
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2009
Lecture 19

3/31/09 CIS/TCOM 551 2

Announcements
•  Plan for Today:

–  Key establishment

•  Project 3 is due 6 April 2009 at 11:59 pm

•  Midterm 2 is this Thursday in class
–  Covers material since the first midterm

•  Final exam has been scheduled:
 Friday, May 8, 2009
 9:00am – 11:00am, Moore 216

•  TALK: Alan Mislove “Leveraging Social Networks in
Information Systems” 3:00 today in Wu & Chen

3/31/09 CIS/TCOM 551 3

Key Establishment
•  Establishing a "session key"

–  A shared key used for encrypting communications for a short
duration -- a session

–  Need to authenticate first

•  Symmetric keys.
–  Point-to-Point.
–  Needham-Schroeder.
–  Kerberos.

3/31/09 CIS/TCOM 551 4

Symmetric Keys
•  Key establishment using only symmetric keys requires

use of pre-distribution keys to get things going.

•  Then protocol can be based on:
–  Point to point distribution, or
–  Key Distribution Center (KDC).

3/31/09 CIS/TCOM 551 5

Point-to-Point

•  Should also use timestamps & nonces.
•  Session key should include a validity duration.
•  Could also use public key cryptography to

–  Authenticate
–  Exchange symmetric shared key

Session Key

KAB{KS,t,B}

3/31/09 CIS/TCOM 551 6

Key Distribution Centers

Give me a key to
talk with Bart

Here is
the key

Tom gave us this session key

3/31/09 CIS/TCOM 551 7

Distribution Center Setup
•  A wishes to communicate with B.
•  T (trusted 3rd party) provides session keys.
•  T has a key KAT in common with A and a key KBT in

common with B.
•  A authenticates T using a nonce nA and obtains a session

key from T.
•  A authenticates to B and transports the session key

securely.

3/31/09 CIS/TCOM 551 8

Needham-Schroeder Protocol
1.  A → T : A, B, nA

2.  T → A : KAT{KS, nA, B, KBT{KS, A} }
 A decrypts with KAT and checks nA and B. Holds KS for future
correspondence with B.

3.  A → B : KBT{KS, A}
 B decrypts with KBT.

4.  B → A : KS{nB}
 A decrypts with KS.

5.  A → B : KS{nB – 1}
 B checks nB-1.

3/31/09 CIS/TCOM 551 9

Attack Scenario 1
1.  A → T : A, B, nA

2.  T → C (A) : KAT{k, nA, B, KBT{KS, A}}
 C is unable to decrypt the message to A; passing it
along unchanged does no harm. Any change will be
detected by A.

3/31/09 CIS/TCOM 551 10

Attack Scenario 2
1.  A → C (T) : A, B, nA

2.  C (A) → T : A, C, nA

3.  T → A : KAT{KS, nA, C, KCT{KS, A}}

Rejected by A because the message contains C rather
than B.

3/31/09 CIS/TCOM 551 11

Attack Scenario 3
1.  A → C (T) : A, B, nA

2.  C → T : C, B, nA

3.  T → C : KCT{KS, nA, B, KBT{KS, C}}

4.  C (T) → A : KCT{KS, nA, B, KBT{KS, C}}

A is unable to decrypt the message.

3/31/09 CIS/TCOM 551 12

Attack Scenario 4
1.  C → T : C, B, nA

2.  T → C : KCT{KS, nA, B, KBT{KS, C}}
3.  C (A) → B : KBT{KS, C}

B will see that the purported origin (A)
does not match the identity indicated
by the distribution center.

3/31/09 CIS/TCOM 551 13

Valid Attack
•  The attacker records the messages on the network

–  in particular, the messages sent in step 3

•  Consider an attacker that manages to get an old session
key KS.

•  That attacker can then masquerade as Alice:
–  Replay starting from step 3 of the protocol, but using the message

corresponding to KS.

•  Could be prevented with time stamps.

3/31/09 CIS/TCOM 551 14

Kerberos
•  Key exchange protocol developed at MIT in the late 1980’s
•  Central server provides “tickets”
•  Tickets – (also known as capabilities):

–  Unforgeable
–  Nonreplayable
–  Authenticated
–  Represent authority

•  Designed to work with NFS (network file system)
•  Also saves on authenticating for each service

–  e.g. with ssh.

3/31/09 CIS/TCOM 551 15

Kerberos

User

Kerberos
Server

Ticket-granting
server

File
Server

Other
Server

A
ut

he
nt

ic
at

io
n

TG
T

Service Request

Service ticket

Unique keys KFG, etc.

