CIS 551 / TCOM 401 Computer and Network Security

Spring 2009
Lecture 16

Announcements

- Plan for Today:
- Key exchange
- Public Key Cryptography
- Project 3 is due 6 April 2009 at 11:59 pm
- Handout for SDES available in class today
- Please read the project description BEFORE looking at the code
- Stefan Savage "Spamalytics: Exploring the Technical and Economic Underpinnings of Bulk E-mail Scams"
- TODAY: at 3:00 p.m. in Wu \& Chen Auditorium

Problems with Shared Key Crypto

- Compromised key means interceptors can decrypt any ciphertext they've acquired.
- Change keys frequently to limit damage
- Distribution of keys is problematic
- Keys must be transmitted securely
- Use couriers?
- Distribute in pieces over separate channels?
- Number of keys is $O\left(n^{2}\right)$ where n is \# of participants
- Potentially easier to break?

Diffie-Hellman Key Exchange

- Choose a prime p (publicly known)
- Should be about 512 bits or more
- Pick $\mathrm{g}<\mathrm{p}$ (also public)
- g must be a primitive root of p.
- A primitive root generates the finite field p.
- Every n in $\{1,2, \ldots, p-1\}$ can be written as $g^{k} \bmod p$
- Example: 2 is a primitive root of 5
$-2^{0}=1 \quad 2^{1}=2 \quad 2^{2}=4 \quad 2^{3}=3 \quad(\bmod 5)$
- Intuitively means that it's hard to take logarithms base g because there are many candidates.

Diffie-Hellman

Alice
$\frac{\text { "Let's use }(p, g) \text { " }}{\substack{\text { "OK" }}}$

1. Alice \& Bart decide on a public prime pand primitive root g.
2. Alice chooses secret number A. Bart chooses secret number B
3. Alice sends Bart g^{A} mod p.
4. The shared secret is $g^{A B}$ mod p.

Details of Diffie-Hellman

- Alice computes $g^{A B}$ mod p because she knows A :
$-g^{A B} \bmod p=\left(g^{B} \bmod p\right)^{A} \bmod p$
- An eavesdropper gets $g^{A} \bmod p$ and $g^{B} \bmod p$
- They can easily calculate g^{A+B} mod p but that doesn't help.
- The problem of computing discrete logarithms (to recover A from g^{A} mod p is hard.

Example

- Alice and Bart agree that $\mathrm{q}=71$ and $\mathrm{g}=7$.
- Alice selects a private key $A=5$ and calculates a public key $g^{A} \equiv 7^{5} \equiv 51(\bmod 71)$. She sends this to Bart.
- Bart selects a private key $\mathrm{B}=12$ and calculates a public key $g^{B} \equiv 7^{12} \equiv 4(\bmod 71)$. He sends this to Alice.
- Alice calculates the shared secret:
$S \equiv\left(g^{B}\right)^{A} \equiv 4^{5} \equiv 30(\bmod 71)$
- Bart calculates the shared secret

$$
S \equiv\left(g^{A}\right)^{B} \equiv 51^{12} \equiv 30(\bmod 71)
$$

Why Does it Work?

- Security is provided by the difficulty of calculating discrete logarithms.
- Feasibility is provided by
- The ability to find large primes.
- The ability to find primitive roots for large primes.
- The ability to do efficient modular arithmetic.
- Correctness is an immediate consequence of basic facts about modular arithmetic.

One-way Functions

- A function is one-way if it's
- Easy to compute
- Hard to invert (in the average case)
- Examples
- Exponentiation vs. Discrete Log
- Multiplication vs. Factoring
- Knapsack Packing
- Given a set of numbers $\{1,3,6,8,12\}$ find the sum of a subset
- Given a target sum, find a subset that adds to it
- Trapdoor functions
- Easy to invert given some extra information
- E.g. factoring p*q given q

Public Key Cryptography

- Sender encrypts using a public key
- Receiver decrypts using a private key
- Only the private key must be kept secret
- Public key can be distributed at will
- Also called asymmetric cryptography
- Can be used for digital signatures
- Examples: RSA, El Gamal, DSA, various algorithms based on elliptic curves
- Used in SSL, ssh, PGP, ...

