
3/20/08 CIS/TCOM 551 1

CIS 551 / TCOM 401
Computer and Network Security

Spring 2008
Lecture 15

3/20/08 CIS/TCOM 551 2

Announcements
• Project 3 available on the web.

– Get the handout in class today.
– Project 3 is due April 4th
– It is easier than project 1 or 2, but don't wait to start

3/20/08 CIS/TCOM 551 3

Problems with Shared Key Crypto
• Compromised key means interceptors can decrypt any

ciphertext they’ve acquired.
– Change keys frequently to limit damage

• Distribution of keys is problematic
– Keys must be transmitted securely
– Use couriers?
– Distribute in pieces over separate channels?

• Number of keys is O(n2) where n is # of participants
• Potentially easier to break?

3/20/08 CIS/TCOM 551 4

Diffie-Hellman Key Exchange
• Choose a prime p (publicly known)

– Should be about 512 bits or more
• Pick g < p (also public)

– g must be a primitive root of p.
– A primitive root generates the finite field p.
– Every n in {1, 2, …, p-1} can be written as

gk mod p
– Example: 2 is a primitive root of 5
– 20 = 1 21 = 2 22 = 4 23 = 3 (mod 5)

– Intuitively means that it’s hard to take logarithms base g because
there are many candidates.

3/20/08 CIS/TCOM 551 5

Diffie-Hellman
Alice Bart

1. Alice & Bart decide on a public prime p and primitive
root g.

“Let’s use (p, g)”
“OK”

2. Alice chooses secret number A. Bart chooses secret
number B

3. Alice sends Bart gA mod p.

 gA mod p

 gB mod p

4. The shared secret is gAB mod p.

3/20/08 CIS/TCOM 551 6

Details of Diffie-Hellman
• Alice computes gAB mod p because she knows A:

– gAB mod p = (gB mod p)A mod p

• An eavesdropper gets gA mod p and gB mod p
– They can easily calculate gA+B mod p but that doesn’t help.
– The problem of computing discrete logarithms (to recover A from

gA mod p is hard.

3/20/08 CIS/TCOM 551 7

Example
• Alice and Bart agree that q=71 and g=7.
• Alice selects a private key A=5 and calculates a public

key gA ≡ 75 ≡ 51 (mod 71). She sends this to Bart.
• Bart selects a private key B=12 and calculates a public

key gB ≡ 712 ≡ 4 (mod 71). He sends this to Alice.
• Alice calculates the shared secret:

S ≡ (gB)A ≡ 45 ≡ 30 (mod 71)
• Bart calculates the shared secret

S ≡ (gA)B ≡ 5112 ≡ 30 (mod 71)

3/20/08 CIS/TCOM 551 8

Why Does it Work?
• Security is provided by the difficulty of calculating discrete

logarithms.
• Feasibility is provided by

– The ability to find large primes.
– The ability to find primitive roots for large primes.
– The ability to do efficient modular arithmetic.

• Correctness is an immediate consequence of basic facts
about modular arithmetic.

3/20/08 CIS/TCOM 551 9

One-way Functions
• A function is one-way if it’s

– Easy to compute
– Hard to invert (in the average case)

• Examples
– Exponentiation vs. Discrete Log
– Multiplication vs. Factoring
– Knapsack Packing

• Given a set of numbers {1, 3, 6, 8, 12} find the sum of a subset
• Given a target sum, find a subset that adds to it

• Trapdoor functions
– Easy to invert given some extra information
– E.g. factoring p*q given q

3/20/08 CIS/TCOM 551 10

Public Key Cryptography
• Sender encrypts using a public key
• Receiver decrypts using a private key
• Only the private key must be kept secret

– Public key can be distributed at will

• Also called asymmetric cryptography
• Can be used for digital signatures
• Examples: RSA, El Gamal, DSA, various algorithms

based on elliptic curves

• Used in SSL, ssh, PGP, …

3/20/08 CIS/TCOM 551 11

Public Key Notation
• Encryption algorithm

 E : keyPub x plain → cipher
 Notation: K{msg} = E(K, msg)

• Decryption algorithm
 D : keyPriv x cipher → plain
 Notation: k{msg} = D(k,msg)

