CIS 551 / TCOM 401 Computer and Network Security

Spring 2008 Lecture 12

Announcements

- Reminder:
 - Project 2 is due Friday, March 7th at 11:59 pm

Internet Protocol Interoperability

2/28/08

Internetworks

Internetworks

IP Encapsulation

Example of protocol layers used to transmit from H1 to H8 in network shown on previous slide.

IP Service Model

- Choose minimal service model
 - All nets can implement
 - "Tin cans and a string" extremum
- Features:
 - Best-effort datagram delivery
 - Reliability, etc. as overlays (as in TCP/IP)
 - Packet format standardized

IPv4 Packet Format

0 4 8	31					
Version Hler	TOS	Length				
Ident	Flags Offset					
TTL	Protocol	Checksum				
Optior						

Fields of IPv4 Header

- Version
 - Version of IP, example header is IPv4
 - First field so easy to implement case statement
- Hlen
 - Header length, in 32-bit words
- TOS
 - Type of Service (rarely used)
 - Priorities, delay, throughput, reliability
- Length
 - Length of datagram, in *bytes*
 - 16 bits, hence max. of 65,536 bytes
- Fields for *fragmentation* and *reassembly*
 - Identifier
 - Flags
 - Offset

Header fields, continued

- TTL
 - Time to live (in reality, hop count)
 - 64 is the current default (128 also used)
- Protocol
 - e.g., TCP (6), UDP(17), etc.
- Checksum
 - Checksum of header (not CRC)
 - If header fails checksum, discard the whole packet
- SourceAddr, DestinationAddr
 - 32 bit IP addresses global, IP-defined
- Options
 - length can be computed using Hlen

IP Datagram Delivery

- Every IP packet (datagram) contains the destination IP address
- The network part of the address uniquely identifies a single network that is part of the larger Internet.
- All hosts and routers that share the same network part of their address are connected to the same physical network.
- Routers can exchange packets on any network they're attached to.

IP addresses

• Hierarchical, not flat as in Ethernet

• Written as four decimal numbers separated by dots: 158.130.14.2

Network Classes

Class	# of nets	# of hosts	
		per net	
Α	126	~16 million	
B	8192	65534	
С	~2 million	254	

IP Forwarding algorithm

- If (Network # dest == Network # interface) then deliver to destination over interface
- else if (Network # dest in forwarding table) deliver packet to NextHop router
- else deliver packet to default router
- Forwarding tables
 - Contain (Network #, NextHop) pairs
 - Additional information
 - Built by routing protocol that learns the network topology, adapts to changes

Subnetting

- Problem: IP addressing scheme leads to fragmentation
 - A class B network with only 300 machines on it wastes > 65,000 addresses
 - Need a way to divide up a single network address space into multiple smaller subnetworks.
- Idea: One IP network number allocated to several physical networks.
 - The multiple physical networks are called *subnets*
 - Should be close together (why?)
 - Useful when a large company (or university!) has many physical networks.

Subnet Numbers

- Solution: *Subnetting*
 - All nodes are configured with subnet mask
 - Allows definition of a subnet number
 - All hosts on a physical subnetwork share the same *subnet number*

Subnet Mask (255.255.255.0)

111111111111111111111111111111111111111

Subnetted Address:

Network number	Subnet ID	Host ID
		1

Example of Subnetting

Subnets, continued

- Mask is bitwise-ANDed with address
- This is done at routers
- Router tables in this model:
 - <Subnet #, Subnet Mask, NextHop>
- Subnetting allows a set of physical networks to look like a single logical network from elsewhere

Forwarding Algorithm

D = destination IP address for each forwarding table entry (SubnetNumber, SubnetMask, NextHop) D1 = SubnetMask & D if D1 = SubnetNumber if NextHop is an interface deliver datagram directly to destination else

deliver datagram to NextHop (router)

Deliver datagram to default router (if above fails)

ARP - Address Resolution Protocol

- Problem:
 - Need mapping between IP and link layer addresses.
- Solution: ARP
 - Every host maintains IP–Link layer mapping table (cache)
 - Timeout associated with cached info (15 min.)
- Sender
 - Broadcasts "Who is IP addr X?"
 - Broadcast message includes sender's IP & Link Layer address
- Receivers
 - Any host with sender in cache "refreshes" time-out
 - Host with IP address X replies "IP X is Link Layer Y"
 - Target host adds sender (if not already in cache)

ICMP: Internet Control Message Protocol

- Collection of error & control messages
- Sent back to the source when Router or Host cannot process packet correctly
- Error Examples:
 - Destination host unreachable
 - Reassembly process failed
 - TTL reached 0
 - IP Header Checksum failed
- Control Example:
 - Redirect tells source about a better route

Domain Name System

• System for mapping mnemonic names for computers into IP addresses.

zeta.cis.upenn.edu ---- 158.130.12.244

- Domain Hierarchy
- Name Servers
 - 13 Root servers map top-level domains such as ".com" or ".net"
 - (Why 13? Early UDP protocol supported only 512 bytes...)
- Name Resolution
 - Protocol for looking up hierarchical domain names to determine the IP address
 - Protocol runs on UDP port 53

Domain Name Hierarchy

Hierarchy of Name Servers

Records on Name Servers

- < Name, Type, Class, TTL, RDLength, RDATA >
- Name of the node
- Types:
 - A Host to address mappings
 - NS Name server address mappings
 - CNAME Aliases
 - MX Mail exchange server mappings
 - ... others
- Class IN for IP addresses

Name resolution

DNS Vulnerabilities

- See "Corrupted DNS Resolution Paths: The rise of a malicious resolution authority" by Dagon et al.
- Rogue DNS Servers
 - Compromised DNS servers that answer incorrectly
- DNS Cache Poisoning
 - Request: subdomain.example.com IN A
 - Reply: Answer:

```
(no response)
```

```
Authority section:
example.com. 3600 IN ns.wikipedia.org.
```

```
Additional section:
ns.wikipedia.org IN A w.x.y.z
```

Reflected denial of service

- ICMP message with an "echo request" is called 'ping'
- Broadcast a ping request
 - For sender's address put target's address
 - All hosts reply to ping, flooding the target with responses
- Hard to trace
- Hard to prevent
 - Turn off ping? (Makes legitimate use impossible)
 - Limit with network configuration by restricting scope of broadcast messages
- Sometimes called a "smurf attack"

(Distributed) Denial of Service

- Coordinate multiple subverted machines to attack
- Flood a server with bogus requests
 - TCP SYN packet flood
 - > 600,000 packets per second
- Detection & Assessment?
 - 12,800 attacks at 5000 hosts! (in 3 week period during 2001)
 - IP Spoofing (forged source IP address)
 - <u>http://www.cs.ucsd.edu/users/savage/papers/UsenixSec01.pdf</u>
- Feb. 6 2007: 6 of 13 root servers suffered DDoS attack
- Oct. 21 2002: 9 of 13 root servers were swampted
 - Prompted changes in the architecture
- Prevention?
 - Filtering?
 - Decentralized file storage?