Public Key Notation

- Encryption algorithm
$E:$ keyPub x plain \rightarrow cipher
Notation: $\mathrm{K}\{\mathrm{msg}\}=\mathrm{E}(\mathrm{K}, \mathrm{msg})$
- Decryption algorithm
D : keyPriv x cipher \rightarrow plain
Notation: $\mathrm{k}\{\mathrm{msg}\}=\mathrm{D}(\mathrm{k}, \mathrm{msg})$
- D inverts E

$$
\mathrm{D}(\mathrm{k}, \mathrm{E}(\mathrm{~K}, \mathrm{msg}))=\mathrm{msg}
$$

- Use capital "K" for public keys
- Use lower case "k" for private keys
- Sometimes E is the same algorithm as D

Secure Channel: Private Key

Alice

Trade-offs for Public Key Crypto

- More computationally expensive than shared key crypto
- Algorithms are harder to implement
- Require more complex machinery
- More formal justification of difficulty
- Hardness based on complexity-theoretic results
- A principal needs one private key and one public key
- Number of keys for pair-wise communication is $\mathrm{O}(\mathrm{n})$

RSA Algorithm

- Ron Rivest, Adi Shamir, Leonard Adleman
- Proposed in 1979
- They won the 2002 Turing award for this work
- Has withstood years of cryptanalysis
- Not a guarantee of security!
- But a strong vote of confidence.
- Hardware implementations: 1000 x slower than DES

RSA at a High Level

- Public and private key are derived from secret prime numbers
- Keys are typically ≥ 1024 bits
- Plaintext message (a sequence of bits)
- Treated as a (large!) binary number
- Encryption is modular exponentiation
- To break the encryption, conjectured that one must be able to factor large numbers
- Not known to be in P (polynomial time algorithms)
- Is known to be in BQP (bounded-error, quantum polynomial time Shor's algorithm)

Number Theory: Modular Arithmetic

- Examples:
$-10 \bmod 12=10$
- $13 \bmod 12=1$
$-(10+13) \bmod 12=23 \bmod 12=11 \bmod 12$
$-23 \equiv 11(\bmod 12)$
- "23 is congruent to $11(\bmod 12)$ "
- $a \equiv b(\bmod n)$ iff $a=b+k n$ (for some integer k)
- The residue of a number modulo n is a number in the range 0...n-1

Number Theory: Prime Numbers

- A prime number is an integer > 1 whose only factors are 1 and itself.
- Two integers are relatively prime if their only common factor is 1
- gcd = greatest common divisor
$-\operatorname{gcd}(a, b)=1$
$-\operatorname{gcd}(15,12)=3$, so they're not relatively prime
$-\operatorname{gcd}(15,8)=1$, so they are relatively prime
- Easy to compute GCD using Euclid's Algorithm

Finite Fields (Galois Fields)

- For a prime p, the set of integers mod p forms a finite field
- Addition + Additive unit 0
- Multiplication * Multiplicative unit 1
- Inverses: $\mathrm{n}^{*} \mathrm{n}^{-1}=1$ for $\mathrm{n} \neq 0$
- Suppose $p=5$, then the finite field is $\{0,1,2,3,4\}$
$-2^{-1}=3$ because $2 * 3 \equiv 1 \bmod 5$
$-4^{-1}=4$ because $4 * 4 \equiv 1 \bmod 5$
- Usual laws of arithmetic hold for modular arithmetic:
- Commutativity, associativity, distributivity of * over +

