[pc : Q])〉

Figure 7.2: λDIST
SEC operational semantics continued

159

λDIST
SEC -SEND

H;Γ �h v : [pc′](�s, kopt)
H;Γ �h vi : si

T ; K �h lvopt : kopt

Ih � pc � pc′ Ih � label(si)

H;Γ ; T ; K [pc] �h v(�v, lvopt)

λDIST
SEC -LET

J �pc′ 〈Γf ; Γargs; K〉
H;Γ ,Γf ,Γargs; ·, K [pc′] �h P1

H;Γ ,Γf ; T,K [pc] �h P2

pc′ � Ch ∀x ∈ dom(Γargs). Γargs(x) � Ch

H;Γ ; T,K [pc] �h let J � P1 in P2

Figure 7.3: λDIST
SEC typing rules for message passing

λDIST
SEC -VAL

H;Γ � v : s pc � label(s) � Ch

H;Γ [pc] �h v : s

λDIST
SEC -BINOP

H;Γ � v : bool� H;Γ � v′ : bool� pc � � � Ch

H;Γ [pc] �h v ⊕ v′ : bool�

λDIST
SEC -DEREF

H;Γ � v : s ref� pc � label(s � �) � Ch

H;Γ [pc] �h !v : s � �

Figure 7.4: λDIST
SEC typing rules for primitive operations

160

The rules for sending messages and declaring message handlers are shown in Fig-
ure 7.3. (The rule for linear handlers is modified analogously.)

It is also necessary to rule out high-security data from being explicitly located at
a low-security host. Accordingly, the rules for typechecking primitive operations re-
quire that the host can handle the confidentiality of the data. These rules are shown in
Figure 7.4.

The type system for λDIST
SEC satisfies subject reduction; the proof is a straightforward

modification of the one given for lemma 5.3.8. Although a proof is beyond the scope of
this thesis, the type system given here is also intended to provide the distributed security
assurance property.

7.3 Related Work

The distributed trust model presented in this chapter, was originally developed in a tech-
nical report [ZM00]. This model was further refined for the program-partitioning work
described in the next chapter [ZZNM02].

λDIST
SEC ’s notion of explicit hosts is similar to those in the Dπ calculus of Riely and

Hennessy [RH99]. More sophisticated ambient calculi [CG00] have a dynamic notion
of host and also permit mobile computing. Some security considerations have been
studied in the ambient scenarios [MH02], but information-flow policies have not yet
been considered.

Mantel and Sabelfeld [MS01, SM02] consider a distributed model in which multi-
threaded programs communicate via synchronous and asynchronous message passing.
They propose a definition of information security based on Mantel’s security frame-
work [Man00] and show how a type system can establish noninterference. Their def-
inition of noninterference is both external-timing and termination sensitive, and hence
rules out single-threaded programs like examples (5) and (6) of Section 5.1.

In addition to high- and low-security channels, the Mantel and Sabelfeld language
provides encrypted channels. An encrypted channel reveals to a low-security observer
only the number of messages that have been sent on it. Consequently, high-security data
is not permitted to influence the number of messages sent on an encrypted channel—this
restriction is quite similar to the linearity constraints considered here (where it is stati-
cally known that exactly one message will be sent on the channel). Further investigation
of this possible connection is warranted.

Chapter 8

Jif/split

This chapter presents secure program partitioning, a way to protect the confidentiality
of data for computations that manipulate data with differing confidentiality needs in
the heterogeneously trusted hosts model of the previous chapter. Figure 8.1 illustrates
the key insight: The security policy can be used to guide the automatic splitting of a
security-typed program into communicating subprograms, each running on a different
host. Collectively, the subprograms perform the same computation as the original; in
addition, they satisfy all the participants’ security policies without requiring a single
universally trusted host.

The prototype implementation, called Jif/split, is primarily designed to enforce con-
fidentiality policies, but due to declassification, the system must also enforce simple
integrity policies as well (see Chapter 6).

As Figure 8.1 shows, Jif/split receives two inputs: the program, including its con-
fidentiality and integrity policy annotations, and also a set of signed trust declarations
stating each principal’s trust in hosts and other principals, in accordance with the het-
erogeneous trust model presented in the last chapter. The goal of secure program parti-
tioning is to ensure that if a host h is subverted, the only data whose confidentiality or
integrity is threatened is data owned by principals that have declared they trust h. Also,
note that to avoid the need for undue trust in the splitting process itself, the production
of the subprogram for host h can be performed on any host that is at least as trustworthy
as h—such as h itself.

It is useful to contrast this approach with the usual development of secure distributed
systems, which involves the careful design of protocols for exchanging data among hosts
in the system. By contrast, the splitting approach provides the following benefits:

• Stronger security: Secure program partitioning can be applied to information-
flow policies; most distributed systems make no attempt to control information
flow. It can also be applied to access control policies, which are comparatively
simple to enforce with this technique.

161

162

Host 1 Host 2 Host 3

Compiler

Splitter

subprograms

Security-typed
source code

Authenticated
trust

declarations

Figure 8.1: Secure program partitioning

• Decentralization: Collaborative computations can be carried out despite incom-
plete trust. In addition, for many computations, there is no need for a universally
trusted host. Each participant can independently ensure that its security policies
are enforced.

• Automation: Large computing systems with many participating parties contain
complex, interacting security policies that evolve over time; automated enforce-
ment is becoming a necessity. Secure program partitioning permits a computation
to be described as a single program independent of its distributed implementation.
The partitioning process then automatically generates a secure protocol for data
exchange among the hosts.

Secure program partitioning has the most value when strong protection of confiden-
tiality is needed by one or more principals, the computing platform consists of differ-
ently trusted hosts, there is a generally agreed-upon computation to be performed, and
security, performance, or functionality considerations prevent the entire computation
from being executed on a single host. One example of a possible application is an in-
tegrated medical information system that stores patient and physician records, raw test
data, and employee records, and supports information exchange with other medical in-
stitutions. Another example is an automated business-to-business procurement system,
in which profitable negotiation by the buyer and supplier depends on keeping some data
confidential.

The goal of Jif/split is to enforce the distributed security assurance discussed in Sec-
tion 7.1. It ensures that the threats to a principal’s confidential data are not increased
by the failure or subversion of an untrusted host that is being used for execution. Bad
hosts—hosts that fail or are subverted—have full access to the part of the program ex-

163

ecuting on them, can freely fabricate apparently authentic messages from bad hosts,
and can share information with other bad hosts. Bad hosts may execute concurrently
with good hosts, whereas good hosts preserve the sequential execution of the source
language—there is only one good host executing at a time. However, we assume that
bad hosts are not able to forge messages from good hosts, nor can they generate certain
capabilities to be described later.

The rest of this chapter describes Jif/split, an implementation of secure program
partitioning, which includes a static checker, program splitter, and run-time support for
the distributed subprograms. It also presents simple examples of applying this approach
and some performance results that indicate its practicality.

As with the other security-typed languages in this thesis, Jif/split does not attempt to
control certain classes of information flows: external timing and termination channels,
or attacks based on network traffic analysis.

8.1 Jif: a security-typed variant of Java

The Jif/split program splitter extends the compiler for Jif [Mye99, MNZZ01], a security-
typed extension to Java [GJS96] that uses labels from the decentralized label model (as
described in 6.1).

Types in Jif are labeled, allowing the programmer to declare variables and fields that
include security annotations. For example, a value with type int{o:r} is an integer
owned by principal o and readable by r. When unlabeled Java types are written in a
program, the label component is automatically inferred.

As with the other security-typed languages described in this thesis, every Jif program
expression has a labeled type that indicates an upper bound (with respect to the� order)
of the security of the data represented by the expression. Jif also uses a program counter
label to track the side-effects that may be created by a method or other piece of code.
Using the labels provided by the programmer and the inferred pc label, the Jif compiler
is able to statically verify that all of the information flows apparent in the program text
satisfy the label constraints that prevent illegal information flows from occurring. If the
program does not satisfy the security policy, it is rejected.

In addition to these changes to the Java type system, Jif adds a number of constructs
for creating secure programs. The following are germane to this dissertation:

• Declassification and endorse expressions, that follow the robust-declassification
rule as described in Section 8.2.3.

• An optional authority clause on method declarations describes the authority
available in the body of the method. Code containing such a clause can be added
to the system only with the permission of the principals named in it.

164

• Optional label bounds on the initial pc label of a method.

For example, the method signature

int{�1} m{pc}(int{�2} x) where authority {Alice}

is translated into the notation used in this thesis as

[{Alice}, pc]int�2 → int�1

This type indicates that the method m can only be called when the program counter
label is � pc. It takes an integer x with label �2 and returns an integer labeled �1. The
initial label bound plays exactly the same role for Jif methods as the [A, pc] component
on function types presented in Chapter 6.

Jif also introduces some limitations to Java, which apply to Jif/split as well. The
most important is that programs are assumed to be sequential: the Thread class is not
available. The current implementation of Jif does not support threaded computation as
proposed in Chapter 5, partially because Java’s model of threads and synchronization
is significantly more complex than that of λCONCUR

SEC . Determining how to integrate the
results of Chapter 5 into Jif is left for future work.

8.1.1 Oblivious Transfer Example

Figure 8.2 shows a sample program that is used as a running example. It is based on the
well-known Oblivious Transfer Problem [EGL83, Rab81], in which the principal Alice
has two values (here represented by fields m1 and m2), and Bob may request exactly one
of the two values. However, Bob does not want Alice to learn which of the two values
was requested.

Even this short example has interesting security issues. For instance, it is well-
known that a trusted third party is needed for a secure distributed implementation under
the assumptions of perfect security (no information leakage) [DKS99].1

Alice’s secret data is represented by integer fields m1 and m2, with security label
{Alice:; ?:Alice}. This type indicates that these fields are owned by Alice, that she
lets no one else read them, and that she trusts their contents. The boolean isAccessed

records whether Bob has requested a value yet.
Lines 6 through 18 define a method transfer that encapsulates the oblivious trans-

fer protocol. It takes a request, n, owned by Bob, and returns either m1 or m2 depending

1Probabilistic solutions using two hosts exist, but these algorithms leak small amounts of information.
Because Jif’s type system is geared to possibilistic information flows, these probabilistic algorithms are
rejected as potentially insecure. Ongoing research [GS92, VS00, SS00] attempts to address probabilistic
security.

165

1 public class OTExample {

2 int{Alice:; ?:Alice} m1;

3 int{Alice:; ?:Alice} m2;

4 boolean{Alice:; ?:Alice} isAccessed;

5

6 int{Bob:} transfer{?:Alice} (int{Bob:} n)

7 where authority(Alice) {

8 int tmp1 = m1;

9 int tmp2 = m2;

10 if (!isAccessed) {

11 isAccessed = true;

12 if (endorse(n, {?:Alice}) == 1)

13 return declassify(tmp1, {Bob:});

14 else

15 return declassify(tmp2, {Bob:});

16 }

17 else return 0;

18 }

19 }

Figure 8.2: Oblivious transfer example in Jif

on n’s value. Note that because Alice owns m1 and m2, releasing the data requires de-
classification (lines 13 and 15). Her authority, needed to perform this declassification,
is granted by the authority clause on line 7.

Ignoring for now the temporary variables tmp1 and tmp2 and the endorse statement,
the body of the transfer method is straightforward: Line 10 checks whether Bob has
made a request already. If not, line 11 records the request, and lines 12 through 15 return
the appropriate field after declassifying them to be visible by Bob. If Bob has already
made a request, transfer simply returns 0.

The simplicity of this program is deceptive. For example, the pc label at the start of
the transfer method must be bounded above by the label {?:Alice}, as indicated on
line 6. The reason is that line 11 assigns true into the field isAccessed, which requires
Alice’s integrity. If the program counter at the point of assignment does not also have
Alice’s trust, the integrity of isAccessed is compromised.

166

These observations illustrate one benefit of programming in a security-typed lan-
guage: the compiler can catch many subtle security holes even though the code is written
in a style that contains no specification of how the code is to be distributed.

The interactions between confidentiality, integrity, and declassifications described in
Chapter 6 explain the need for the temporary variables and endorsement. The details
of this example are described in the rest of this chapter, as we consider its security in a
distributed environment.

8.2 Static Security Constraints

Jif/split uses the model for heterogeneously trusted distributed systems given in Chap-
ter 7. To securely partition a program for such an environment, the splitter must know
the trust relationships between the participating principals and the hosts H . Recall that
these trust configurations are provided by a confidentiality and integrity label for each
host h. These labels are Ch and Ih, respectively.

At a high level, the partitioning process can be seen as a constraint satisfaction prob-
lem. Given a source program and the trust relationships between principals and hosts,
the splitter must assign a host in H to each field, method, and program statement in
the program. This fine-grained partitioning of the code is important so that a single
method may access data of differing confidentiality and integrity. The primary concern
when assigning hosts is to enforce the confidentiality and integrity requirements on data;
efficiency, discussed in Section 8.5, is secondary.

This section describes the static constraints on host selection, they derive from the
considerations of λDIST

SEC .

8.2.1 Field and Statement Host Selection

Consider the field m1 of the oblivious transfer example. It has label {Alice:;?:Alice},
which says that Alice owns and trusts this data. Only certain hosts are suitable to store
this field: hosts that Alice trusts to protect both her confidentiality and integrity. If the
field were stored elsewhere, the untrusted host could violate Alice’s policy, contradicting
the security assurance of Section 7.1. The host requirements can be expressed using
labels: {Alice:} � Ch and Ih � {?:Alice}. The first inequality says that Alice
allows her data to flow to h, and the second says that Alice trusts the data she receives
from h. In general, for a field f with label Lf we require

C(Lf) � Ch and Ih � I(Lf).

This same reasoning further generalizes to the constraints for locating an arbitrary
program statement, S. Let U(S) be the set of values used in the computation of S and

167

let D(S) be the set of locations S defines. Suppose that the label of the value v is Lv and
that the label of a location l is Ll. Let

Lin = v∈U(S)Lv and Lout = l∈D(S)Ll

A host h can execute the statement S securely, subject to constraints similar to those for
fields.

C(Lin) � Ch and Ih � I(Lout)

8.2.2 Preventing Read Channels

The rules for host selection for fields in the previous section are necessary but not suf-
ficient in the distributed environment. Because bad hosts in the running system may
be able to observe read requests from good hosts, a new kind of implicit flow is intro-
duced: a read channel in which the request to read a field from a remote host itself
communicates information.

For example, a naive implementation of the oblivious transfer example of Figure 8.2
exhibits a read channel. Suppose that in implementing the method transfer, the
declassify expressions on lines 13 and 15 directly declassified the fields m1 and m2,
respectively, instead of the variables tmp1 and tmp2. According to Bob, the value of the
variable n is private and not to be revealed to Alice. However, if m1 and m2 are stored on
Alice’s machine, Alice can improperly learn the value of n from the read request.

The problem is that Alice can use read requests to reason about the location of the
program counter. Therefore, the program counter at the point of a read operation must
not contain information that the field’s host is not allowed to see. With each field f , the
static checker associates a confidentiality label Locf that bounds the security level of
implicit flows at each point where f is read. For each read of the field f , the label Locf

must satisfy the constraint C(pc) � Locf . Using this label Locf , the confidentiality
constraint on host selection for the field is:

C(Lf) � Locf � Ch

To eliminate the read channel in the example while preventing Bob from seeing both
m1 and m2, a trusted third party is needed. The programmer discovers this problem
during development when the naive approach fails to split in a configuration with just
the hosts A and B as described in Section 4.2. The error pinpoints the read channel
introduced: arriving at line 13 depends on the value of n, so performing a request for
m1 there leaks n to Alice. The splitter automatically detects this problem when the field
constraint above is checked.

