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Announcements 

•  Plan for Today: 
–  Key exchange 
–  Public Key Cryptography 

•  Project 3 is due 6 April 2009 at 11:59 pm 
–  Handout for SDES available in class today 
–  Please read the project description BEFORE looking at the code 

•  Stefan Savage “Spamalytics: Exploring the Technical and 
Economic Underpinnings of Bulk E-mail Scams” 
–  TODAY: at 3:00 p.m. in Wu & Chen Auditorium 
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Problems with Shared Key Crypto 
•  Compromised key means interceptors can decrypt any 

ciphertext they’ve acquired. 
–  Change keys frequently to limit damage 

•  Distribution of keys is problematic 
–  Keys must be transmitted securely 
–  Use couriers? 
–  Distribute in pieces over separate channels? 

•  Number of keys is O(n2) where n is # of participants 
•  Potentially easier to break? 
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Diffie-Hellman Key Exchange 
•  Choose a prime p  (publicly known) 

–  Should be about 512 bits or more 
•  Pick g < p   (also public) 

–  g must be a primitive root of p. 
–  A primitive root generates the finite field p. 
–  Every n in {1, 2, …, p-1} can be written as 

gk mod p 
–  Example: 2 is a primitive root of 5 
–  20 = 1      21 = 2      22 = 4       23 = 3    (mod 5) 

–  Intuitively means that it’s hard to take logarithms base g because 
there are many candidates. 
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Diffie-Hellman 
Alice Bart 

1.  Alice & Bart decide on a public prime p and primitive 
root g. 

“Let’s use (p, g)” 
“OK” 

2.  Alice chooses secret number A. Bart chooses secret 
number B 

3.  Alice sends Bart gA mod p. 

    gA mod p 

    gB mod p 

4.  The shared secret is gAB mod p. 
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Details of Diffie-Hellman 
•  Alice computes gAB mod p because she knows A: 

–  gAB mod p  =  (gB mod p)A mod p 

•  An eavesdropper gets gA mod p and gB mod p 
–  They can easily calculate gA+B mod p but that doesn’t help. 
–  The problem of computing discrete logarithms (to recover A from 

gA mod p is hard. 
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Example 
•  Alice and Bart agree that q=71 and g=7. 
•  Alice selects a private key A=5 and calculates a public 

key gA ≡ 75 ≡ 51 (mod 71).  She sends this to Bart. 
•  Bart selects a private key B=12 and calculates a public 

key gB ≡ 712 ≡ 4 (mod 71).  He sends this to Alice. 
•  Alice calculates the shared secret:  

S ≡ (gB)A ≡ 45 ≡ 30 (mod 71) 
•  Bart calculates the shared secret  

S ≡ (gA)B ≡ 5112 ≡ 30 (mod 71) 
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Why Does it Work? 
•  Security is provided by the difficulty of calculating discrete 

logarithms. 
•  Feasibility is provided by  

–  The ability to find large primes. 
–  The ability to find primitive roots for large primes. 
–  The ability to do efficient modular arithmetic. 

•  Correctness is an immediate consequence of basic facts 
about modular arithmetic. 
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One-way Functions 
•  A function is one-way if it’s 

–  Easy to compute 
–  Hard to invert (in the average case) 

•  Examples 
–  Exponentiation  vs.  Discrete Log 
–  Multiplication vs. Factoring 
–  Knapsack Packing 

•  Given a set of numbers {1, 3, 6, 8, 12} find the sum of a subset 
•  Given a target sum, find a subset that adds to it 

•  Trapdoor functions 
–  Easy to invert given some extra information 
–  E.g. factoring p*q given q 
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Public Key Cryptography 
•  Sender encrypts using a public key 
•  Receiver decrypts using a private key 
•  Only the private key must be kept secret 

–  Public key can be distributed at will 

•  Also called asymmetric cryptography 
•  Can be used for digital signatures 
•  Examples: RSA, El Gamal, DSA, various algorithms 

based on elliptic curves 

•  Used in SSL, ssh, PGP, … 
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Public Key Notation 
•  Encryption algorithm 

               E : keyPub x plain → cipher 
               Notation: K{msg} = E(K, msg) 

•  Decryption algorithm 
               D : keyPriv x cipher → plain 
               Notation: k{msg} = D(k,msg) 

•  D inverts E 
               D(k, E(K, msg)) = msg 

•  Use capital “K” for public keys 
•  Use lower case “k” for private keys 

•  Sometimes E is the same algorithm as D 
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Secure Channel: Private Key 