RSA Key Generation

- Choose large, distinct primes p and q.
- Should be roughly equal length (in bits)
- Let $\mathrm{n}=\mathrm{p}^{*} \mathrm{q}$
- Choose a random encryption exponent e
- With requirement: e and ($p-1$)* $(q-1)$ are relatively prime.
- Derive the decryption exponent d
$-d=e^{-1} \bmod \left((p-1)^{*}(q-1)\right)$
- d is e's inverse mod ((p-1)* $(q-1))$
- Public key: $K=(e, n) \quad$ pair of e and n
- Private key: $\mathrm{k}=(\mathrm{d}, \mathrm{n})$
- Discard primes p and q (they're not needed anymore)

RSA Encryption and Decryption

- Message: m
- Assume $\mathrm{m}<\mathrm{n}$
- If not, break up message into smaller chunks
- Good choice: largest power of 2 smaller than n
- Encryption: $E((e, n), m)=m^{e} \bmod n$
- Decryption: $D((d, n), c)=c^{d} \bmod n$

Example RSA

- Choose $p=47, q=71$
- $\mathrm{n}=\mathrm{p}$ * $\mathrm{q}=3337$
- $(p-1)^{*}(q-1)=3220$
- Choose e relatively prime with 3220: e=79
- Public key is $(79,3337)$
- Find d=79-1 $\bmod 3220=1019$
- Private key is $(1019,3337)$
- To encrypt $m=68823268796668$
- Break into chunks < 3337
- 688232687966683
- Encrypt: $\mathrm{E}((79,3337), 688)=688^{79} \bmod 3337=1570$
- Decrypt: $D((1019,3337), 1570)=1570^{1019} \bmod 3337=688$

Euler's totient function: $\phi(\mathrm{n})$

- $\quad \phi(\mathrm{n})$ is the number of positive integers less than n that are relatively prime to n
- $\phi(12)=4$
- Relative primes of 12 (less than 12): \{1, 5, 7, 11\}
- For p a prime, $\phi(p)=p-1$. Why?
- For p, q two distinct primes, $\phi\left(\mathrm{p}^{*} \mathrm{q}\right)=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$
- There's $p^{*} q-1$ numbers less than $p^{*} q$
- Factors of $p^{*} q=$
- $\left\{1^{*} p, 2^{*} p, \ldots, q^{*} p\right\}$ for a total of q of them
- $\left\{1^{*} q, 2^{*} q, \ldots, p^{*} q\right\}$ for another p of them q many multiples of p
- No other numbers
- $\phi\left(\mathrm{p}^{*} \mathrm{q}\right)=\left(\mathrm{p}^{*} \mathrm{q}\right)-(\mathrm{p}+\mathrm{q}-1)=\mathrm{pq}-\mathrm{p}-\mathrm{q}+1=(\mathrm{p}-1)^{*}(\mathrm{q}-1)$

All \#s $\leq p^{*} q$

Fermat's Little Theorem

- Generalized by Euler.
- Theorem: If p is a prime then $a^{p} \equiv a \bmod p$.
- Corollary: If $\operatorname{gcd}(a, n)=1$ then $a^{\phi(n)} \equiv 1 \bmod n$.
- Easy to compute $\mathrm{a}^{-1} \bmod \mathrm{n}$
$-a^{-1} \bmod n=a^{\phi(n)-1} \bmod n$
- Why? $a^{*} a^{\phi(n)-1} \bmod n$
$=a^{\phi(n)-1+1} \bmod n$
$=a^{\phi(n)} \bmod n$
= 1

Example of Fermat's Little Theorem

- What is the inverse of 5 , modulo 7 ?
- 7 is prime, so $\phi(7)=6$
- $5^{-1} \bmod 7=5^{6-1} \bmod 7$

$$
\begin{aligned}
&=5^{5} \bmod 7 \\
&=\left(5^{*} 5^{*} 5\right) \bmod 7 \\
&=\left.\left(\left(5^{2} \bmod 7\right)^{*}\left(5^{2} \bmod 7\right)\right)^{*}(5 \bmod 7)\right) \bmod 7 \\
&=\left((4 \bmod 7)^{*}(4 \bmod 7)^{*}(5 \bmod 7)\right) \bmod 7 \\
&=\left((16 \bmod 7)^{*}(5 \bmod 7)\right) \bmod 7 \\
&=\left((2 \bmod 7)^{*}(5 \bmod 7)\right) \bmod 7 \\
&=(10 \bmod 7) \bmod 7 \\
&= 3 \bmod 7 \\
&= 3
\end{aligned}
$$