If the more trusted host T is added to the set of known hosts, the splitter is able
to solve the problem, even with the naive code, by allocating m1 and m2 on T , which

168

prevents Alice from observing the read request. If S is used in place of T , the naive
code again fails to split—even though S has enough privacy to hold Alice’s data, fields
m1 and m2 can’t be located there because Alice doesn’t trust S not to corrupt her data.
Again, the programmer is warned of the read channel, but this time a different solution
is possible: adding tmp1 and tmp2 as in the example code give the splitter enough
flexibility to copy the data to S rather than locating the fields there. Whether S or T is
the right model for the trusted host depends on the scenario; what is important is that
the security policy is automatically verified in each case.

8.2.3 Declassification Constraints

Consider the oblivious transfer example from Alice’s point of view. She has two private
pieces of data, and she is willing to release exactly one of the two to Bob. Her decision
to declassify the data is dependent on Bob not having requested the data previously.
In the example program, this policy is made explicit in two ways. First, the method
transfer explicitly declares that it uses her authority, which is needed to perform the
declassification. Second, the program itself tests (in line 10) whether transfer has
been invoked previously—presumably Alice would not have given her authority to this
program without this check to enforce her policy.

This example shows that it is not enough simply to require that any declassify

performed on Alice’s behalf executes on a host she trusts to hold the data. Alice also
must be confident that the decision to perform the declassification, that is, the program
execution leading to the declassify, is performed correctly.

The program counter label summarizes the information dependencies of the decision
to arrive at the corresponding program point. Thus, a declassify operation using the
authority of a set of principals P introduces the integrity constraint: I(pc) � IP where
IP is the label {?:p1, . . . , pn} for pi ∈ P . This constraint says that each principal p
whose authority is needed to perform the declassification must trust that the program
has reached the declassify correctly.

Returning to the oblivious transfer example, we can now explain the need to use the
endorse operation. Alice’s authority is needed for the declassification, but, as described
above, she must also be sure of the integrity of the program counter when the program
does the declassification. Omitting the endorse when testing n on line 12 would lower
the integrity of the program counter within the branches—Alice doesn’t trust that n was
computed correctly, as indicated by its (lack of an) integrity label on line 6. She must
add her endorsement to n, making explicit her agreement with Bob that she doesn’t need
to know n to enforce her security policy.

Using the static constraints just described, the splitter finds a set of possible hosts
for each field and statement. This process may yield many solutions, or none at all—for

169

Val getField(HostID h, Obj o, FieldID f)

Val setField(HostID h, Obj o, FieldID f, Val v)

void forward(HostID h, FrameID f, VarID var, Val v)

void rgoto(HostID h, FrameID f, EntryPt e, Token t)

void lgoto(Token t)

Token sync(HostID h, FrameID f, EntryPt e, Token t)

Figure 8.3: Run-time interface

instance, if the program manipulates data too confidential for any known host. When
no solution exists, the splitter gives an error indicating which constraint is not satisfi-
able. We have found that the static program analysis is remarkably useful in identifying
problems with apparently secure programs. When more than one solution exists, the
splitter chooses hosts to optimize performance of the distributed system, as described in
Section 8.5.

8.3 Dynamic Enforcement

In the possible presence of bad hosts that can fabricate messages, run-time checks are
required to ensure security. For example, access to an object field on a remote host must
be authenticated to prevent illegal data transfers from occurring. Thus, the information-
flow policy is enforced by a combination of static constraints (controlling how the pro-
gram is split) and dynamic checks to ensure that running program obeys the static con-
straints.

When a program is partitioned, the resulting partitions contain both ordinary code
to perform local computation and calls to a special run-time interface that supports host
communication. Figure 8.3 shows the interface to the distributed run-time system.2

There are three operations that transfer data between hosts: getField, setField, and
forward; and three operations that transfer control between hosts: rgoto, lgoto, and
sync. These operations define building blocks for a protocol that exchanges information
among the hosts running partitions.

The rgoto and lgoto control operations are primitive constructs for transferring
control from one program point to another that is located on a different host. In general
a program partition comprises a set of code fragments that offer entry points to which
rgoto and lgoto transfer control. These two kinds of goto operations are taken directly
from the work on λCPS

SEC in Chapter 4.

2This interface is simplified for clarity; for instance, the actual implementation provides direct support
for array manipulation.

170

The run-time interface describes all the ways that hosts can interact. To show that
bad hosts cannot violate the security assurance provided by the system, it is therefore
necessary to consider each of the run-time operations in turn and determine what checks
are needed to enforce the assurance condition given in Section 7.1.

8.3.1 Access Control

The simplest operations provided by the run-time interface are getField and setField,
which perform remote field reads and writes. Both operations take a handle to the re-
mote host, the object that contains the field, and an identifier for the field itself. The
setField operation also takes the value to be written.

These requests are dispatched by the run-time system to the appropriate host. Sup-
pose h1 sends a field access request to h2. Host h2 must perform an access control check
to determine whether to satisfy the request or simply ignore it, while perhaps logging
any improper request for auditing purposes. A read request for a field f labeled Lf is
legal only if C(Lf) � Ch1 , which says that h1 is trusted enough to hold the data stored in
f . Similarly, when h1 tries to update a field labeled Lf , h2 checks the integrity constraint
Ih1 � I(Lf), which says that the principals who trust f also trust h1. These requirements
are the dynamic counterpart to those used for host selection (see Section 8.2.1).

Note that because field and host labels are known at compile time, an access control
list can be generated for each field, and thus label comparisons can be optimized into a
single lookup per request. There is no need to manipulate labels at run time.

8.3.2 Data Forwarding

Another difficulty with moving to a distributed setting is that the run-time system must
provide a mechanism to pass data between hosts without violating any of the confiden-
tiality policies attached to the data. The problem is most easily seen when there are three
hosts and the control flow h1 −→ l −→ h2: execution starts on h1, transfers to l, and
then completes on h2. Hosts h1 and h2 must access confidential data d (and are trusted
to do so), whereas l is not allowed to see d. The question is how to make d securely
available to h2. Clearly it is not secure to transfer d in plaintext between the trusted
hosts via l.

There are essentially two solutions to this problem: pass d via l in encrypted form, or
forward d directly to h2. Jif/split implements the second solution. After hosts have been
assigned, the splitter infers statically where the data forwarding should occur, using a
standard definition-use dataflow analysis. The run-time interface provides an operation
forward that permits a local variable to be forwarded to a particular stack frame on
a remote host. The same mechanism is used to transmit a return value to a remote

171

host. Data forwarding requires that the recipient validate the sender’s integrity, as with
setField.

8.3.3 Control Transfer Integrity

So far, Jif/split has not addressed concurrency, which is inherently a concern for security
in distributed systems. While it would be possible to make use of the structured syn-
chronization mechanisms presented in Chapter 5, the Jif/split prototype was not been
designed to take advantage of concurrency in the source program—this is a limitation
inherited from Jif. Instead, Jif/split takes advantage of the single-threaded nature of the
source program by using simpler ordered linear continuations of Chapter refch:cps.

Consider a scenario with three hosts: h1 and h2 have high integrity, and l has rela-
tively lower integrity (that is, its integrity is not equal to or greater than that of h1 or h2).
Because the program has been partitioned into code fragments, each host is prepared to
accept control transfers at multiple entry points, each of which begins a different code
fragment. Some of the code fragments on h1 and h2 make use of the greater privilege
available due to higher integrity (e.g., the ability to declassify certain data).

Suppose the source program control flow indicates control transfer in the sequence
h1 −→ l −→ h2. A potential attack is for l to improperly invoke a privileged code
fragment residing on h2, therefore violating the behavior of the original program and
possibly corrupting or leaking some data. Hosts h1 and h2 can prevent these attacks by
simply denying l the right to invoke entry points that correspond to privileged code, but
this strategy prevents h2 from using its higher privileges after control has passed through
l—even if this control transfer was supposed to occur according to the source program.

The mechanism to prevent these illegal control transfers is based on a stack discipline
for manipulating capabilities. Each capability represents a linear continuation, and the
stack keeps track of the ordering between them.

The intuition is that the block structure and sequential behavior of the source pro-
gram, which are embodied at run-time by the stack of activation records, induce a similar
LIFO property on linear continuations (and the pcintegrity). The deeper the stack, the
more data the program counter depends on, and consequently, the lower its integrity.

In Jif, the correspondence between stack frames and linear continuations is not per-
fect because the pc label need not decrease in lock step with every stack frame. A single
stack frame may be used by a block of code that is partitioned across several hosts of
differing integrity, for example. To distinguish between the stack of activation records
(whose elements are represented by FrameID objects) and the stack of continuation to-
kens, the latter is called the ICS—integrity control stack. The ICS can be thought of as
an implementation of the linear context K used in the typechecking rules for λCPS

SEC.
Informally, in the scenario above, the first control transfer (from h1 to l) pushes a

capability (a continuation) for return to h2 onto the ICS, after which computation is more

172

int {Bob:;?:Bob} n = ...;
forward(T,...,n);
lgoto(t1)

...,e4,t0);
rgoto(A,...,e6,t2);

if (n==0) {
 retval = tmp1;
 lgoto(t2);
} else {
 retval = tmp2;
 lgoto(t2);
}

...
t1 = sync(T,...,e2,t0);
rgoto(B,...,e6,t1);

tmp1 = m1;
tmp2 = m2;
if (!isAccessed) {
 isAccessed = true;

...
 forward(T,...,tmp2);
 rgoto(T,...,e3,t2);
} else {
 retval = 0;
 forward(T,...,retval);
 lgoto(t2);
}

int {Bob:;} r = retval;
lgoto(t0); // exit program

rgoto

sync

t1

t0 lgoto

Host T Host B

rgoto

sync

t2

t0

Host A

forward

rgoto

forwardrdforward

lgoto

main(t0)

sync

forward

Data
transfers

Control
transfers

rgoto,
lgoto

forward
lgoto

e3

e4

e1

e2

e5

e6

Figure 8.4: Control flow graph of the oblivious transfer program

restricted (and hence may reside on a less trusted machine). The second control transfer
(from l to h2) consumes the capability and pops it off the ICS, allowing h2 to regain
its full privileges. The idea is that before transferring control to l, trusted machines
h1 and h2 agree that the only valid, privileged entry point between them is the one on
h2. Together, they generate a capability for the entry point that h1 passes to l on the
first control transfer. Host l must present this capability before being granted access to
the more privileged code. Illegal attempts to transfer control from l to h1 or to h2 are
rejected because h1 and h2 can validate the (unique) capability.

8.3.4 Example Control Flow Graph

Figure 8.3 shows the signatures for the three control transfer facilities: rgoto (for “reg-
ular” control transfers that do not affect the ICS), lgoto (for “linear” transfers—ICS
pops), and sync (for generating capabilities—ICS pushes; these correspond to letlin).
The continuation capabilities are represented as Token objects. In addition to the code
fragment to be jumped to (given by the EntryPt argument), control transfer is to a
specific stack frame (given by FrameID) on a particular host.

The next section describes in detail the operation of these mechanisms, but first it is
helpful to see an example of their use.

173

Figure 8.4 shows the control-flow graph of a possible splitting of the oblivious trans-
fer example in a host environment that contains Alice’s machine A, Bob’s machine B
and the partially trusted server, T from Section 4.2. For completeness, the following
describes the unoptimized behavior; optimizations that affect the partitioning process
and run-time performance are discussed in Sections 8.5 and 8.6.

The figure shows only a fragment of the main3 method. Host T initially has control
and possesses a single capability t0, which is on top of the ICS. Bob’s host is needed
to initialize n—his choice of Alice’s two fields. Recall that {?:Bob} � {?:Alice},
which means that B is relatively less trusted than T . Before transferring control to B, T
sync’s to a suitable return point (entry e2), which pushes a new capability, t1, onto the
ICS (hiding t0). The sync operation then returns this fresh capability token, t1, to e1.

Next, T passes t1 to entry point e5 on B via rgoto. There, Bob’s host computes the
value of n and returns control to T via lgoto, which requires the capability t1 to return
to a host with relatively higher integrity. Upon receiving this valid capability, T pops
t1, restoring t0 as the top of the ICS. If instead B maliciously attempts to invoke any
entry point on either T or A via rgoto, the access control checks deny the operation.
The only valid way to transfer control back to T is by invoking lgoto with one-time
capability t1. Note that this prevents Bob from initiating a race to the assignment on
line 11 of the example, which might allow two of his transfer requests (one for m1 and
one for m2) to be granted and thus violate Alice’s declassification policy.

Alice’s machine must check the isAccessed field, so after B returns control, T next
syncs with the return point of transfer (the entry point e4), which again pushes new
token t2 onto the ICS. T then transfers control to e6 on A, passing t2. The entry point
e6 corresponds to the beginning of the transfer method.

Alice’s machine performs the comparison, and either denies access to Bob by return-
ing to e4 with lgoto using t2, or forwards the values of m1 and m2 to T and hands back
control via rgoto to e3, passing the token t2. If Bob has not already made a request,
T is able to check n and assign the appropriate value of tmp1 and tmp2 to retval,
then jump to e4 via t2. The final block shows T exiting the program by invoking the
capability t0.

8.3.5 Control Transfer Mechanisms

This section describes how rgoto, lgoto, and sync manipulate the ICS, which is itself
distributed among the hosts, and defines the dynamic checks that must occur to maintain
the desired integrity invariant. The implementation details given here are one way of
implementing the ordered synchronization handlers described in Chapters 5 and 7.

3The main method and constructors are omitted from Figure 8.2 to simplify the presentation; they
contain simple initialization code. This description also omits the details of FrameID objects, which are
unimportant for this example.

174

t4 t3

t3 t2

t2 t1 t1 t0

L M H
global ICS grows

integrity decreases

t0

t1

t2

t3

t4

global
ICS

local stacks

H

M

L

Figure 8.5: Distributed implementation of the global stack

A capability token t is a tuple {h, f, e}kh
containing a HostID, a FrameID, and

an EntryPt. It represents a linear continuation—or, equivalently, a synchronization
channel—that expects no arguments and whose body contains the code e. To prevent
forgery and ensure uniqueness, the tuple is appended to its hash with h’s private key and
a nonce.

The global ICS is represented by a collection of local stacks, as shown in Figure 8.5.
Host h’s local stack, sh, contains pairs of tokens (t, t′) as shown. The intended invariant
is that when the top of h’s stack, top(sh), is (t, t′), then t is the token most recently
issued by h. Furthermore, the only valid lgoto request that h will serve must present
the capability t. The other token, t′, represents the capability for the next item on the
global stack; it is effectively a pointer to the tail of the global ICS.

To show that these distributed stacks enforce a global stack ordering on the capa-
bilities, the proof, given in Section 8.4, establishes a stronger invariant of the protocol
operations. Whenever control is transferred to low-integrity hosts, there is a unique re-
entry point on high-security hosts that permits high-integrity computation. This unique-
ness ensures that if a low-integrity host is bad, it can only jeopardize the security of
low-integrity computation.