U

S

G

F

3/31/09 CIS/TCOM 551 16

Kerberos Login
•  U = User’s machine
•  S = Kerberos Server

–  Has a database of user "passwords": userID → kpwd
•  G = Ticket granting server

•  U → S : userID, G, nU
•  S → U : kpwd{nU, KUG}, KSG{T(U,G)}
•  S → G : KSG{KUG, userID}

•  T(X,Y) = X, Y, L, KXY

Kerberos ticket
granting ticket

Ticket lifetime

Session key

3/31/09 CIS/TCOM 551 17

Kerberos Service Request
•  Requesting a service from server F

•  U → G : KUG{userID,timestamp}, KSG{T(U,G)}, req(F), n’U

•  G → U : KUG{KUF,n’U}, KFG{T(U,F)}

•  U → F : KUF{userID,timestamp}, KFG{T(U,F)}

3/31/09 CIS/TCOM 551 18

Kerberos Benefits
•  Distributed access control

–  No passwords communicated over the network
•  Cryptographic protection against spoofing

–  All accesses mediated by G (ticket granting server)
•  Limited period of validity

–  Servers check timestamps against ticket validity
–  Limits window of vulnerability

•  Timestamps prevent replay attacks
–  Servers check timestamps against their own clocks to ensure “fresh” requests

•  Mutual authentication
–  User sends nonce challenges

3/31/09 CIS/TCOM 551 19

Kerberos Drawbacks
•  Requires available ticket granting server

–  Could become a bottleneck
–  Must be reliable

•  All servers must trust G, G must trust servers
–  They share unique keys

•  Kerberos requires synchronized clocks
–  Replay can occur during validity period
–  Not easy to synchronize clocks

•  User’s machine could save & replay passwords
–  Password is a weak spot

•  Kerberos does not scale well
–  Hard to replicate authentication server and ticket granting server
–  Duplicating keys is bad, extra keys = more management

Public Key Infrastructure (PKI)
•  Public key infrastructure (PKI)

–  PKI is the set of services needed to create, manage, store,
distribute and revoke digital certificates based on public-key
cryptography.

•  Certification Authorities (CAs)
–  A trusted third party that issues certificates and (often) certificate

revocation lists.
–  Each certificate is (roughly) of the form M, kCA{H(M)}

where M = Name, KName, L
 Name = identifier of a principal (e.g. a URL)
 KName = the public key of the principal

 L = lifetime of the certificate

•  Example: Verisign
–  Issues credentials

3/31/09 CIS/TCOM 551 20

X.509 Certificate Standard
•  Issued in 1988 by the PKIX working group of the IETF
•  Message format that specifies how certificates should be

shared:
 Certificate
 Version, Serial Number, Algorithm ID
 Issuer, Validity (Not Before, Not After)
 Subject, Subject Public Key Info (Algorithm, Key)
 Issuer Unique Identifier (Optional)
 Subject Unique Identifier (Optional)
 Extensions (Optional)
 Certificate Signature Algorithm
 Certificate Signature

3/31/09 CIS/TCOM 551 21

Example X.509 certificate
Certificate:
 Data:

 Version: 1 (0x0)
 Serial Number: 7829 (0x1e95)
 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
 OU=Certification Services Division,
 CN=Thawte Server CA/emailAddress=server-certs@thawte.com
 Validity

 Not Before: Jul 9 16:04:02 1998 GMT
 Not After : Jul 9 16:04:02 1999 GMT
 Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,
 OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org

 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)

 Modulus (1024 bit):
 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
 [...]
 Exponent: 65537 (0x10001)

 Signature Algorithm: md5WithRSAEncryption
 93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:

 [...]

3/31/09 CIS/TCOM 551 22

Top-level Certificates
•  To check an X.509 certificate, one needs to have the

public key of the issuer.
•  Such certificates can be “self-signed” by top-level, trusted

CAs
•  In practice, companies like Verisign pay web browser

developers to include such certificates in the browser
releases.

3/31/09 CIS/TCOM 551 23

Certificate Chains
•  Notation: Y <<X>> means the certificate of principal X

issued by authority Y.
•  One can create certificate chains to delegate

authentication duties among principals:
•  Example:

 Y <<X>>, X <<Z>>
–  These two certificates together allow a principal who trusts Y to

verify the authenticity of the identity of Z.

•  Chains can be arbitrarily long.
–  CAs can attest to each other’s identities via peering agreements

3/31/09 CIS/TCOM 551 24

3/31/09 CIS/TCOM 551 25

Arbitrated Protocols

•  Tom is an arbiter
–  Disinterested in the outcome (doesn’t play favorites)
–  Trusted by the participants (Trusted 3rd party)
–  Protocol can’t continue without T’s participation

Alice Bart

Tom

3/31/09 CIS/TCOM 551 26

Arbitrated Protocols (Continued)
•  Real-world examples:

–  Lawyers, Bankers, Notary Public

•  Issues:
–  Finding a trusted 3rd party
–  Additional resources needed for the arbitrator
–  Delay (introduced by arbitration)
–  Arbitrator might become a bottleneck
–  Single point of vulnerability: attack the arbitrator!

3/31/09 CIS/TCOM 551 27

Adjudicated Protocols

•  Alice and Bard record an audit log
•  Only in exceptional circumstances to they contact a trusted 3rd party.

(3rd party is not always needed.)
•  Tom as the adjudicator can inspect the evidence and determine

whether the protocol was carried out fairly

Alice Bart Tom

Evidence Evidence

Bart
acted
fairly.

3/31/09 CIS/TCOM 551 28

Self-Enforcing Protocols

•  No trusted 3rd party involved.
•  Participants can determine whether other parties cheat.
•  Protocol is constructed so that there are no possible

disputes of the outcome.

Alice Bart

You’re
cheating,

Alice!