Chinese Remainder Theorem

- (Or, enough of it for our purposes...)
- Suppose:
- p and q are relatively prime
$-a \equiv b(\bmod p)$
$-a \equiv b(\bmod q)$
- Then: $\mathrm{a} \equiv \mathrm{b}\left(\bmod \mathrm{p}^{*} \mathrm{q}\right)$
- Proof:
$-p$ divides (a-b) (because a mod $p=b \bmod p$)
- q divides (a-b)
- Since p, q are relatively prime, $p^{*} q$ divides (a-b)
- But that is the same as: $a \equiv b\left(\bmod p^{*} q\right)$

Proof that D inverts E

$C^{d} \bmod n$

$$
\begin{aligned}
& =\left(m^{e}\right)^{d} \bmod n \\
& =m^{e d} \bmod n \\
& =m^{k^{*}(p-1)^{*}(q-1)+1} \bmod n \\
& =m^{*} m^{k^{*}(p-1)^{*}(q-1)} \bmod n \\
& =m \bmod n \\
& =m
\end{aligned}
$$

(definition of c)
(arithmetic)
(d inverts e)
(arithmetic)
(C. R. theorem)

$$
(\mathrm{m}<\mathrm{n})
$$

$$
e^{\star} d \equiv 1 \bmod (p-1)^{\star}(q-1)
$$

Finished Proof

- Note: $\mathrm{m}^{\mathrm{p}-1} \equiv 1 \bmod \mathrm{p} \quad$ (if p doesn't divide m)
- Why? Fermat's little theorem.
- Same argument yields: $\mathrm{m}^{\mathrm{q}-1} \equiv 1 \bmod \mathrm{q}$
- Implies: $\mathrm{m}^{\mathrm{k}^{*} \phi(\mathrm{n})+1} \equiv \mathrm{~m} \bmod \mathrm{p}$
- And $m^{k^{*} \phi(n)+1} \equiv m \operatorname{modq}$
- Chinese Remainder Theorem implies:

$$
\mathrm{m}^{\mathrm{k}^{\star} \phi(\mathrm{n})+1} \equiv \mathrm{~m} \bmod \mathrm{n}
$$

How to Generate Prime Numbers

- Many strategies, but Rabin-Miller primality test is often used in practice.

$$
-\quad a^{\mathrm{p}-1} \equiv 1 \bmod p
$$

- Efficiently checkable test that, with probability $3 / 4$, verifies that a number p is prime.
- Iterate the Rabin-Miller primality test t times.
- Probability that a composite number will slip through the test is $(1 / 4)^{t}$
- These are worst-case assumptions.
- In practice (takes several seconds to find a 512 bit prime):

1. Generate a random n-bit number, p
2. Set the high and low bits to 1 (to ensure it is the right number of bits and odd)
3. Check that p isn't divisible by any "small" primes $3,5,7, \ldots,<2000$
4. Perform the Rabin-Miller test at least 5 times.

Rabin-Miller Primality Test

- Is n prime?
- Write n as $\mathrm{n}=\left(2^{r}\right)^{*} \mathrm{~s}+1$
- Pick random number a , with $1 \leq \mathrm{a} \leq \mathrm{n}-1$
- If
$-\mathrm{a}^{\mathrm{s}} \equiv 1 \bmod \mathrm{n} \quad$ and
- for all j in $\{0 \ldots r-1\}, \quad a^{2 j s} \equiv-1 \bmod n$
- Then return composite
- Else return probably prime