The recipients of control transfer requests enforce the ordering protocol. Assume
the recipient is the host h, and the initiator of the request is i. The table in Figure 8.6
specifies h’s action for each type of request. The notation e(f, t) is a local invocation of
the code identified by entry point e in stack frame f , passing the token t as an additional
argument.

This approach forces a stack discipline on the integrity of the control flow: rgoto
may be used to transfer control to an entry point that requires lesser or equal integrity;
lgoto may transfer control to a higher-integrity entry point—provided that the higher-
integrity host previously published a capability to that entry point. These capabilities
can be used at most once: upon receiving an lgoto request using the valid capability
t, h pops its local capability stack, thereby invalidating t for future uses. Calls to sync

175

and lgoto thus come in pairs, with each lgoto consuming the capability produced by
the corresponding sync.

Just as the run-time system must dynamically prevent malicious hosts from improp-
erly accessing remote fields, it also must ensure that bad hosts cannot improperly invoke
remote code. Otherwise, malicious hosts could indirectly violate the integrity of data af-
fected by the code. Each entry point e has an associated dynamic access control label Ie

that regulates the integrity of machines that may remotely invoke e. The receiver of an
rgoto or sync request checks the integrity of the requesting host against Ie as shown in
Figure 8.6. The label Ie is given by (v∈D(e)Lv)	IP , where D(e) is the set of variables
and fields written to by the code in e and IP is the integrity label of the principals, P ,
whose authority is needed to perform any declassifications in e.

The translation phase described in the next section inserts control transfers into the
source program. To prevent confidentiality and integrity policies from being violated
by the communications of the transfer mechanisms themselves, there are constraints on
where rgoto and sync may be added.

Suppose a source program entry point e is assigned to host i, but doing so requires
inserting an rgoto or sync to another entry point e′ on host h. The necessary constraints
are:

C(pc) � Ch Ii � Ie′ Ie � Ie′ .

The first inequality says that i cannot leak information to h by performing this opera-
tion. The second inequality says that host i has enough integrity to request this control
transfer. This constraint implies that the dynamic integrity checks performed by h are
guaranteed to succeed for this legal transfer—the dynamic checks are there to catch
malicious machines, not well-behaved ones. Finally, the third constraint says that the
code of the entry point e itself has enough integrity to transfer the control to e′. Further-
more, because sync passes a capability to h, it requires the additional constraint that
Ih � I(pc), which limits the damage h can do by invoking the capability too early, thus
bypassing the intervening computation.

These enforcement mechanisms do not attempt to prevent denial of service attacks,
as such attacks do not affect confidentiality or integrity. These measures are sufficient to
prevent a bad low-integrity host from launching race-condition attacks against the higher
integrity ones: hosts process requests sequentially, and each capability offers one-shot
access to the higher integrity hosts.

While our restrictive stack-based control transfer mechanism is sufficient to provide
the security property of Section 7.1, it is not necessary; there exist secure systems that
lie outside the behaviors expressible by the ICS. However, following the stack discipline
is sufficient to express many interesting protocols that move the thread of control from
trusted hosts to untrusted hosts and back. Moreover, the splitter determines when a
source program can obey the stack ordering and generates the protocol automatically.

176

Request for h Description h’s Action
rgoto(h, f, e, t) Transfers control to the entry

point e in frame f on the host
h. Host i’s current capability
t is passed to h.

if (Ii � Ie) {

e(f, t)
} else ignore

lgoto(t)

where
(t = {h, f, e}kh

)

Pops h’s local control stack
after verifying the capability
t; control moves to entry
point e in frame f on host h,
restoring privileges.

if (top(sh) = (t,t′)) {

pop(sh);
e(f, t′);

} else ignore

sync(h, f, e, t) Host h checks i’s integrity; if
sufficient, h returns to i a new
capability (nt) for entry point
e in frame f .

if (Ii � Ie) {

nt = {h, f, e}kh
;

push(sh, (nt, t));
send(h)i(f, nt);

} else ignore

Figure 8.6: Host h’s reaction to transfer requests from host i

8.4 Proof of Protocol Correctness

This section proves that the control-transfer protocols generated by Jif/split protect the
integrity of the program counter. The purpose of these protocols is to ensure that at
any point in time, the set of (relatively) low-integrity hosts has access to at most one
capability that grants access to high-integrity (more privileged) code. This prevents the
low-integrity hosts from having a choice about how privileges are restored to the com-
putation, which means that they cannot inappropriately invoke declassifications that re-
side on more trusted machines. Thus, untrusted hosts can jeopardize only low-integrity
computation—the control behavior of the high-integrity parts of the split code is the
same as in the original, single-host source program. The Stack Integrity Theorem, de-
scribed below, proves that the distributed systems generated by Jif/split satisfy this se-
curity invariant.

To arrive at this result, we need to first model the behavior of the system at an
appropriate level of detail. There are two parts to this model: First, Jif/split statically
produces code fragments to distribute among the hosts. These code fragments obey
static constraints imposed by the compiler and splitter, but they also have a run-time
effect on the behavior of the system—for instance, a code fragment may terminate in a

177

control transfer to a different host. Second, the run-time system of each host manipulates
stacks of capability tokens that are used for dynamic checking. The combination of static
constraints on the partitions created by the splitter and dynamic checks performed by the
run-time system protects the control-transfer integrity.

8.4.1 Hosts

Let H be a set of known hosts {h1, . . . , hn}. We assume that each host h has an as-
sociated integrity label Ih. Fix an integrity label ι, used to define the relative trust
levels between hosts. Let HG = {h | Ih � ι} be the set of good hosts, and let
HB = {h | Ih � ι} be the set of bad hosts. For example, with respect to a single
principal, p, we might choose ι = {?:p}. In this case, HG is the set of hosts trusted by
p and HB is the set of hosts not trusted by p. Note that HG ∪HB = H . Throughout this
section, we call objects with label � ι bad and objects with label � ι good. 4

We assume that good hosts follow the protocols and that bad hosts might not. In
particular, bad hosts may attempt to duplicate or otherwise misuse the capability tokens;
they may also generate spurious messages that contain tokens previously seen by any
bad host.

The run-time system provided also ensures that good hosts execute requests atomi-
cally. In particular, a host h that is executing the sequential code fragment corresponding
to an entry point eh will not be executing code for any other entry point e′h on h. This
assumption justifies the state-transition approach described below, because we show that
the local processing on each host, if performed atomically, preserves a global invariant.

One subtle point is that despite the distinction between good and bad hosts, not all
low-integrity computation takes place at bad hosts. Intuitively, running low-integrity
computation on high-integrity hosts is allowed because the integrity constraints inferred
for the source program are lower bounds on the integrity required by the hosts. It is
therefore safe to use a more secure host than necessary. Consequently, high-integrity
hosts may accept requests to run low-integrity parts of the program from bad hosts. In
general, several good hosts may be executing concurrently—perhaps because they are
responding to low-integrity requests generated by bad hosts. However, the intended
effect is that such concurrency does not affect high-integrity computation. The Stack
Integrity Theorem establishes that high-integrity computation is still single-threaded,
despite this possible concurrency introduced by bad hosts.

4Recall that in the integrity lattice, labels representing more integrity are lower in the � order.

178

8.4.2 Modeling Code Partitions

To capture the static constraints on the behavior of good hosts, we define the notion of an
entry point: an entry point e is the name of a code partition generated by the splitter—it
can be thought of as a remote reference to a single-threaded piece of program that resides
entirely on one host. An entry point names a program point to which control may be
transferred from a remote host. Each entry point e has an associated integrity label Ie

as described in Section 8.3. Note that a low-integrity entry point may be located at a
high-integrity machine. Let E be the set of entry points generated by a given program,
and let Eh be the set of entry points located on host h.

Because our proof is concerned with the control transfers between hosts, we can
ignore the details of the sequential code named by an entry point. Consequently, an
entry point e on a good host h ∈ HG can be thought of as a function that takes a frame f
and a token t and produces an action, which is a pair (h, r) of the host h and an operation
request r, in one of the following forms:

1. e(f, t) = (h, rgoto(h′, f ′, e′, t)): Host h transfers control to entry e′ on h′ in
frame f ′.

2. e(f, t) = (h, sync(h′, f ′, e′, t)): Host h requests a sync with entry e′ on h′ and
frame f ′; h blocks until it receives a reply.

3. e(f, t) = (h, lgoto(t)): Host h transfers control to entry e′ on h′ in frame f ′ if
t = {h′, f ′, e′}kh′ .

The recipient, or destination host of an action is the host h′ in the requests described
above. If r is a request, the notation dest(r) indicates the destination host.

The metavariable t indicates a capability token, which is a tuple {h, f, e}kh
con-

sisting of a host identifier, a frame identifier, and an entry point identifier. To prevent
forgery and ensure uniqueness of such tokens, the tuple is appended to its hash with h’s
private key and a nonce. Thus a token of this form can be generated only by host h, but
its validity can be checked by any host with h’s public key. (In the text below, we use
t, t′, u, u′, etc., to range over tokens.)

The sync operation is the only control transfer mechanism that involves an exchange
of messages between hosts. (Both rgoto and lgoto unconditionally transfer control to
the recipient.) Because the initiator (host h in the above description) of a sync request
expects the recipient (h′) to respond with a freshly generated token, h blocks until it
gets h′’s reply. For the purposes of analysis, we treat h’s behavior after issuing a sync

request to h′ as an entry point send(h′)h on h to which h′ may return control. The
integrity of the entry point send(h′)h is the integrity Ie of the entry point containing the
sync operation.

179

Just like any other entry point, send(h′)h is a function that takes a frame and token
and returns an action. In the case that h′ is also a good host, and hence follows the
appropriate protocol, h′ will generate a fresh token t′ and return control to h causing the
entry point send(h′)h(f, t′) to be invoked.

For example, the code fragment below, located on a host h, includes two entry points,
e and send(h′)h:

e : x = x+1;

z = x-2;

sync(h′, f ′, e′, t);
send(h′)h : y = y +2;

rgoto(h′′, f ′′, e′′, t′);

These entry points are modeled as functions

e(f, t) = sync(h′, f ′, e′, t)

and
send(h′)h(f, t′) = rgoto(h′′, f ′′, e′′, t′)

When e is invoked, the local computations are performed and then host h sends a sync
request to h′, causing h′ to block (waiting for the response to be sent by h′ to the entry
point send(h′)h).

Note that this description of entry points is valid only for good hosts—bad hosts may
do anything they like with the tokens they receive. For good hosts, the code generated
by our splitter satisfies the above abstract specification by construction. For instance, the
splitter always terminates the thread of control on a host by inserting a single rgoto or
an lgoto—the splitter never generates several control transfers in a row from the same
host (which would cause multiple remote hosts to start executing concurrently). As
discussed in Section 8.3, the splitter also follows some constraints about where rgoto

and sync can be inserted. In order for host h to perform an rgoto or sync at an entry
point e to entry point e′ on host h′, the following static constraint must be satisfied:
Ih � Ie � Ie′ . The sync operation requires an additional constraint Ih′ � I(pc),
which limits the damage h′ can do by invoking the capability too early, bypassing the
intervening computation. Since we assume good hosts are not compromised, syncs or
rgotos issued by good hosts satisfy these label inequalities.

8.4.3 Modeling the Run-time Behavior

To capture the dynamic behavior of the hosts, we need to model the state manipulated
by the run-time system. Let T be the set of all possible tokens. For the purposes of
this proof, we assume that a host may generate a fresh, unforgeable token not yet used

180

anywhere in the system. In practice, this is accomplished by using nonces. The run-time
system’s local state on a host h includes a token stack, which is a list of pairs of tokens

(t1, t
′
1) : (t2, t

′
2) : . . . : (tn, t

′
n).

Stacks grow to the left, so pushing a new pair (t0, t
′
0) onto this stack yields:

(t0, t
′
0) : (t1, t

′
1) : (t2, t

′
2) : . . . : (tn, t

′
n).

Because only good hosts are trusted to follow the protocol, only good hosts necessar-
ily have token stacks. For each h ∈ HG we write sh for the local token stack associated
with the good host h.

Let sh be the stack (t1, t
′
1) : . . . : (tn, t

′
n). We use the notation top(sh) to denote

the top of the stack sh: the pair (t1, t
′
1). If sh is empty (that is, n = 0), then top(sh) is

undefined. For the pair (t, t′), let fst(t, t′) = t be the first projection and snd(t, t′) = t′ be
the second projection. We overload the meaning of fst and snd to include entire stacks:
fst(sh) = {t1, t2, . . . , tn} and snd(sh) = {t′1, t′2, . . . , t′n}.

When a good host h receives a request from initiator i, h reacts to the message
according to the table in Figure 8.6. (We can’t say anything about what a bad host does
upon receiving a message, except observe that the bad host may gain access to new
tokens.) The pop and push operations manipulate h’s local stack.

Note that h will react to a lgoto request only if the token used to generate the request
is on top of its local stack. The point of our protocol is to protect against any bad host
(or set of bad hosts) causing more than one these “active tokens” to be used at time.

The global state of the system at any point in time is captured by a configuration,
which is a tuple 〈s, R, TR〉. Here, s is the mapping from good hosts to their local stacks,
R is a predicate on E indicating which entry points are running, and TR ⊆ T is the set
of tokens released to bad hosts or generated by them. The intention is that TR contains
all tokens that have been passed to the bad hosts or to low integrity entry points before
reaching this system configuration during the computation.

As always, we cannot assume anything about what code a bad host is running. Thus,
we use the predicate R only for those entry points located on good hosts. The notation
R[e �→ x] for x ∈ {t, f} stands for the predicate on entry points that agrees with R
everywhere except e, for which R[e �→ x](e) = x.

The behavior of a Jif/split system can now be seen as a labeled transition system in
which the states are system configurations and the transitions are actions. The notation

〈s, R, TR〉 (h,r)−→ 〈s′, R′, T ′
R〉

indicates that the left configuration transitions via the action (h, r) to yield the right
configuration. The effects of the transition on the configuration depend on the action.

181

For example, a successful lgoto request will cause a good host h to pop its local token
stack. Thus, for that transition s′h = pop(sh). Other effects, such as passing a token to a
bad host, relate TR and T ′

R. The proof cases in Section 8.4.5 describe the effects of each
transition.

Not every transition sequence is possible—some are ruled out by the static con-
straints, while some are ruled out by the dynamic checks of good hosts. Thus, we must
make some further modeling assumptions about the valid transition systems.

• If, during a computation, the configuration S transitions to a configuration S′

via an action performed by a good host, then that action is actually the result of
evaluating an entry point on that host:

〈s, R, TR〉 (h,r)−→ 〈s′, R′, T ′
R〉∧h ∈ HG ⇒ ∃e ∈ Eh, f, t . (e(f, t) = (h, r))∧R(e)

• If the initiator of an action is a bad host or an entry point in EB , then any tokens
appearing in the action are available to the bad hosts (they are in the set TR).

• Communication between bad hosts does not change the relevant parts of the global
state:

〈s, R, TR〉 (h,r)−→ 〈s′, R′, T ′
R〉 ∧ h ∈ HB ∧ dest(r) ∈ HB

⇒
(s = s′, R = R′, TR = T ′

R)

8.4.4 The stack integrity invariant

This section defines the stack integrity invariant, which will establish the correctness
of control-transfer protocol. First, we define some useful notation for describing the
relevant properties of the system configurations.