KA,KB 
kA 

KA,KB 
kB 

Alice Bart 

KB{Hello!} 

KA{Hi!} 
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Trade-offs for Public Key Crypto 
•  More computationally expensive than shared key crypto 

–  Algorithms are harder to implement 
–  Require more complex machinery 

•  More formal justification of difficulty 
–  Hardness based on complexity-theoretic results 

•  A principal needs one private key and one public key 
–  Number of keys for pair-wise communication is O(n) 
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RSA Algorithm 
•  Ron Rivest, Adi Shamir, Leonard Adleman 

–  Proposed in 1979 
–  They won the 2002 Turing award for this work 

•  Has withstood years of cryptanalysis 
–  Not a guarantee of security! 
–  But a strong vote of confidence. 

•  Hardware implementations: 1000 x slower than DES 
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RSA at a High Level 
•  Public and private key are derived from secret prime 

numbers 
–  Keys are typically ≥ 1024 bits 

•  Plaintext message (a sequence of bits) 
–  Treated as a (large!) binary number 

•  Encryption is modular exponentiation 
•  To break the encryption, conjectured that one must be 

able to factor large numbers 
–  Not known to be in P  (polynomial time algorithms) 
–  Is known to be in BQP (bounded-error, quantum polynomial time – 

Shor’s algorithm) 
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Number Theory: Modular Arithmetic 
•  Examples: 

–  10 mod 12 = 10 
–  13 mod 12 = 1 
–  (10 + 13) mod 12 = 23 mod 12 = 11 mod 12 
–  23 ≡ 11 (mod 12)   
–  “23 is congruent to 11 (mod 12)” 

•  a ≡ b (mod n)  iff  a = b + kn  (for some integer k) 

•  The residue of a number modulo n is a number in the 
range 0…n-1 
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Number Theory: Prime Numbers 
•  A prime number is an integer > 1 whose only factors are 1 

and itself. 

•  Two integers are relatively prime if their only common 
factor is 1 
–  gcd = greatest common divisor 
–  gcd(a,b) = 1 
–  gcd(15,12) = 3, so they’re not relatively prime 
–  gcd(15,8) = 1, so they are relatively prime 

•  Easy to compute GCD using Euclid’s Algorithm 
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Finite Fields (Galois Fields) 
•  For a prime p, the set of integers mod p forms a finite field 
•  Addition          +        Additive unit      0 
•  Multiplication  *    Multiplicative unit   1 
•  Inverses:  n * n-1 = 1    for n ≠ 0 

–  Suppose p = 5, then the finite field is {0,1,2,3,4} 
–  2-1 = 3 because 2 * 3 ≡ 1 mod 5 
–  4-1 = 4 because 4 * 4 ≡ 1 mod 5 

•  Usual laws of arithmetic hold for modular arithmetic: 
–  Commutativity, associativity, distributivity of * over + 
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RSA Key Generation 
•  Choose large, distinct primes p and q. 

–  Should be roughly equal length (in bits) 
•  Let n = p*q 
•  Choose a random encryption exponent e 

–  With requirement: e and (p-1)*(q-1) are relatively prime. 
•  Derive the decryption exponent d 

–  d = e-1 mod ((p-1)*(q-1)) 
–  d is e’s inverse mod ((p-1)*(q-1)) 

•  Public key: K = (e,n)       pair of e and n 
•  Private key: k = (d,n)  
•  Discard primes p and q (they’re not needed anymore) 
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RSA Encryption and Decryption 
•  Message: m 
•  Assume m < n 

–  If not, break up message into smaller chunks 
–  Good choice: largest power of 2 smaller than n 

•  Encryption:    E((e,n), m) = me mod n 
•  Decryption:    D((d,n), c) = cd mod n 
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Example RSA 
•  Choose p = 47, q = 71 
•  n = p * q = 3337 
•  (p-1)*(q-1) = 3220 
•  Choose e relatively prime with 3220: e = 79 

–  Public key is (79, 3337) 
•  Find d = 79-1 mod 3220 = 1019 

–  Private key is (1019, 3337) 
•  To encrypt m = 688232687966683 

–  Break into chunks < 3337 
–  688   232  687  966  683 

•  Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570 
•  Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688 
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•   φ(n) is the number of positive integers less than n that are 
relatively prime to n 
–   φ(12) = 4 
–  Relative primes of 12 (less than 12): {1, 5, 7, 11} 