• D inverts E
 D(k, E(K, msg)) = msg

• Use capital “K” for public keys
• Use lower case “k” for private keys

• Sometimes E is the same algorithm as D

3/20/08 CIS/TCOM 551 12

Secure Channel: Private Key

KA,KB
kA

KA,KB
kB

Alice Bart

KB{Hello!}

KA{Hi!}

3/20/08 CIS/TCOM 551 13

Trade-offs for Public Key Crypto
• More computationally expensive than shared key crypto

– Algorithms are harder to implement
– Require more complex machinery

• More formal justification of difficulty
– Hardness based on complexity-theoretic results

• A principal needs one private key and one public key
– Number of keys for pair-wise communication is O(n)

3/20/08 CIS/TCOM 551 14

RSA Algorithm
• Ron Rivest, Adi Shamir, Leonard Adleman

– Proposed in 1979
– They won the 2002 Turing award for this work

• Has withstood years of cryptanalysis
– Not a guarantee of security!
– But a strong vote of confidence.

• Hardware implementations: 1000 x slower than DES

3/20/08 CIS/TCOM 551 15

RSA at a High Level
• Public and private key are derived from secret prime

numbers
– Keys are typically ≥ 1024 bits

• Plaintext message (a sequence of bits)
– Treated as a (large!) binary number

• Encryption is modular exponentiation
• To break the encryption, conjectured that one must be

able to factor large numbers
– Not known to be in P (polynomial time algorithms)

3/20/08 CIS/TCOM 551 16

Number Theory: Modular Arithmetic
• Examples:

– 10 mod 12 = 10
– 13 mod 12 = 1
– (10 + 13) mod 12 = 23 mod 12 = 11 mod 12
– 23 ≡ 11 (mod 12)
– “23 is congruent to 11 (mod 12)”

• a ≡ b (mod n) iff a = b + kn (for some integer k)

• The residue of a number modulo n is a number in the
range 0…n-1

3/20/08 CIS/TCOM 551 17

Number Theory: Prime Numbers
• A prime number is an integer > 1 whose only factors are 1

and itself.

• Two integers are relatively prime if their only common
factor is 1
– gcd = greatest common divisor
– gcd(a,b) = 1
– gcd(15,12) = 3, so they’re not relatively prime
– gcd(15,8) = 1, so they are relatively prime

• Easy to compute GCD using Euclid’s Algorithm

3/20/08 CIS/TCOM 551 18

Finite Fields (Galois Fields)
• For a prime p, the set of integers mod p forms a finite field
• Addition + Additive unit 0
• Multiplication * Multiplicative unit 1
• Inverses: n * n-1 = 1 for n ≠ 0

– Suppose p = 5, then the finite field is {0,1,2,3,4}
– 2-1 = 3 because 2 * 3 ≡ 1 mod 5
– 4-1 = 4 because 4 * 4 ≡ 1 mod 5

• Usual laws of arithmetic hold for modular arithmetic:
– Commutativity, associativity, distributivity of * over +

3/20/08 CIS/TCOM 551 19

RSA Key Generation
• Choose large, distinct primes p and q.

– Should be roughly equal length (in bits)
• Let n = p*q
• Choose a random encryption exponent e

– With requirement: e and (p-1)*(q-1) are relatively prime.
• Derive the decryption exponent d

– d = e-1 mod ((p-1)*(q-1))
– d is e’s inverse mod ((p-1)*(q-1))

• Public key: K = (e,n) pair of e and n
• Private key: k = (d,n)
• Discard primes p and q (they’re not needed anymore)

3/20/08 CIS/TCOM 551 20

RSA Encryption and Decryption
• Message: m
• Assume m < n

– If not, break up message into smaller chunks
– Good choice: largest power of 2 smaller than n

• Encryption: E((e,n), m) = me mod n
• Decryption: D((d,n), c) = cd mod n

3/20/08 CIS/TCOM 551 21

Example RSA
• Choose p = 47, q = 71
• n = p * q = 3337
• (p-1)*(q-1) = 3220
• Choose e relatively prime with 3220: e = 79

– Public key is (79, 3337)
• Find d = 79-1 mod 3220 = 1019

– Private key is (1019, 3337)
• To encrypt m = 688232687966683

– Break into chunks < 3337
– 688 232 687 966 683

• Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570
• Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688

3/20/08 CIS/TCOM 551 22

• φ(n) is the number of positive integers less than n that are
relatively prime to n
– φ(12) = 4
– Relative primes of 12 (less than 12): {1, 5, 7, 11}