Each token t = {h, f, e}kh
generated by a good host h corresponds to the entry point

e. Because tokens are hashed with a private key, it is possible to distinguish tokens gen-
erated by good hosts from tokens generated by bad hosts. For any token t, let creator(t)
be the host that signed the token (in this case, host h). Using these pieces of information,
we can define the integrity level of a token as:

It =

{
Ie h = creator(t) ∈ HG

Ih h = creator(t) ∈ HB

Define a good token to be any token t for which It � ι. Let TG be the set of all good
tokens and TB = T \ TG be the set of bad tokens.

Just as we have partitioned hosts and tokens into good and bad sets, we define good
entry points and bad entry points. The set of low integrity entry points can be defined

182

as EG = {e | e ∈ E ∧ Ie � ι}. Correspondingly, let EB = E \ EG be the set of
high-integrity entry points.

Recall from Section 8.3 that the local stacks are intended to simulate a global in-
tegrity control stack (ICS) that corresponds to the program counter of the source pro-
gram. Due to the presence of bad hosts, which may request sync operations with low-
integrity entry points located at good hosts, the global structure described by the com-
position of the local stacks may not be a stack. To see why, consider a bad host that
obtains a good token t and then uses the good token in sync requests to bad entry points
on two different good hosts, h1 and h2. The resulting configuration of local stacks con-
tains sh1 = . . . : (t1, t) and sh2 = . . . : (t2, t). Thus the global ICS isn’t a stack, but a
directed, acyclic graph. However, the crucial part of the invariant is that the global ICS
is a stack with respect to good tokens.

The key to defining the invariant is to relax the notion of “stack” with respect to bad
tokens. Observe that the global structure on T induced by the local stacks is captured by
the directed graph whose nodes are tokens in T and whose edges are given by {(t, t′) |
∃h ∈ HG.(t, t′) ∈ sh}. If this structure truly described a stack there would be a single
component:

t1 → t2 → . . . tn−1 → tn

with no other edges present. (Here tn is the bottom of the stack.) Instead, we show that
the graph looks like:

B → t1 → t2 → . . . tn−1 → tn

where B is an arbitrary dag whose nodes are only bad tokens and t1 through tn are good
tokens.

We formalize the ‘B’ part of the graph by observing that the edges in B and the
ones between B and t1 originate from a bad token. Because the good hosts’ local stacks
change during a run of the system, it is convenient to define some notation that lets
us talk about this property in a given configuration. Let S be a system configuration,
〈s, R, TR〉. Define:

t ≺S t′ ⇔ ∃h ∈ HG.(t, t′) ∈ sh ∧ t ∈ TB

The relation t ≺S t′ says that the bad token t appears immediately before the token
t′ in the graph above. Its transitive closure t ≺∗

S t′ says that there are bad tokens u1

through un such that
t→ u1 → . . . → un → t′

appears as part of the ICS—these bad tokens are a subgraph of the dag B. Note that t′

may be either a good or a bad token. Property (iv) of the invariant (see below) says that
there is at most one good token reachable through the relation ≺∗

S—that is, at most one
good token can be a successor of B, the bad portion of the ICS.

183

If we conservatively assume that all bad tokens are available to the bad hosts, then
t ≺∗

S t′ says that the bad hosts can “get to” the token t′ by doing an appropriate series of
lgoto operations (each of which will pop a ti off the ICS).

We next define some auxiliary concepts needed to state the stack invariant:

TokS = {t | ∃h ∈ HG.t ∈ fst(sh)}
TokS(h) = fst(sh) whenever h ∈ HG

ActiveS(t) ⇔ t ∈ TokS ∧ ∃t′ ∈ TR.(t = t′) ∨ (t′ ≺∗
S t)

The set TokS is just the set of tokens appearing in the left part of any good host’s local
stack—this is a set of tokens for which some good host might grant an lgoto request
(it is conservative because it includes all the left-hand-side tokens of the stack, not just
the top of the stack). The set TokS(h) is the restriction of TokS to a particular good host
h. TokS(h) is exactly the set of tokens issued by h that have not been consumed by
a valid lgoto request. Finally, the predicate ActiveS(t) determines the subset of TokS

“reachable” from the tokens available to bad hosts.

Definition 8.4.1 A configuration S satisfies the Stack Integrity Invariant (SII) if and
only if:

(i) ∀t, t′ ∈ TG.ActiveS(t) ∧ ActiveS(t′) ⇒ t = t′

Uniqueness of exposed, good tokens.

(ii) ∃e ∈ EG. R(e) ⇒ ¬∃t ∈ TG.ActiveS(t)

When good code has control, there are no good, active tokens.

(iii) ∀e, e′ ∈ EG. R(e) ∧R(e′) ⇒ e = e′

Good code is single threaded.

(iv) ∀t1, t′1, t2, t′2. (t1 ≺∗
S t′1) ∧ (t2 ≺∗

S t′2) ∧ (t′1, t
′
2 ∈ TG) ⇒ t′1 = t′2

Unique good successor token.

(v) ∀h1, h2 ∈ HG. h1 = h2 ⇒ TokS(h1) ∩ TokS(h2) = ∅.
No two good hosts generate identical tokens.

(vi) ∀h ∈ HG. sh = (t1, t
′
1) : . . . (tn, t

′
n) ⇒ t1 through tn are pairwise distinct.

Stack Integrity Theorem If S is a configuration satisfying the SII and S transitions to
S ′, then S ′ satisfies the SII.

Note that condition (i) of the SII implies that if t is a good token on the top of
some good host’s local stack and t has been handed out as a capability to the bad hosts

184

(t ∈ TR), then t is unique—there are no other such capabilities available to the bad hosts.
Because only good hosts can create such tokens, and they do so only by following the
source program’s control flow, the bad hosts cannot subvert the control-flow of high-
integrity computation.

8.4.5 Proof of the stack integrity theorem

Suppose S = 〈s, R, TR〉 is a configuration satisfying the Stack Integrity Invariant (SII).
To show that our system preserves the SII, we reason by cases on all the possible actions
in the system. In other words, we want to show that after any possible action, the result-
ing system configuration S′ = 〈s′, R′, T ′

R〉 still satisfies SII. Note that, by assumption,
any communication between bad hosts does not change the state of the configuration, so
we may safely eliminate those cases. We first make a few observations:

1. If s′ = s then invariants (iv), (v), and (vi) hold trivially because they depend only
on the state of the local stacks.

2. If s′ = s and T ′
R = TR then ActiveS′ = ActiveS and invariant (i) is satisfied

trivially.

3. Changing the running predicate of a bad entry point does not affect invariants (ii)
or (iii)—changing the running predicate on good entries, or changing ActiveS may
affect (ii) and (iii).

Case I. S transitions via (h1, rgoto(h2, f2, e2, t)).

(a) h1 ∈ HB , h2 ∈ HG, and Ih1 � Ie2 .

In this case, because h2 is a good host, the dynamic check on rgoto prevents
the system configuration from changing. Thus S′ = S, and the invariant is
immediate.

(b) h1 ∈ HB , h2 ∈ HG, and Ih1 � Ie2 .

Because h1 ∈ HB, we have Ih1 � ι and thus Ie2 � ι. Consequently, e2 ∈
EB . Thus T ′

R = TR ∪ {t} = TR, R′ = R[e2 �→ t], and s′ = s. Observations
1, 2, and 3 show that all of the invariants but (ii) hold for S′. Invariant (ii)
follows from the fact that ActiveS′ = ActiveS and the fact that invariant (ii)
holds in S.

(c) h1 ∈ HG and h2 ∈ HB.

By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, rgoto(h2, f2, e2, t))

185

for some f1 and, furthermore, R(e1) holds. In the new configuration, T ′
R =

TR ∪ {t}, R′ = R[e1 �→ f], and s′ = s. Observation 1 shows that invariants
(iv), (v) and (vi) hold trivially because s′ = s. Note that we also have
≺∗

S=≺∗
S′ .

If e1 ∈ EB then t ∈ TR, so T ′
R = TR and observations 2 and 3 imply that S′

satisfies the SII.

Otherwise e1 ∈ EG and by invariant (iii) of state S no other good entry
points are running. Thus, in S′ we have ∀e ∈ EG.¬R(e) and it follows that
invariants (ii) and (iii) hold in S′. Now we must show that invariant (i) holds.
Consider an arbitrary good token u ∈ TG. Because T ′

R = TR ∪ {t} we have

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS ∧ ∃u′ ∈ TR ∪ {t}.(u = u′) ∨ (u′ ≺∗

S u)
⇔ [t ∈ TokS ∧ (u = t ∨ t ≺∗

S u)] ∨ ActiveS(u)

By invariant (ii) of configuration S, we have u ∈ TG ⇒ ¬ActiveS(u)
and so u ∈ TG ∧ ActiveS′(u) implies t ∈ TokS ∧ (u = t ∨ t ≺∗

S u). If
t ∈ TG then by the definition of ≺∗

S we have ¬∃u.t ≺∗
S u and consequently

u ∈ TG ∧ ActiveS′(u) ⇒ u = t, from which invariant (i) follows immedi-
ately. Otherwise, t ∈ TB and we have that u1, u2 ∈ TG ∧ ActiveS′(u1) ∧
ActiveS′(u2) ⇒ t ≺∗

S u1 ∧ t ≺∗
S u2, but now invariant (iv) of configuration

S implies that u1 = u2 as needed. Thus invariant (i) holds in S ′.

(d) h1 ∈ HG and h2 ∈ HG and Ih1 � Ie2 .
By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, rgoto(h2, f2, e2, t))

for some frame f1 and, furthermore, R(e1) holds. After the transition, we
have R′ = R[e1 �→ f], and, due to the run-time check performed by h2,
we also have T ′

R = TR, and s′ = s. Invariants (i), (iv), (v) and (vi) follow
immediately from observations 1 and 2. If e1 ∈ EB then invariants (ii) and
(iii) are a direct consequence of the assumption that they hold in S ′. To
see that (ii) and (iii) hold when e1 ∈ EG, note that because R(e1) we have
∀e ∈ EG.R(e) ⇒ e = e1 (from invariant (iii)). Because R′ agrees with R
everywhere but e1, (iii) holds of R′ too. The same reasoning shows that (ii)
holds.

(e) h1 ∈ HG and h2 ∈ HG and Ih1 � Ie2 .
By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, rgoto(h2, f2, e2, t))

186

for some frame f1 and, furthermore, R(e1) holds. After the transition, we
have

R′ = R[e1 �→ f][e2 �→ t]

and s′ = s. This latter fact and observation 1 implies that invariants (iv), (v),
and (vi) hold in S′. Note also that ≺∗

S′=≺∗
S .

If e1 ∈ EB, the modeling assumption tells us that T ′
R = TR ∪ {t} = TR

because t ∈ TR. Note that because h1 is a good host, the static constraint on
rgoto implies that Ie1 � Ie2 , which in turn implies that Ie2 � ι and thus
e2 ∈ EB . Invariants (i), (ii), and (iii) follow immediately from observations
2 and 3, plus the fact that R′ agrees with R on all good entry points.

Otherwise, e2 ∈ EG. If e1 ∈ EG then T ′
R = TR because t is not passed

to a bad entry point. Consequently, ActiveS′ = ActiveS and invariant (i)
follows immediately. Because R(e1) ∧ e1 ∈ EG, invariant (iii) of S implies
that no other good entry points are running in predicate R. Thus, because
R′ = R[e1 �→ f][e2 �→ t] it is trivial to show that R′(e)∧ e ∈ EG ⇒ e = e2,
as required. Furthermore, R(e1) implies that ¬∃t ∈ TG.ActiveS(t) and so
invariant (ii) holds in configuration S′ too.

The last case is when e1 ∈ EG and e2 ∈ EB , but this case follows exactly as
in the last paragraph of case I(c).

Case II. S transitions via (h1, lgoto(t)) where t = {h2, f2, e2}kh2
.

(a) h1 ∈ HB, h2 ∈ HG and top(sh2) = (t, t′).

In this case, because h2 is a good host, the dynamic check on lgoto prevents the
system configuration from changing. Thus S′ = S, and the invariant is immediate.

(b) h1 ∈ HB, h2 ∈ HG and top(sh2) = (t, t′) for some token t′.

Note that t ∈ TokS , and by the modeling assumption, t ∈ TR and, consequently,
we have ActiveS(t). Because h2 pops its local stack, invariants (v) and (vi) of
configuration S imply that TokS′(h2) = TokS(h2) \ {t} and thus TokS′ = TokS \
{t}. Also note that because of the stack pop ≺∗

S′⊆≺∗
S , which implies that SII(iv)

holds in configurations S′. Invariants (v) and (vi) hold in S′ directly because they
hold in S. There are two final cases to consider:

1. t ∈ TG

187

It follows that e2 ∈ EG, and thus T ′
R = TR. Furthermore, R′ = R[e2 �→ t].

We now show that ActiveS′(u) ⇒ ActiveS(u):

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ (TokS \ {t}) ∧ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S′ u)
⇒ u ∈ TokS ∧ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S u)
⇔ ActiveS(u)

We show that in S ′ it is the case that ∀u ∈ TG.¬ActiveS′(u), from which
invariants (i) and (ii) follow directly. Suppose for the sake of contradiction
that ActiveS′(u) for some u ∈ TG. Then, by the implication above, we have
ActiveS(u). Recall that ActiveS(t), and so by invariant (ii) of the configura-
tion S, we have u = t. But, ActiveS′(u) ⇒ u ∈ TokS′ = TokS \ {t}, which
implies that u = t, a contradiction.

Lastly, we must show that SII(iii) holds in configuration S′. We know that
R′(e2) = t. Suppose e ∈ EG and assume e = e2. We must show that
¬R′(e). But, R′(e) = R[e2 �→ t](e) = R(e). Recalling once more that
ActiveS(t) ∧ t ∈ TG, the contrapositive of SII(ii) for configuration S implies
that ¬R(e) as desired.

2. t ∈ TB

It follows that e2 ∈ EB , and thus T ′
R = TR ∪ {t′}. Furthermore, R′ =

R[e2 �→ t] and we immediately obtain invariant (iii) via observation 3. First
note that t ≺S t′ because (t, t′) ∈ sh2 , and, consequently, if t′ ∈ TB we have
t ≺∗

S u ∧ u = t′ ⇒ t′ ≺∗
S u for any u. We need this fact to derive the

implication marked � below:

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈(TokS\{t}) ∧ ∃u′∈ TR ∪ {t′}.(u = u′) ∨ (u′ ≺∗

S′ u)
� ⇒ u ∈ TokS ∧ ((u = t′) ∨ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S′ u))
⇔ (u ∈ TokS ∧ u = t′) ∨ ActiveS(u)

If t′ ∈ TokS , then by definition, we have ActiveS(t′); otherwise in the left
conjunct above we have (u ∈ TokS ∧u = t′ ∧ t′ ∈ TokS) = f. Thus, in either
case, the expression above reduces to ActiveS(u) and we have ActiveS′(u) ⇒
ActiveS(u). Invariant (i) in S′ follows directly from invariant (i) of S; simi-
larly because R′ agrees with R on good entry points, invariant (ii) in S′ fol-
lows directly from invariant (ii) of S.

(c) h1 ∈ HG and h2 ∈ HG, and top(sh2) = (t, t′).
By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, lgoto(t))

188

for some f1 and, furthermore, R(e1) holds. Because h1 ∈ HG, we have R′ =
R[e1 �→ f], but the static checks performed by good host h2 imply that s′ = s and
T ′

R = TR. Invariant (ii) follows from the facts that R′(e) ⇒ R(e) and ActiveS′ =
ActiveS . The rest of the invariants follow directly from observations 1,2,and 3.