•  For p a prime, φ(p) = p-1.  Why? 
•  For p,q two distinct primes, φ(p*q) = (p-1)*(q-1)  

–  There’s p*q-1 numbers less than p*q 
–  Factors of p*q = 

•  {1*p, 2*p, …, q*p}  for a total of q of them 
•  {1*q, 2*q, …, p*q}  for another p of them 
•  No other numbers 
•  φ(p*q) = (p*q) - (p + q - 1) = pq - p - q + 1 = (p-1)*(q-1)  

Euler’s totient function: φ(n) 

All #s ≤ p*q 

P many multiples of q 

q many multiples of p 

don’t double count p*q 
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Fermat’s Little Theorem 
•  Generalized by Euler. 

•  Theorem: If p is a prime then  ap ≡ a mod p. 

•  Corollary: If gcd(a,n) = 1 then aφ(n) ≡ 1 mod n. 

•  Easy to compute a-1 mod n 
–  a-1 mod n = aφ(n)-1 mod n 
–  Why?   a * aφ(n)-1 mod n 

         = aφ(n)-1+1 mod n  
         = aφ(n) mod n 
         = 1 
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Example of Fermat’s Little Theorem 
•  What is the inverse of 5, modulo 7? 
•  7 is prime, so φ(7) = 6 
•  5-1 mod 7  = 56-1 mod 7  

  = 55 mod 7  
   = (52 * 52 * 5) mod 7 
   = ( (52 mod 7) * (52 mod 7) * (5 mod 7) ) mod 7 

  = ( (4 mod 7) * (4 mod 7) * (5 mod 7) ) mod 7 
  = ( (16 mod 7) * (5 mod 7) ) mod 7  

   = ( (2 mod 7) * (5 mod 7) ) mod 7 
  = (10 mod 7) mod 7 

   = 3 mod 7 
  = 3 
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Chinese Remainder Theorem 
•  (Or, enough of it for our purposes…) 

•  Suppose: 
–  p and q are relatively prime 
–  a ≡ b (mod p)  
–  a ≡ b (mod q) 

•  Then: a ≡ b (mod p*q)  

•  Proof:  
–  p divides (a-b)  (because a mod p = b mod p) 
–  q divides (a-b) 
–  Since p, q are relatively prime, p*q divides (a-b) 
–  But that is the same as: a ≡ b (mod p*q)  
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Proof that D inverts E 
   cd mod n 
= (me)d mod n    (definition of c) 
= med mod n     (arithmetic) 
= mk*(p-1)*(q-1) + 1 mod n   (d inverts e) 
= m*mk*(p-1)*(q-1) mod n   (arithmetic) 
= m mod n     (C. R. theorem) 
= m      (m < n) 

e*d ≡ 1 mod (p-1)*(q-1) 
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Finished Proof 
•  Note: mp-1 ≡ 1 mod p    (if p doesn’t divide m) 

–  Why? Fermat’s little theorem. 

•  Same argument yields: mq-1 ≡ 1 mod q 

•  Implies: mk*φ(n)+1 ≡ m mod p 
•  And       mk*φ(n)+1 ≡ m mod q 

•  Chinese Remainder Theorem implies: 
    mk*φ(n)+1 ≡ m mod n 
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How to Generate Prime Numbers 
•  Many strategies, but Rabin-Miller primality test is often used in 

practice. 
–  ap-1 ≡ 1 mod p 

•  Efficiently checkable test that, with probability ¾, verifies that a 
number p is prime. 

–  Iterate the Rabin-Miller primality test t times. 
–  Probability that a composite number will slip through the test is  

(¼)t  

–  These are worst-case assumptions. 
•  In practice (takes several seconds to find a 512 bit prime):  

1.  Generate a random n-bit number, p 
2.  Set the high and low bits to 1 (to ensure it is the right number of 

bits and odd) 
3.  Check that p isn’t divisible by any “small” primes 3,5,7,…,<2000 
4.  Perform the Rabin-Miller test at least 5 times. 
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Rabin-Miller Primality Test 
•  Is n prime? 
•  Write n as n = (2r)*s + 1 
•  Pick random number a, with 1 ≤ a ≤ n - 1 
•  If  

–  as ≡ 1 mod n     and  
–  for all j in {0 … r-1},   a2js ≡  -1 mod n 

•  Then return composite 
•  Else return probably prime 