• For p a prime, φ(p) = p-1. Why?
• For p,q two distinct primes, φ(p*q) = (p-1)*(q-1)

– There’s p*q-1 numbers less than p*q
– Factors of p*q =

• {1*p, 2*p, …, q*p} for a total of q of them
• {1*q, 2*q, …, p*q} for another of of them
• No other numbers
• φ(p*q) = (p*q) - (p + q - 1) = pq - p - q + 1 = (p-1)*(q-1)

Euler’s totient function: φ(n)

All #s ≤ p*q

P many multiples of q

q many multiples of p

don’t double count p*q

3/20/08 CIS/TCOM 551 23

Fermat’s Little Theorem
• Generalized by Euler.

• Theorem: If p is a prime then ap ≡ a mod p.

• Corollary: If gcd(a,n) = 1 then aφ(n) ≡ 1 mod n.

• Easy to compute a-1 mod n
– a-1 mod n = aφ(n)-1 mod n
– Why? a * aφ(n)-1 mod n

 = aφ(n)-1+1 mod n
 = aφ(n) mod n
 = 1

3/20/08 CIS/TCOM 551 24

Example of Fermat’s Little Theorem
• What is the inverse of 5, modulo 7?
• 7 is prime, so φ(7) = 6
• 5-1 mod 7 = 56-1 mod 7

= 55 mod 7
= (52 * 52 * 5) mod 7
= ((52 mod 7) * (52 mod 7) * (5 mod 7)) mod 7
= ((4 mod 7) * (4 mod 7) * (5 mod 7)) mod 7
= ((16 mod 7) * (5 mod 7)) mod 7
= ((2 mod 7) * (5 mod 7)) mod 7
= (10 mod 7) mod 7
= 3 mod 7
= 3

3/20/08 CIS/TCOM 551 25

Chinese Remainder Theorem
• (Or, enough of it for our purposes…)

• Suppose:
– p and q are relatively prime
– a ≡ b (mod p)
– a ≡ b (mod q)

• Then: a ≡ b (mod p*q)

• Proof:
– p divides (a-b) (because a mod p = b mod p)
– q divides (a-b)
– Since p, q are relatively prime, p*q divides (a-b)
– But that is the same as: a ≡ b (mod p*q)

3/20/08 CIS/TCOM 551 26

Proof that D inverts E
 cd mod n
= (me)d mod n (definition of c)
= med mod n (arithmetic)
= mk*(p-1)*(q-1) + 1 mod n (d inverts e)
= m*mk*(p-1)*(q-1) mod n (arithmetic)
= m mod n (C. R. theorem)
= m (m < n)

e*d ≡ 1 mod (p-1)*(q-1)

3/20/08 CIS/TCOM 551 27

Finished Proof
• Note: mp-1 ≡ 1 mod p (if p doesn’t divide m)

– Why? Fermat’s little theorem.
• Same argument yields: mq-1 ≡ 1 mod q

• Implies: mk*φ(n)+1 ≡ m mod p
• And mk*φ(n)+1 ≡ m mod q

• Chinese Remainder Theorem implies:
 mk*φ(n)+1 ≡ m mod n

3/20/08 CIS/TCOM 551 28

How to Generate Prime Numbers
• Many strategies, but Rabin-Miller primality test is often used in

practice.
– ap-1 ≡ 1 mod p

• Efficiently checkable test that, with probability ¾, verifies that a
number p is prime.

– Iterate the Rabin-Miller primality test t times.
– Probability that a composite number will slip through the test is

(¼)t

– These are worst-case assumptions.
• In practice (takes several seconds to find a 512 bit prime):

1. Generate a random n-bit number, p
2. Set the high and low bits to 1 (to ensure it is the right number of

bits and odd)
3. Check that p isn’t divisible by any “small” primes 3,5,7,…,<2000
4. Perform the Rabin-Miller test at least 5 times.

3/20/08 CIS/TCOM 551 29

Rabin-Miller Primality Test
• Is n prime?
• Write n as n = (2r)*s + 1
• Pick random number a, with 1 ≤ a ≤ n - 1
• If

– as ≡ 1 mod n and
– for all j in {0 … r-1}, a2js ≡ -1 mod n

• Then return composite
• Else return probably prime