(d) h1 ∈ HG and h2 ∈ HG, and top(sh2) = (t, t′).
By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, lgoto(t))

for some f1 and, furthermore, R(e1) holds. Because h1 ∈ HG, we have R′ =
R[e1 �→ f][e2 �→ t]. Note that invariants (iv), (v) and (vi) for S′ follow directly
from the same invariants of S; popping sh2 implies that ≺∗

S′⊆≺∗
S .

If e1 ∈ EB then t ∈ TR and we use the same reasoning as in Case II.(b).

Otherwise, e1 ∈ EG. Note that invariant (ii) of configuration S implies that ¬∃u ∈
TG.ActiveS(u) and invariant (iii) implies that e ∈ EG ∧R(e) ⇒ e = e1.

1. t ∈ TG.
In this case, e2 ∈ EG. We first show that invariant (iii) holds in S′. We know
that R′(e2) = t, so let e ∈ EG be given. We must show that R′(e) ⇒ e = e2.
Suppose for the sake of contradiction that R′(e) and e = e2 then

R′(e) = R[e1 �→ f][e2 �→ t](e) = R[e1 �→ f](e) ∧R′(e) ⇒ e = e1

But this contradicts invariant (iii) of configuration S which says that e ∈
EG ∧R(e) ∧R(e1) ⇒ e = e1. We conclude that e = e2 as desired.

Next, we show that ActiveS′(u) ⇒ ActiveS:

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ (TokS \ {t}) ∧ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S′ u)
⇒ u ∈ TokS ∧ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S u)
⇔ ActiveS(u)

From this implication and the fact that R(e1) holds, we use invariant (ii) to
conclude that ¬∃t ∈ TG.ActiveS′(t). Consequently, S ′ satisfies invariants (i)
and (ii) as required.

2. t ∈ TB .
In this case, e2 ∈ EB and it follows that e2 = e1. We show that there are no
good, running entry points in S′: Let e ∈ EG be given. We immediately have
that e = e2. If e = e1, then as required:

R′(e) = R[e1 �→ f][e2 �→ t](e) = R[e1 �→ f](e) = f.

189

Assuming e = e1 we have R′(e) = R(e), and by invariant (iii) of configura-
tion S it follows that R(e) = f. Thus, invariants (ii) and (iii) of configurations
S ′ hold trivially.

To show invariant (i), note that T ′
R = TR ∪ {t′}.

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS \ {t} ∧ ∃u′ ∈ TR ∪ {t′}.(u = u′) ∨ (u′ ≺∗

S′ u)
⇒ u ∈ TokS ∧ ((u = t′) ∨ (t′ ≺∗

S′ u)
∨ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S u))
⇒ (u ∈ TokS ∧ ((u = t′) ∨ (t′ ≺∗

S′ u))) ∨ ActiveS(u)

Let u, u′ ∈ TG be given and suppose ActiveS′(u) ∧ ActiveS′(u′). Note that
invariant (ii) of configuration S implies that ¬∃u ∈ TG.ActiveS(u), thus we
have ActiveS′(u) ⇒ (u ∈ TokS ∧ (u = t′) ∨ (t′ ≺∗

S′ u)) and similarly,
ActiveS′(u′) ⇒ (u′ ∈ TokS ∧ (u′ = t′) ∨ (t′ ≺∗

S′ u′)). Suppose u = t′.
Then t′ ∈ TG and from the definition of ≺∗

S′ it follows that ¬(t′ ≺∗
S′ u′)

which implies that u′ = t′ = u as required. Otherwise, we have t′ ≺∗
S′ u,

which means that t′ ∈ TB and it follows that t′ ≺∗
S′ u′. But this implies

t′ ≺∗
S u ∧ t′ ≺∗

S u′, so by invariant (iv) of configuration S, we have u = u′.

(e) h1 ∈ HG and h2 ∈ HB .

By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, lgoto(t))

for some f1 and, furthermore, R(e1) holds. Because h1 ∈ HG, we have R′ =
R[e1 �→ f]. Because host h2 ∈ HB we have s′ = s and T ′

R = TR. Invariant (ii)
follows from the facts that R′(e) ⇒ R(e) and ActiveS′ = ActiveS . The rest of the
invariants follow directly from observations 1,2,and 3.

Case III. S transitions via (h1, sync(h2, f2, e2, t)).

(a) h1 ∈ HB and h2 ∈ HG and Ih1 � Ie2 .

In this case, because h2 is a good host, the dynamic check on rgoto prevents the
system configuration from changing. Thus S′ = S, and the invariant is immediate.

(b) h1 ∈ HB and h2 ∈ HG and Ih1 � Ie2 .

Because h2 ∈ HG, we have s′h2
= sh2 : (t′, t) where t′ = {h2, f2, e2}kh2

is a
fresh token. Invariants (v) and (vi) hold in S′ because they hold in S and t′ is
fresh. Furthermore, because Ih1 � Ie2 ∧ h1 ∈ HB it follows that Ie2 � ι, and
consequently t′ ∈ TB . R′ = R because no good host begins running after this
transition; invariant (iii) follows directly.

190

We next show that invariant (iv) is met. Observe that ≺S′=≺S ∪{(t′, t)}. In
particular, ¬∃u.u ≺S′ t′ and so we have

u ≺∗
S′ u′ ⇔ (u ≺∗

S u′) ∨ (u = t′ ∧ t ≺∗
S u′)

Let u1, u
′
1, u2, u

′
2 be given and suppose that (u1 ≺∗

S′ u′
1)∧ (u2 ≺∗

S′ u′
2)∧ (u′

1, u
′
2 ∈

TG). From the definition of ≺∗
S′ we obtain:

[(u1 ≺∗
S u′

1) ∨ (u1 = t′ ∧ t ≺∗
S u′

1)] ∧ [(u2 ≺∗
S u′

2) ∨ (u2 = t′ ∧ t ≺∗
S u′

2)]

But for each of the four possible alternatives described above, invariant (iv) of
configuration S implies that u′

1 = u′
2 as needed. For example, if (u1 ≺∗

S u′
1) ∧

(t ≺∗
S u′

2) then instantiating (iv) with t1 = u1, t
′
1 = u′

1, t2 = t, t′2 = u′
2 yields

u′
1 = u′

2. The other cases are similar.

Next we show that invariants (i) and (ii) are maintained. First, note that T ′
R = TR∪

{t′} because h2 sends the fresh token to h1. Also observe that TokS′ = TokS∪{t′}
because h2 has pushed (t′, t) onto its local stack. We use the fact that t ∈ TR in
the derivation marked � below:

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS ∪ {t′} ∧ ∃u′ ∈ TR ∪ {t′}.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS ∪ {t′} ∧ ∃u′ ∈ TR ∪ {t′}.(u = u′)

∨(u′ ≺∗
S u ∨ (u′ = t′ ∧ t ≺∗

S u))
� ⇔ u ∈ TokS ∪ {t′} ∧ ∃u′ ∈ TR ∪ {t′}.(u = u′) ∨ (u′ ≺∗

S u)
⇔ u ∈ TokS ∪ {t′} ∧ (u = t′ ∨ ∃u′ ∈ TR.(u = u′) ∨ (u′ ≺∗

S u))
⇔ u = t′ ∨ ActiveS(u)

Note that, because t′ ∈ TB , we have ActiveS′(u) ∧ u ∈ TG ⇒ ActiveS(u).
Consequently, invariants (i) and (ii) hold in S′ because they hold in S.

(c) h1 ∈ HG and h2 ∈ HB .

By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, sync(h2, f2, e2, t))

for some frame f1. Furthermore, R(e1) holds. After this transition, s′ = s, and
T ′

R = TR ∪ {t} because t has been passed to a bad host. Observation 1 shows that
invariants (iv), (v) and (vi) hold immediately. The new running predicate is:

R′ = R[e1 �→ f][send(h2)h1 �→ x]

Where x can be either t or f, depending on whether the bad host h2 replies with a
token to h1. However, because h1 is a good host, the static constraints on inserting

191

sync’s imply that Ih2 � I(pc). But then, because h2 ∈ HB , it follows that
Ih2 � ι ⇒ I(pc) � ι. Furthermore, because the integrity label on the send(h2)h1

entry point is just I(pc), we have that send(h2)h1 ∈ EB. Thus, whether send(h2)h1

is running does not affect invariants (ii) and (iii).

Next we calculate the predicate ActiveS′ , recalling that T ′
R = TR ∪ {t}:

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS ∧ ∃u′ ∈ TR ∪ {t}.(u = u′) ∨ (u′ ≺∗

S u)
⇔ (u ∈ TokS ∧ (u = t ∨ t ≺∗

S u)) ∨ ActiveS(u)

1. e1 ∈ EG.
In this case, because R(e1) holds in configuration S, invariant (ii) tells us that
when u ∈ TG and ActiveS′(u) it is the case that (u ∈ TokS∧(u = t∨t ≺∗

S u)).
To show that invariant (i) holds in S′, suppose u, u′ ∈ TG ∧ ActiveS′(u) ∧
ActiveS′(u′). Then we have

[u ∈ TokS ∧ (u = t ∨ t ≺∗
S u)] ∧ [u′ ∈ TokS ∧ (u′ = t ∨ t ≺∗

S u′)]

Now suppose t ∈ TG. Then by definition ¬∃t′.t ≺∗
S t′, so the above condition

on u and u′ becomes u, u′ ∈ TokS ∧ u = t∧ u′ = t as required. Otherwise, if
t ∈ TB , it follows that u = t and u′ = t and we have t ≺∗

S u and t ≺∗
S u′. But

then invariant (iv) of configuration S implies that u = u′ in this case as well.

To show that invariants (ii) and (iii) hold, we prove that ¬∃e ∈ EG.R′(e).
Suppose for contradiction that there was such an e. By the definition of R′, we
conclude that e = e1, but then R′(e) = R(e). From the modeling assumption,
we have R(e1), and yet invariant (iii) of configuration S implies that e = e1,
a contradiction.

2. e1 ∈ EB.
In this case, the modeling assumption tells us that t ∈ TR, so T ′

R = TR. This
fact immediately yields that ActiveS′ = ActiveS , and observations 2 and 3,
imply (i) and (iii) hold in S′. Invariant (ii) in S′ also follows directly from
invariant (ii) in S.

(d) h1 ∈ HG and h2 ∈ HG and Ih1 � Ie2 .

This case is identical to I.(d).

(e) h1 ∈ HG and h2 ∈ HG and Ih1 � Ie2 .

By the modeling assumptions, there exists an e1 ∈ Eh1 such that

e1(f1, t) = (h1, sync(h2, f2, e2, t))

192

for some frame f1 and, furthermore, R(e1) holds. Because h2 ∈ HG, we have
s′h2

= sh2 : (t′, t) where t′ = {h2, f2, e2}kh2
is a fresh token. Invariants (v) and

(vi) hold in S′ because they hold in S and t′ is fresh. After the transition, we have

R′ = R[e1 �→ f][send(h2)h1 �→ t]

1. e2 ∈ EG

In this case, t′ ∈ TG. It follows that ¬∃u.t′ ≺S′ u, and consequently≺∗
S′=≺∗

S ,
from which we conclude that invariant (iv) holds in S′. Because h1 ∈ HG

the static constraints on sync guarantee that Ie1 � Ie2 , which implies that
e1 ∈ EG.

If send(h1)h2 ∈ EG then T ′
R = TR. We now show that ∀e ∈ EG.R′(e) ⇒

e = send(h1)h2 , from which we may immediately derive that invariant (iii)
holds in S′. Let e ∈ EG be given and suppose for the sake of contradiction
that R′(e) ∧ e = send(h1)h2 . From the definition of R′ we have R′(e) =
R[e1 �→ f](e), and because R′(e) holds, we have that e = e1. Thus R′(e) =
R(e). But now invariant (iii) and the assumption that R(e1) holds in S imply
that e = e1, a contradiction. Note that T ′

R = TR ∧ s′ = s ⇒ ActiveS′ =
ActiveS . Invariants (i) and (ii) follow directly from the fact that they hold in
configuration S.

Otherwise, send(h1)h2 ∈ EB and T ′
R = TR ∪ {t′}. We first show that ∀e ∈

EG.¬R′(e), from which invariants (ii) and (iii) follow immediately. Let e ∈
EG be given. We know that e = send(h1)h2 because send(h1)h2 ∈ EB; thus
from the definition of R′ we obtain R′(e) = R[e1 �→ f](e). If e1 = e we
are done. So we have that e1 = e. Now, however, R(e) ∧ (e ∈ EG) implies
via invariant (iii) of configuration S that e = e1, a contradiction. Thus we
conclude that ¬R(e) as desired.
It remains to show that invariant (i) holds in S′, so we calculate the predicate
ActiveS′ . The step marked � below uses the fact that t′ ∈ TG (which, from the
definition of ≺S′ implies that ¬∃u.t′ ≺∗

S′ u):

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u′ = u) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS ∪ {t′} ∧ ∃u′ ∈ TR ∪ {t′}.(u′ = u) ∨ (u′ ≺∗

S u)
� ⇔ u ∈ TokS ∪ {t′} ∧ [(u = t′) ∨ ∃u′ ∈ TR.(u′ = u)∨

(u′ ≺∗
S u)]

⇒ (u = t′) ∨ ActiveS(u)

Observe that invariant (ii) of configuration S implies that there does not exist
u ∈ TG such that ActiveS(u). Thus, ActiveS′(u) ∧ u ∈ TG ⇒ u = t′, and
invariant (i) of configuration S′ follows directly.

193

2. e2 ∈ EB

In this case, t′ ∈ TB . We use exactly the same reasoning as in Case III(b).
to prove that invariant (iv) holds. Note that because h1 ∈ HG, the static
constraints on sync imply that e1 ∈ EG ⇔ send(h1)h2 ∈ EG.

In the case that e1 ∈ EB, we reason as in Case III(b). to show that invariants
(i), (ii), and (iii) hold.

The last possibility is that e1 ∈ EG. Here, we have T ′
R = TR because t′

has not been passed to a bad entry point. Thus we can calculate ActiveS′ as
follows:

ActiveS′(u) ⇔ u ∈ TokS′ ∧ ∃u′ ∈ T ′
R.(u = u′) ∨ (u′ ≺∗

S′ u)
⇔ u ∈ TokS ∪ {t′} ∧ ∃u′ ∈ TR.(u = u′)

∨[(u′ = t′ ∧ t′ ≺∗
S u) ∨ u′ ≺∗

S u]
� ⇔ u ∈ TokS ∧ ∃u′ ∈ TR.(u = u′) ∨ u′ ≺∗

S u
⇔ ActiveS(u)

In the reasoning above, the step marked � uses the fact that

t′ ∈ TR ∧ ¬∃u′.u′ ≺∗
S′ t′

Invariant (i) follows directly from the fact that (i) holds in configuration S
and the equivalence of ActiveS′ and ActiveS . To see that (ii) holds, note that
R(e1) ⇒ ¬∃t ∈ TG.ActiveS(t), but this implies ¬∃t ∈ TG.Active′S(t) as
required. To establish invariant (iii), let e ∈ EG be given and suppose R(e).
We show that e = send(h1)h2 . Suppose by way of contradiction that e =
send(h1)h2 . Then from the definition of R′ we have R′(e) = R[e1 �→ f](e).
By assumption R′(e) = t and it follows that e = e1. But now R′(e) = R(e)
and invariant (iii) shows that e = e1, a contradiction.

8.5 Translation

Given a program and host configuration, the splitting translation is responsible for as-
signing a host to each field and statement. The Jif/split compiler takes as input the
annotated source program and a description of the known hosts. It produces as output
a set of Java files that yield the final split program when compiled against the run-time
interface. There are several steps to this process.

In addition to the usual typechecking performed by an ordinary Java compiler, the
Jif/split front end collects security label information from the annotations in the pro-
gram, performing label inference when annotations are omitted. This process results in
a set of label constraints that capture the information flows within the program. Next,

194

the compiler computes a set of possible hosts for each statement and field, subject to
the security constraints described in Section 8.2. If no host can be found for a field or
statement, the splitter conservatively rejects the program as being insecure.

There may also be many valid host assignments for each field or statement, in which
case performance drives the host selection process. The splitter uses dynamic program-
ming to synthesize a good solution by attempting to minimize the number of remote
control transfers and field accesses, two operations that dominate run-time overhead.
The algorithm works on a weighted control-flow graph of the program; the weight on
an edge represents an approximation to the run-time cost of traversing that edge.

This approach also has the advantage that principals may indicate a preference for
their data to stay on one of severally equally trusted machines (perhaps for performance
reasons) by specifying a lower cost for the preferred machine. For example, to obtain
the example partition shown in Figure 8.4, Alice also specifies a preference for her
data to reside on host A, causing fields m1, m2, and isAccessed to be located on host
A. Without the preference declaration, the optimizer determines that fewer network
communications are needed if these fields are located at T instead. This alternative
assignment is secure because Alice trusts the server equally to her own machine.

After host selection, the splitter inserts the proper calls to the runtime, subject to the
constraints described in Section 8.3. An lgoto must be inserted exactly once on every
control flow path out of the corresponding sync, and the sync–lgoto pairs must be
well nested to guarantee the stack discipline of the resulting communication protocol.
The splitter also uses standard dataflow analysis techniques to infer where to introduce
the appropriate data forwarding.

Finally, the splitter produces Java files that contain the final program fragments.
Each source Jif class C translates to a set of classes C$Hosti, one for each known host
hi ∈ H . In addition to the translated code fragments, each such class contains the
information used by the runtime system for remote references to other classes. The
translation of a field includes accessor methods that, in addition to the usual get and set
operations, also perform access control checks (which are statically known, as discussed
in Section 8.2). In addition, each source method is represented by one frame class per
host. These frame classes correspond to the FrameID arguments needed by the runtime
system of Figure 8.3; they encapsulate the part of the source method’s activation record
visible to a host.

8.6 Implementation

We have implemented the splitter and the necessary run-time support for executing par-
titioned programs. Jif/split was written in Java as a 7400-line extension to the existing
Jif compiler. The run-time support library is a 1700-line Java program. Communica-

195

tion between hosts is encrypted using SSL (the Java Secure Socket Extension (JSSE)
library5, version 1.0.2). To prevent forging, tokens for entry points are hashed using the
MD5 implementation from the Cryptix library, version 3.2.0.6

To evaluate the impact of our design, we implemented several small, distributed pro-
grams using the splitter. Because we are using a new programming methodology that
enforces relatively strong security policies, direct comparison with the performance of
other distributed systems was difficult; our primary concern was security, not perfor-
mance. Nevertheless, the results are encouraging.

8.6.1 Benchmarks

We have implemented a number of programs in this system. The following four are split
across two or more hosts:

• List compares two identical 100 element linked lists that must be located on dif-
ferent hosts because of confidentiality. A third host traverses the lists.

• OT is the oblivious transfer program described earlier in this chapter. One hun-
dred transfers are performed.

• Tax simulates a tax preparation service. A client’s trading records are stored on a
stockbroker’s machine. The client’s bank account is stored at a bank’s machine.
Taxes are computed by a tax preparer on a third host. The principals have distinct
confidentiality concerns, and declassify is used twice.

• Work is a compute-intensive program that uses two hosts that communicate rela-
tively little.

Writing these programs requires adding security policies (labels) to some type dec-
larations from the equivalent single-machine Java program. These annotations are 11–
25% of the source text, which is not surprising because the programs contain complex
security interactions and little real computation.

8.6.2 Experimental Setup

Each subprogram of the split program was assigned to a different physical machine.
Experiments were run on a set of three 1.4 GHz Pentium 4 PCs with 1GB RAM run-
ning Windows 2000. Each machine is connected to a 100 Mbit/second Ethernet by a
3Com 3C920 controller. Round-trip ping times between the machines average about

5http://java.sun.com/products/jsse/
6http://www.cryptix.org/products/cryptix31/

196

Table 8.1: Benchmark measurements

Metric List OT Tax Work OT-h Tax-h

Lines 110 50 285 45 175 400

Elapsed time (sec) 0.51 0.33 0.58 0.49 0.28 0.27

Total messages 1608 1002 1200 600 800 800
forward (×2) 400 101 300 0 - -
getField (×2) 2 100 0 0 - -
lgoto 402 200 0 300 - -
rgoto 402 400 600 300 - -

Eliminated (×2) 402 600 400 300 - -

310 µs. This LAN setting offers a worst-case scenario for our analysis—the overheads
introduced by our security measures are relatively more costly than in an Internet set-
ting. Even for our local network, network communication dominates performance. All
benchmark programs were run using SSL, which added more overhead: the median
application-to-application round-trip time was at least 640 µs for a null Java RMI 7 call
over SSL.

All benchmarks were compiled with version 1.3.0 of the Sun javac compiler, and
run with version 1.3.0 of the Java HotSpot Client VM. Compilation and dynamic-linking
overhead is not included in the times reported.

8.6.3 Results

For all four benchmarks, we measured both running times and total message counts
so that performance may be estimated for other network configurations. The first row
of Table 8.1 gives the length of each program in lines of code. The second row gives
the median elapsed wall-clock time for each program over 100 trial runs. The follow-
ing rows give total message counts and a breakdown of counts by type (forward and
getField calls require two messages). The last row shows the number of forward
messages eliminated by piggybacking optimizations described below.

For performance evaluation, we used Java RMI to write reference implementations
of the Tax and OT programs and then compared them with our automatically generated
programs. These results are shown in the columns OT-h and Tax-h of Table 8.1. Writ-
ing the reference implementation securely and efficiently required some insight that we
obtained from examining the corresponding partitioned code. For example, in the OT
example running on the usual three-host configuration, the code that executes on Alice’s

7http://java.sun.com/products/jdk/rmi/

197

machine should be placed in a critical section to prevent Bob from using a race condi-
tion to steal both hidden values. The partitioned code automatically prevents the race
condition.

The hand-coded implementation of OT ran in 0.28 seconds; the automatically par-
titioned program ran in 0.33 seconds, a slowdown of 1.17. The hand-coded version of
Tax also ran in 0.27 seconds; the partitioned program ran in 0.58 seconds, a slowdown
of 2.17. The greater number of messages sent by the partitioned programs explains most
of this slowdown. Other sources of added overhead turn out to be small:

• Inefficient translation of local code

• Run-time checks for incoming requests

• MD5 hashing to prevent forging and replaying of tokens

The prototype Jif/split compiler attempts only simple optimizations for the code
generated for local use by a single host. The resulting Java programs are likely to have
convoluted control flow that arises as an artifact of our translation algorithm—the in-
termediate representation of the splitter resembles low-level assembly code more than
Java. This mismatch introduces overheads that the hand-coded programs do not incur.
The overhead could be avoided if Jif/split generated Java bytecode output directly; how-
ever, we leave this to future work.

Run-time costs also arise from checking incoming requests and securely hashing
tokens. These costs are relatively small: The cost of checking incoming messages is
less than 6% of execution time for all four example programs. The cost of token hash-
ing accounted for approximately 15% of execution time across the four benchmarks.
Both of these numbers scale with the number of messages in the system. For programs
with more substantial local computations, we would expect these overheads to be less
significant.

For a WAN environment, the useful point of comparison between the hand-coded
and partitioned programs is the total number of messages sent between hosts. Interest-
ingly, the partitioned Tax and OT programs need fewer messages for control transfers
than the hand-coded versions. The hand-coded versions of OT and Tax each require
400 RMI invocations. Because RMI calls use two messages, one for invocation and
one for return, these programs send 800 messages. While the total messages needed for
the Jif/split versions of OT and Tax are 1002 and 1200, respectively, only 600 of these
messages in each case are related to control transfers; the rest are data forwards. The im-
provement over RMI is possible because the rgoto and lgoto operations provide more
expressive control flow than procedure calls. In particular, an RMI call must return to
the calling host, even if the caller immediately makes another remote invocation to a
third host. By contrast, an rgoto or lgoto may jump directly to the third host. Thus,
in a WAN environment, the partitioned programs are likely to execute more quickly

198

than the hand-coded program because control transfers should account for most of the
execution time.

8.6.4 Optimizations

Several simple optimizations improve system performance:

• Calls to the same host do not go through the network.

• Hashes are not computed for tokens used locally to a host.

• Multiple data forwards to the same recipient are combined into a single message
and also piggybacked on lgoto and rgoto calls when possible. As seen in Ta-
ble 8.1, this reduces forward messages by more than 50% (the last row is the
number of round trips eliminated).

A number of further simple optimizations are likely to be effective. For example,
much of the performance difference between the reference implementation of OT and
the partitioned implementation arises from the server’s ability to fetch the two fields m1
and m2 in a single request. This optimization (combining getField requests) could be
performed automatically by the splitter as well.

Currently, forward operations that are not piggybacked with control transfers re-
quire an acknowledgment to ensure that all data is forwarded before control reaches
a remote host. It is possible to eliminate the race condition that necessitates this syn-
chronous data forwarding. Because the splitter knows statically what forwards are ex-
pected at every entry point, the generated code can block until all forwarded data has
been received. Data transfers that are not piggybacked can then be done in parallel with
control transfers. However, this optimization has not been implemented.

8.7 Trusted Computing Base

An important question for any purported security technique is the size and complexity of
the trusted computing base (TCB). All else being equal, a distributed execution platform
suffers from a larger TCB than a corresponding single-host execution platform because it
incorporates more hardware and software. On the other hand, the architecture described
here may increase the participants’ confidence that trustworthy hosts are being used to
protect their confidentiality.

What does a principal p who participates in a collaborative program using this sys-
tem have to trust? The declaration signed by p indicates to what degree p trusts the
various hosts. By including a declaration of trust for a host h in the declaration, p must

199

trust the hardware of h itself, the h’s operating system, and the splitter run-time support,
which (in the prototype implementation) implicitly includes Java’s.

Currently, the Jif/split compiler is also trusted. Ongoing research based on certified
compilation [MWCG98] or proof-carrying code [Nec97] might be used to remove the
compiler from the TCB and instead allow the bytecode itself to be verified [JVM95].

Another obvious question about the trusted computing base is to what degree the
partitioning process itself must be trusted. It is clearly important that the subprograms
a program is split into are generated under the same assumptions regarding the trust re-
lationships among principals and hosts. Otherwise, the security of principal p might be
violated by sending code from different partitionings to hosts trusted by p. A simple way
to avoid this problem is to compute a one-way hash of all the splitter’s inputs—trust dec-
larations and program text—and to embed this hash value into all messages exchanged
by subprograms. During execution, incoming messages are checked to ensure that they
come from the same version of the program.

A related issue is where to partition the program. It is necessary that the host that
generates the program partition that executes on host h be trusted to protect all data that
h protects during execution. That is, the partitioning host could be permitted to serve in
place of h during execution. A natural choice is thus h itself: each participating host can
independently partition the program, generating its own subprogram to execute. That the
hosts have partitioned the same program under the same assumptions can be validated
using the hashing scheme described in the previous paragraph. Thus, the partitioning
process itself can be decentralized yet secure.

8.8 Related Work

Besides the work on information flow already discussed in this thesis, the primary area
of research related to secure program partitioning is support for transparently distributed
computation.

A number of systems (such as Amoeba and Sprite [DOKT91]) automatically re-
distribute computation across a distributed system to improve performance, though not
security. Various transparently distributed programming languages have been devel-
oped as well; a good early example is Emerald [JLHB88]. Modern distributed interface
languages such as CORBA [COR91] or Java RMI do not enforce end-to-end security
policies.

Jif and secure program partitioning are complementary to current initiatives for pri-
vacy protection on the Internet. For example, the recent Platform for Privacy Prefer-
ences (P3P) [p3p] provides a uniform system for specifying users’ confidentiality poli-
cies. Security-typed languages such as Jif could be used for the implementation of a
P3P-compliant web site, providing the enforcement mechanisms for the P3P policy.

Chapter 9

Conclusions

This chapter summarizes the contributions of this thesis and ends with some potential
future directions.

9.1 Summary

This thesis has focused on the theory of various security-typed languages, in which pro-
grammers can specify security policies about the data being used in the program. Static
program analysis can detect inconsistencies in the policy, revealing where insecurity
might arise.

One value of security-typed programming languages is that by formalizing the infor-
mation-flow problem at a particular level of abstraction it is possible to rule out a certain
class of information leaks. Moreover, the abstractions used in the language definition
suggest where additional security measures may be needed: for instance, the operat-
ing system access control mechanisms could perhaps be used to enforce the assumed
partitioning of memory into high- and low-security portions.

Security-typed languages also can potentially enforce a richer set of security poli-
cies than traditionally provided by discretionary access control mechanisms. Because
the policy descriptions are incorporated into programs, security policy creation becomes
a matter of programming. Security policies that release secret data only in certain cir-
cumstances are easy to express, whereas with traditional access control mechanisms, it
is difficult to conditionally release information.

This thesis extends the existing work on security-typed languages in a number of
ways. It establishes a noninterference result for a higher-order language with structured
memory. It also gives an expressive type system for noninterference in a concurrent
programming language. These results highlight the importance of determinism and the
closely related notion of linearity in information-flow security. Finally, it considers the

200

201

additional constraints necessary to remove the assumption that all secure computation
takes place on a single, trusted computer.

This thesis also presents Jif/split, a prototype compiler for protection of confiden-
tial data in a distributed computing environment with heterogeneously trusted hosts.
Security policy annotations specified in the source program allow the splitter to parti-
tion the code across the network by extracting a suitable communication protocol. The
resulting distributed system satisfies the confidentiality policies of principals involved
without violating their trust in available hosts. Jif/split also enforces integrity policies,
which is needed because of the interaction between integrity and confidentiality in the
presence of declassification. The Jif/split prototype demonstrates the feasibility of this
architecture. The experience with simple example programs has shown the benefits of
expressing security policies explicitly in the programming language, particularly with
respect to catching subtle bugs.

The prototype implementation of Jif/split benefited from the theoretical work on
security-typed languages in several ways. First, that the security types could guide
an automatic partitioning process became clear only after seeing how much additional
structure they add to a program. Second, the proofs of noninterference for λCPS

SEC led
directly to the discovery of errors and inconsistencies in the implementation of similar
rules in the Jif compiler. Third, and most important, the insights about the role of ordered
linear continuations used in λCPS

SEC had direct impact on the design of the control-transfer
mechanisms used in the Jif/split run time.

Building the prototype splitter also led to many observations about information secu-
rity in a distributed setting. In particular, the Jif/split implementation revealed that Jif’s
original rule for declassification was insufficient in a distributed setting. The Jif/split
prototype also validates the premise that security-typed programs can help programmers
find subtle security flaws in their software

9.2 Future Work

The work in this thesis and the Jif/split prototype have yielded some insight into the dif-
ficulties of building distributed systems with strong end-to-end information-flow guar-
antees, but there is still much room for improvement.

This thesis has focused on one aspect of security: protecting information security.
Other aspects, such as reliability and auditing of transactions, also play a role in the
security of distributed computations, and they should not be neglected.

Of course security and performance are often at odds, and the same is true here.
Jif/split assumes that the security of the data is more important than the performance of
the system. However, encoding the security policy in the programming language makes
this trade-off more explicit: if the performance of a program under a certain security

202

policy is unsatisfactory, it is possible to relax the policy (for instance, by declaring more
trust in certain hosts, or by reducing the restrictions imposed by the label annotations).
Under a relaxed policy, the compiler may be able to find a solution with acceptable
performance—the relaxed security policy spells out what security has been lost for per-
formance. The prototype allows some control over performance by allowing the user
to specify relative costs of communication between hosts. The host assignment tries to
find a minimum cost solution, but other constraints could be added—for example, the
ability to specify a particular host for a given field.

One serious drawback of the security-typed language approach is that the security
policy is decided upon either by the language designer, or the implementer of the pro-
gram in question. This means that the consumer of the software is not able to change or
specify the policy. This stands in contrast with, for example, the security automaton ap-
proach of Erlingsson and Schneider [ES99] in which security policies are applied by the
user. However, there is no reason why both techniques cannot be used simultaneously—
perhaps to great benefit on each side.

Realistic policies do not fall into the simple noninterference-like models of infor-
mation-flow security. Programs that involve declassification are potentially dangerous,
and understanding exactly what policy is enforced by a program that uses declassifi-
cation is not always easy. Robust declassification and the authority model improve
over previous language-based approaches, but there is still not an appropriate theoretical
model for properly reasoning about declassification.

Finally, experience with larger and more realistic programs will be necessary to
determine the real benefits and drawbacks to security-typed languages.

Collaborative computations carried out among users, businesses, and networked in-
formation systems continue to increase in complexity, yet there are currently no satis-
factory methods for determining whether the end-to-end behavior of these computations
respect the security needs of the participants. The work described in this thesis is a novel
approach that is a useful step towards solving this essential security problem.

BIBLIOGRAPHY

[ABHR99] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core
calculus of dependency. In Proc. 26th ACM Symp. on Principles of Pro-
gramming Languages (POPL), pages 147–160, San Antonio, TX, January
1999.

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theo-
retical Computer Science, 111:3–57, 1993.

[AG99] Martı́n Abadi and Andrew Gordon. A calculus for cryptographic proto-
cols: The spi calculus. Information and Computation, 148(1):1–70, Jan-
uary 1999.

[Aga00] Johan Agat. Transforming out timing leaks. In Proc. 27th ACM Symp.
on Principles of Programming Languages (POPL), pages 40–53, Boston,
MA, January 2000.

[AP90] M. Abadi and G. D. Plotkin. A PER model of polymorphism. In 5th
Annual Symposium on Logic in Computer Science, pages 355–365. IEEE
Computer Society Press, 1990.

[App92] Andrew Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[AR80] Gregory R. Andrews and Richard P. Reitman. An axiomatic approach to
information flow in programs. Transactions on Programming Languages
and Systems, 2(1):56–76, 1980.

[Bar84] H.P. Barendregt. The lambda calculus: Its syntax and semantics. In
J. Barwise, D. Kaplan, H. J. Keisler, P. Suppes, and A.S. Troelstra, ed-
itors, Studies in Logic and the Foundation of Mathematics, volume 103.
North-Holland, 1984.

203

204

[BBL84] J. Banâtre, C. Bryce, and D. Le Metáyer. Compile-time detection of infor-
mation flow in sequential programs. In Proceedings of the Europena Sym-
posium on Research in Computer Security, volume 875 of Lecture Notes
in Computer Science, pages 55–73. Springer Verlag, 1984.

[BC02] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent pro-
grams and thread systems. Theoretical Computer Science, 281(1):109–
130, June 2002.

[BCY95] William R. Bevier, Richard M. Cohen, and William D. Young. Connection
policies and controlled interference. In Proc. of the 8th IEEE Computer
Security Foundations Workshop, pages 167–176, 1995.

[Bib77] K. J. Biba. Integrity considerations for secure computer systems. Techni-
cal Report ESD-TR-76-372, USAF Electronic Systems Division, Bedford,
MA, April 1977.

[Bie99] Gavin Bierman. A classical linear lambda calculus. Theoretical Computer
Science, 227(1–2):43–78, 1999.

[BL75] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition
and Multics interpretation. Technical Report ESD-TR-75-306, MITRE
Corp. MTR-2997, Bedford, MA, 1975. Available as NTIS AD-A023 588.

[BN02] Anindya Banerjee and David A. Naumann. Secure information flow and
pointer confinement in a java-like language. In csfw15, 2002.

[BORT01] Josh Berdine, Peter W. O’Hearn, Uday S. Reddy, and Hayo Thielecke.
Linearly used continuations. In Proceedings of the Continuations Work-
shop, 2001.

[BP76] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposi-
tion and multics interpretation. Technical Report ESD-TR-75-306, The
MITRE Corporation, March 1976.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-
tionally secure protocols. In Proc. 20th ACM Symp. on Theory of Comput-
ing, pages 11–19, 1988.

[CG00] Luca Cardelli and Andrew Gordon. Mobile ambients. Theoretical Com-
puter Science, 240(1):177–213, 2000.

205

[CGW89] Thierry Coquand, Carl A. Gunter, and Glynn Winskel. Domain theoretic
models of polymorphism. Information and Computation, 81(2):123–167,
May 1989.

[COR91] OMG. The Common Object Request Broker: Architecture and Specifi-
cation, December 1991. OMG TC Document Number 91.12.1, Revision
1.1.

[CPM+98] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, , and Qian Zhang. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Conference, January 1998.

[CWM99] Karl Crary, David Walker, and Greg Morrisett. Typed memory manage-
ment in a calculus of capabilities. In Proc. 26th ACM Symp. on Principles
of Programming Languages (POPL), pages 262–275, San Antonio, Texas,
January 1999.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of Programs for
Secure Information Flow. Comm. of the ACM, 20(7):504–513, July 1977.

[DD00] Daniel Damian and Olivier Danvy. Syntactic accidents in program analy-
sis: On the impact of the CPS transformation. In Proc. 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP), pages 209–
220, 2000.

[Den75] Dorothy E. Denning. Secure Information Flow in Computer Systems.
Ph.D. dissertation, Purdue University, W. Lafayette, Indiana, USA, May
1975.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19(5):236–243, May 1976.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
Reading, Massachusetts, 1982.

[Deu94] Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyand
k-limiting. In Proc. of the ’94 SIGPLAN Conference on Programming
Language Design, pages 230–241, 1994.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control: A study of
the CPS transformation. Mathematical Structures in Computer Science,
2:361–391, 1992.

206

[DKS99] Ivan Damgård, Joe Kilian, and Louis Salvail. On the (im)possibility of
basing oblivious transfer and bit commitment on weakened security as-
sumptions. In Jacques Stern, editor, Advances in Cryptology – Proceed-
ings of EUROCRYPT 99, LNCS 1592, pages 56–73. Springer, 1999.

[DOD85] Department of Defense. Department of Defense Trusted Computer Sys-
tem Evaluation Criteria, DOD 5200.28-STD (The Orange Book) edition,
December 1985.

[DOKT91] Fred Douglis, John K. Ousterhout, M. Frans Kaashoek, and Andrew S.
Tanenbaum. A comparison of two distributed systems: Amoeba and
Sprite. ACM Transactions on Computer Systems, 4(4), Fall 1991.

[EGH94] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive points-to analysis
in the presence of function pointers. In Proc. of the ’94 SIGPLAN Confer-
ence on Programming Language Design, pages 242–256, June 1994.

[EGL83] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. In R.L. Rivest, A. Sherman, and D. Chaum, editors, Advances
in Cryptology: Proc. of CRYPTO 82, pages 205–210. Plenum Press, 1983.

[ES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of secu-
rity policies: A retrospective. In Proceedings of the 1999 New Security
Paradigms Workshop, September 1999.

[ET99] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In Proc. IEEE Symposium on Security and Privacy, Oakland, May 1999.

[FA99a] Cormac Flanagan and Martı́n Abadi. Object types against races. In
CONCUR’99—Concurrency Theory, volume 1664 of Lecture Notes in
Computer Science, pages 288–303, Eindhoven, The Netherlands, August
1999. Springer-Verlag.

[FA99b] Cormac Flanagan and Martı́n Abadi. Types for safe locking. In Proc. of
the 8th European Symposium on Programming, volume 1576 of Lecture
Notes in Computer Science, pages 91–108, Amsterdam, The Netherlands,
March 1999. Springer-Verlag.

[FB93] J. Mylaert Filho and G. Burn. Continuation passing transformations and
abstract interpretation. In Proc. First Imperial College, Department of
Computing, Workshop on Theory and Formal Methods, 1993.

207

[Fei80] Richard J. Feiertag. A technique for proving specifications are multilevel
secure. Technical Report CSL-109, SRI International Computer Science
Lab, Menlo Park, California, January 1980.

[FF00] Cormac Flanagan and Stephen Freund. Type-based race detection for Java.
In Proc. of the SIGPLAN Conference on Programming Language Design,
pages 219–232, Vancouver, Canada, June 2000.

[FG96] C. Fournet and G. Gonthier. The Reflexive CHAM and the Join-Calculus.
In Proc. ACM Symp. on Principles of Programming Languages (POPL),
pages 372–385, 1996.

[FG97] Riccardo Focardi and Roberto Gorrieri. The compositional security
checker: A tool for the verification of information flow security proper-
ties. IEEE Transactions on Software Engineering, 23(9), September 1997.

[FG02] Cedric Fournet and Andrew Gordon. Stack inspection: Theory and vari-
ants. In Proc. 29th ACM Symp. on Principles of Programming Languages
(POPL), pages 307–318, 2002.

[Fil92] Andrzej Filinski. Linear continuations. In Proc. 19th ACM Symp. on Prin-
ciples of Programming Languages (POPL), pages 27–38, 1992.

[Fis72] Michael J. Fischer. Lambda calculus schemata. SIGPLAN Notices,
7(1):104–109, January 1972.

[FL94] George Fink and Karl Levitt. Property-based testing of privileged pro-
grams. In Proceedings of the 10th Annual Computer Security Applications
Conference, pages 154–163, 1994.

[FLR77] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security
of a system design. Proc. 6th ACM Symp. on Operating System Principles
(SOSP), ACM Operating Systems Review, 11(5):57–66, November 1977.

[Fou98] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile
Programming. Ph.D. dissertation, École Polytechnique, nov 1998.

[FSBJ97] Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. Pro-
viding flexibility in information flow control for object-oriented systems.
In Proc. IEEE Symposium on Security and Privacy, pages 130–140, Oak-
land, CA, USA, May 1997.

208

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Proc. of the ’93 SIG-
PLAN Conference on Programming Language Design, pages 237–247,
June 1993.

[Gat02] Bill Gates. Trustworthy computing. Microsoft e-mail, January 2002.

[GD72] G. S. Graham and Peter J. Denning. Protection: Principles and practice.
In Proc. of the AFIPS Spring Joint Conference, pages 417–429, 1972.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specifica-
tion. Addison-Wesley, August 1996. ISBN 0-201-63451-1.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. IEEE Symposium on Security and Privacy, pages 11–20. IEEE
Computer Society Press, April 1982.

[GM84] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc.
IEEE Symposium on Security and Privacy, pages 75–86. IEEE Computer
Society Press, April 1984.

[Gra90] James W. Gray, III. Probabilistic interference. In Proc. IEEE Symposium
on Security and Privacy, pages 170–179. IEEE Computer Society Press,
May 1990.

[Gra91] James W. Gray, III. Towards a mathematical foundation for information
flow security. In Proc. IEEE Symposium on Security and Privacy, pages
21–34. IEEE Computer Society Press, 1991.

[GS92] J. W. Gray III and P. F. Syverson. A logical approach to multilevel se-
curity of probabilistic systems. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 164–176. IEEE Computer Society Press,
1992.

[Hen00] Matthew Hennessy. The security picalculus and non-interference. Techni-
cal Report Report 05/2000, University of Sussex, School of Cognitive and
Computing Sciences, November 2000.

[HL93] Robert Harper and Mark Lillibridge. Explicit polymorphism and CPS con-
version. In Proc. 20th ACM Symp. on Principles of Programming Lan-
guages (POPL), pages 206–219, January 1993.

209

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming
with secrecy and integrity. In Proc. 25th ACM Symp. on Principles of
Programming Languages (POPL), pages 365–377, San Diego, California,
January 1998.

[HR00] Matthew Hennessy and James Riely. Information flow vs. resource ac-
cess in the asynchronous pi-calculus. Technical Report report 03/2000,
University of Sussex, 2000.

[HRU76] M. A. Harrison, W. L Ruzzo, and J. D. Ullman. Protection in operating
systems. Comm. of the ACM, 19(8):461–471, August 1976.

[HVY00] Kohei Honda, Vasco Vasconcelos, and Nobuko Yoshida. Secure infor-
mation flow as typed process behaviour. In Proc. of the 9th European
Symposium on Programming, volume 1782 of Lecture Notes in Computer
Science, pages 180–199. Springer, 2000.

[HY02] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure
information flow. In Proc. 29th ACM Symp. on Principles of Programming
Languages (POPL), pages 81–92, January 2002.

[JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-
grained mobility in the emerald system. ACM Transactions on Computer
Systems, 6(1):109–133, February 1988.

[JVM95] Sun Microsystems. The Java Virtual Machine Specification, release
1.0 beta edition, August 1995. Available at ftp://ftp.javasoft.com/docs/-
vmspec.ps.zip.

[Lam71] Butler W. Lampson. Protection. In Proc. Fifth Princeton Symposium on
Information Sciences and Systems, pages 437–443, Princeton University,
March 1971. Reprinted in Operating Systems Review, 8(1), January 1974,
pp. 18–24.

[Lam73] Butler W. Lampson. A note on the confinement problem. Comm. of the
ACM, 16(10):613–615, October 1973.

[LE01] David Larochelle and David Evans. Statically detecting likely buffer over-
flow vulnerabilities. In 2001 USENIX Security Symposium, Washington,
D. C., August 2001.

[LR92] W. Landi and B. Ryder. A safe approximation algorithm for interproce-
dural pointer aliasing. In Proc. of the SIGPLAN ’92 Conference on Pro-
gramming Language Design, June 1992.

210

[LV95] Nancy Lynch and Frits Vaandrager. Forward and backward simulations –
Part I: Untimed systems. Information and Computation, 121(2):214–233,
September 1995. Also, Technical Memo MIT/LCS/TM-486.b (with minor
revisions), Laboratory for Computer Science, Massachusetts Institute of
Technology.

[LWG+95] J. R. Lyle, D. R. Wallace, J. R. Graham, K. B. Gallagher, J. P. Poole, and
D. W. Binkley. Unravel: A CASE tool to assist evaluation of high integrity
software. IR 5691, NIST, 1995.

[Man00] Heiko Mantel. Possibilistic definitions of security: An assembly kit. In
Proc. of the 13th IEEE Computer Security Foundations Workshop, pages
185–199, Cambridge, United Kingdom, 2000.

[McC87] Daryl McCullough. Specifications for multi-level security and a hook-up
property. In Proc. IEEE Symposium on Security and Privacy, pages 161–
166. IEEE Computer Society Press, May 1987.

[McC88] Daryl McCullough. Noninterference and the composability of security
properties. In Proc. IEEE Symposium on Security and Privacy, pages 177–
186. IEEE Computer Society Press, May 1988.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels,
Frederick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic.
TALx86: A realistic typed assembly language. In 2nd ACM SIGPLAN
Workshop on Compiler Support for System Software, pages 25–35, 1999.

[McL88a] John McLean. A general theory of composition for a class of “possibilis-
tic” properties. IEEE Transactions on Software Engineering, 22(1):53–67,
January 1988.

[McL88b] John McLean. Reasoning about security models. In Proc. IEEE Sympo-
sium on Security and Privacy, pages 123–131, Oakland, CA, 1988. IEEE
Computer Society Press.

[McL90] John McLean. Security models and information flow. In Proc. IEEE Sym-
posium on Security and Privacy, pages 180–187. IEEE Computer Society
Press, 1990.

[McL94] John McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proc. IEEE Symposium on Security
and Privacy, pages 79–93. IEEE Computer Society Press, May 1994.

211

[MH02] Massimo Merro and Matthew Hennessy. Bisimulation congruences for
safe ambients. In Proc. 29th ACM Symp. on Principles of Programming
Languages (POPL), pages 71–80, January 2002.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mit96] John C. Mitchell. Foundations for Programming Languages. Foundations
of Computing Series. The MIT Press, 1996.

[ML98] Andrew C. Myers and Barbara Liskov. Complete, safe information flow
with decentralized labels. In Proc. IEEE Symposium on Security and Pri-
vacy, pages 186–197, Oakland, CA, USA, May 1998.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Transactions on Software Engineering and
Methodology, 9(4):410–442, 2000.

[MNZZ01] Andrew C. Myers, Nathaniel Nystrom, Lantian Zheng, and Steve
Zdancewic. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[Mor68] James H. Morris. Lambda Calculus Models of Programming Languages.
Ph.D. dissertation, Massachusetts Institute of Technology, 1968.

[MPS86] David MacQueen, Gordon D. Plotkin, and Ravi Sethi. An ideal model
for recursive polymorphism. Information and Control, 71(1/2):95–130,
October/November 1986.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100(1):1–77, 1992.

[MR92a] QingMing Ma and John Reynolds. Types, abstraction, and parametric
polymorphism: Part 2. In S. Brookes, M. Main, A. Melton, M. Mis-
love, and D. A. Schmidt, editors, Proceedings of the 1991 Mathematical
Foundations of Programming Semantics, number 598 in Lecture Notes in
Computer Science, pages 1–40. Springer-Verlag, 1992.

[MR92b] M. D. McIlroy and J. A. Reeds. Multilevel security in the UNIX tradition.
Software—Practice and Experience, 22(8):673–694, August 1992.

[MS01] Heiko Mantel and Andrei Sabelfeld. A generic approach to the security
of multi-threaded programs. In Proc. of the 14th IEEE Computer Security
Foundations Workshop, pages 200–214. IEEE Computer Society Press,
June 2001.

212

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System
F to typed assembly language. In Proc. 25th ACM Symp. on Principles of
Programming Languages (POPL), San Diego, California, January 1998.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System
F to typed assembly language. Transactions on Programming Languages
and Systems, 21(3):528–569, May 1999.

[Mye99] Andrew C. Myers. Mostly-static decentralized information flow control.
Technical Report MIT/LCS/TR-783, Massachusetts Institute of Technol-
ogy, Cambridge, MA, January 1999. Ph.D. thesis.

[Nec97] George C. Necula. Proof-carrying code. In Proc. 24th ACM Symp. on
Principles of Programming Languages (POPL), pages 106–119, January
1997.

[Nie82] Flemming Nielson. A denotational framework for data flow analysis. Acta
Informatica, 18:265–287, 1982.

[p3p] Platform for privacy preferences (P3P). http://www.w3.org/p3p.

[PC00] François Pottier and Sylvain Conchon. Information flow inference for
free. In Proc. 5th ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 46–57, September 2000.

[Pin95] Sylvan Pinsky. Absorbing covers and intransitive non-interference. In
Proc. IEEE Symposium on Security and Privacy, 1995.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. The-
oretical Computer Science, 1:125–159, 1975.

[PO95] Jens Palsberg and Peter Ørbæk. Trust in the λ-calculus. In Proc. 2nd
International Symposium on Static Analysis, number 983 in Lecture Notes
in Computer Science, pages 314–329. Springer, September 1995.

[Pot02] François Pottier. A simple view of type-secure information flow in the
π-calculus. In Proc. of the 15th IEEE Computer Security Foundations
Workshop, 2002.

213

[PP00] Jeff Polakow and Frank Pfenning. Properties of terms in continuation-
passing style in an ordered logical framework. In J. Despeyroux, editor,
2nd Workshop on Logical Frameworks and Meta-languages, Santa Bar-
bara, California, June 2000.

[PS99] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the
polymorphic pi-calculus. Technical Report MS-CIS-99-10, University of
Pennsylvania, April 1999. (Summary in POPL ’97).

[PS02] François Pottier and Vincent Simonet. Information flow inference for
ML. In Proc. 29th ACM Symp. on Principles of Programming Languages
(POPL), Portland, Oregon, January 2002.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Re-
port TR-81, Harvard Aiken Computation Laboratory, 1981.

[Rei78] Richard Philip Reitman. Information Flow in Parallel Programs: An Ax-
iomatic Approach. Ph.D. dissertation, Cornell University, 1978.

[Rey72] John C. Reynolds. Definitional interpreters for higherorder programming
languages. In Conference Record of the 25th National ACM Conference,
pages 717–740, August 1972.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, volume 19 of Lecture Notes in Computer Science, pages 408–
425. Springer-Verlag, Paris, France, April 1974.

[Rey78] John C. Reynolds. Syntactic control of interference. In Proc. 5th ACM
Symp. on Principles of Programming Languages (POPL), pages 39–46,
1978.

[Rey83] John C. Reynolds. Types, abstraction, and parametric polymorphism. In
R.E.A Mason, editor, Information Processing, pages 513–523. Elsevier
Science Publishers B.V., 1983.

[RG99] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference?
In Proc. of the 12th IEEE Computer Security Foundations Workshop, 1999.

[RH99] James Riely and Matthew Hennessy. Trust and partial typing in open sys-
tems of mobile agents. In Proc. 26th ACM Symp. on Principles of Pro-
gramming Languages (POPL), pages 93–104, San Antonio, TX, January
1999.

214

[Rie89] Jon G. Riecke. Should a function continue? Masters dissertation, Mas-
sachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, Cambridge, Massachusetts, 1989.

[RM96] Jakob Rehof and Torben Æ. Mogensen. Tractable constraints in finite
semilattices. In Proc. 3rd International Symposium on Static Analysis,
number 1145 in Lecture Notes in Computer Science, pages 285–300.
Springer-Verlag, September 1996.

[Ros95] A. W. Roscoe. Csp and determinism in security modeling. In Proc. IEEE
Symposium on Security and Privacy, 1995.

[RR99] Radu Rugina and Martin Rinard. Pointer analysis for multithreaded pro-
grams. In Proc. of the ACM SIGPLAN 1999 Conference on Programming
Language Design, pages 77–90, May 1999.

[Rus92] John Rushby. Noninterference, transitivity and channel-control security
policies. Technical report, SRI, 1992.

[Sab01] Andrei Sabelfeld. The impact of synchronisation on secure information
flow in concurrent programs. In Proceedings of the Andrei Ershov 4th
International Conference on Perspectives of System Informatics, volume
2244 of Lecture Notes in Computer Science, pages 225–239. Springer-
Verlag, July 2001.

[Sch96] B. Schneier. Applied Cryptography. John Wiley and Sons, New York, NY,
1996.

[Sch97] Fred B. Schneider. On Concurrent Programming. Springer Verlag, 1997.

[Sch99] Fred B. Schneider, editor. Trust in Cyberspace. National Academy Press,
1999.

[Sch01] Fred B. Schneider. Enforceable security policies. ACM Transactions on
Information and System Security, 2001. Also available as TR 99-1759,
Computer Science Department, Cornell University, Ithaca, New York.

[SF94] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data
flow analysis? In Proc. SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation, pages 1–12, 1994.

215

[SM02] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement
for distributed programs. In Proceedings of the 9th Static Analysis Sym-
posium, volume 2477 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[SMH00] Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-based
approach to security. In Reinhard Wilhelm, editor, Informatics – 10 Years
Back, 10 Years Ahead. Conference on the Occasion of Dagstuhl’s 10th
Anniversary., volume 2000 of Lecture Notes in Computer Science, pages
86–101, Saarbrücken, Germany, August 2000. Springer-Verlag.

[Smi01] Geoffrey Smith. A new type system for secure information flow. In
CSFW14, pages 115–125. IEEE Computer Society Press, jun 2001.

[SNS88] J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication
service for open network systems. Technical report, Project Athena, MIT,
Cambridge, MA, March 1988.

[SS99] Andrei Sabelfeld and David Sands. A PER model of secure information
flow in sequential programs. In Proc. of the 8th European Symposium on
Programming, volume 1576 of Lecture Notes in Computer Science, pages
40–58. Springer-Verlag, March 1999.

[SS00] Andrei Sabelfeld and David Sands. Probabilistic noninterference for
multi-threaded programs. In Proc. of the 13th IEEE Computer Security
Foundations Workshop, pages 200–214. IEEE Computer Society Press,
July 2000.

[SS01] Andrei Sabelfeld and David Sands. A PER model of secure information
flow in sequential programs. Higher-Order and Symbolic Computation,
14(1):59–91, March 2001.

[Ste78] Guy L. Steele. Rabbit: a compiler for scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts,
May 1978.

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. De-
tecting format string vulnerabilities with type qualifiers. In Proceedings of
the 10th USENIX Security Symposium, 2001.

[Str67] C. Strachey. Fundamental concepts in programming languages. Unpub-
lished Lecture Notes, Summer School in Computer Programming, August
1967.

216

[Sut86] David Sutherland. A model of information. In Proc. 9th National Security
Conference, pages 175–183, Gaithersburg, Md., 1986.

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Proc. 25th ACM Symp. on Principles of
Programming Languages (POPL), pages 355–364, San Diego, California,
January 1998.

[SV00] Sewell and Vitek. Secure composition of untrusted code: Wrappers and
causality types. In PCSFW: Proceedings of The 13th Computer Security
Foundations Workshop. IEEE Computer Society Press, 2000.

[SWM00] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Proc.
of the 9th European Symposium on Programming, volume 1782 of Lecture
Notes in Computer Science, pages 366–381, 2000.

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of Program-
ming Languages, 3:121–189, 1995.

[TW99] David N. Turner and Philip Wadler. Operational interpretations of linear
logic. Theoretical Computer Science, 227(1-2):231–248, September 1999.

[VS97] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with min-
imum typings. In 10th IEEE Computer Security Foundations Workshop,
pages 156–168. IEEE Computer Society Press, June 1997.

[VS00] Dennis Volpano and Geoffrey Smith. Verifying secrets and relative se-
crecy. In Proc. 27th ACM Symp. on Principles of Programming Languages
(POPL), pages 268–276. ACM Press, January 2000.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security, 4(3):167–187,
1996.

[Wad90] Philip Wadler. Linear types can change the world! In M. Broy and
C. Jones, editors, Progarmming Concepts and Methods, Sea of Galilee,
Israel, April 1990. North Holland. IFIP TC 2 Working Conference.

[Wad93] Philip Wadler. A taste of linear logic. In Mathematical Foundations of
Computer Science, volume 711 of Lecture Notes in Computer Science,
pages 185–210. Springer-Verlag, 1993.

217

[WAF00] Dan S. Wallach, Andrew W. Appel, , and Edward W. Felten. The security
architecture formerly known as stack inspection: A security mechanism
for language-based systems. ACM Transactions on Software Engineering
and Methodology, 9(4), October 2000.

[Wag00] David Wagner. Static analysis and computer security: New techniques for
software assurance. Ph.D. dissertation, University of California at Berke-
ley, 2000.

[Wal00] David Walker. A type system for expressive security policies. In Proc.
27th ACM Symp. on Principles of Programming Languages (POPL), pages
254–267. ACM Press, Jan 2000.

[WF92] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Technical Report TR91-160, Rice University, June 1992.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994. Prelimi-
nary version in Rice TR 91-160.

[WF98] Dan S. Wallach and Edward W. Felten. Understanding Java stack inspec-
tion. In Proc. IEEE Symposium on Security and Privacy, Oakland, Cali-
fornia, USA, May 1998.

[WJ90] J. Todd Wittbold and Dale M. Johnson. Information flow in nondetermin-
istic systems. In Proc. IEEE Symposium on Security and Privacy, pages
144–161, May 1990.

[WM00] David Walker and Greg Morrisett. Alias types for recursive data struc-
tures. In Workshop on Types in Compilation, September 2000.

[Ylo96] Tatu Ylonen. SSH – secure login connections over the Internet. In The
Sixth USENIX Security Symposium Proceedings, pages 37–42, San Jose,
California, 1996.

[Zha97] Kan Zhang. A theory for system security. In 10th IEEE Computer Security
Foundations Workshop, pages 148–155. IEEE Computer Society Press,
June 1997.

[Zho01] Lidong Zhou. Towards Fault-Tolerant and Secure On-line Services. Ph.D.
dissertation, Cornell University, May 2001.

218

[ZL97] Aris Zakinthinos and E. Stewart Lee. A general theory of security prop-
erties and secure composition. In Proc. IEEE Symposium on Security and
Privacy, Oakland, CA, 1997.

[ZM00] Steve Zdancewic and Andrew C. Myers. Confidentiality and integrity with
untrusted hosts. Technical Report 2000–1810, Computer Science Dept.,
Cornell University, 2000.

[ZM01a] Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proc.
of 14th IEEE Computer Security Foundations Workshop, pages 15–23,
Cape Breton, Canada, June 2001.

[ZM01b] Steve Zdancewic and Andrew C. Myers. Secure information flow and
CPS. In Proc. of the 10th European Symposium on Programming, volume
2028 of Lecture Notes in Computer Science, pages 46–61, April 2001.

[ZM02] Steve Zdancewic and Andrew C. Myers. Secure information flow via
linear continuations. Higher Order and Symbolic Computation, 15(2/3),
2002.

[ZSv00] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A
secure distributed on-line certification authority. Technical Report 2000-
1828, Department of Computer Science, Cornell University, December
2000.

[ZZNM01] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Untrusted hosts and confidentiality: Secure program partitioning. In
Proc. 18th ACM Symp. on Operating System Principles (SOSP), volume
35(5) of Operating Systems Review, pages 1–14, Banff, Canada, October
2001.

[ZZNM02] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. My-
ers. Secure program partitioning. Transactions on Computer Systems,
20(3):283, 2002.

