CIS 551 / TCOM 401 Computer and Network Security

Spring 2008 Lecture 11

Wireless (802.11)

- Spread spectrum radio
 - 2.4GHz frequency band
- Bandwidth ranges 1, 2, 5.5, 11, 22, 54, 248 Mbps
 - 802.11b 11 Mbps
 - 802.11g 54 Mbps
 - 802.11n 248Mbps
- Like Ethernet, 802.11 has shared medium
 - Need MAC (uses exponential backoff)
- Unlike Ethernet, in 802.11
 - No support for collision detection
 - Not all senders and receivers are directly connected

Hidden nodes

- A and C are *hidden* with respect to each other
 - Frames sent from A to B and C to B simultaneously may collide, but A and C can't detect the collision.

Exposed nodes

- B is exposed to C
 - Suppose B is sending to A
 - C should still be allowed to transmit to D
 - Even though C—B transmission would collide
 - (Note A to B transmission would cause collision)

Multiple Access Collision Avoidance

- Sender transmits Request To Send (RTS)
 - Includes length of data to be transmitted
 - Timeout leads to exponential backoff (like Ethernet)
- Receiver replies with Clear To Send (CTS)
 - Echoes the length field
- Receiver sends ACK of frame to sender
- Any node that sees CTS cannot transmit for durations specified by length
- Any node that sees RTS but not CTS is not close enough to the receiver to interfere
 - It's free to transmit

Wireless Access Points

- Distribution System wired network infrastructure
- Access points stationary wireless device
- Roaming wireless

Selecting an Access Point

- Active scanning
 - Node sends a Probe frame
 - All AP's within reach reply with a Probe Response frame
 - Node selects an AP and sends Association Request frame
 - AP replies with Association Response frame
- Passive scanning
 - AP periodically broadcasts Beacon frame
 - Node sends Association Request

Node Mobility

- B moves from AP1 to AP2
- B sends Probes, eventually prefers AP2 to AP1
- Sends Association Request

802.11 Security Issues

- Packet Sniffing is *worse*
 - No physical connection needed
 - Long range:
 - 802.11g indoors: ~38m, outdoors ~140m
 - 802.11n indoors: ~70m, outdoors ~250m
 - Original encryption standards (WEP, WEP2) not that good
- Denial of service
 - Association (and Disassociation) Requests are not authenticated

Wired Equivalent Privacy (WEP)

- Designed to provide same security standards as wired LANs (like Ethernet)
 - WEP uses 40 bit keys
 - WEP2 uses 128 bit keys
- Uses shared key authentication
 - Key is configured manually at the access point
 - Key is configured manually at the wireless device
- WEP frame transmission format:

802.11Hdr, IV, K_{S+IV} {DATA, ICV}

- S = shared key
- IV = 24 bit "initialization vector"
- ICV = "integrity checksum" uses the CRC checksum algorithm
- Encryption algorithm is RC4

Problem with WEP

- RC4 generates a keystream
 - Shared key S plus IV generates a long sequence of pseudorandom bytes RC4(IV,S)
 - Encryption is: $C = P \oplus RC4(IV,S)$ $\oplus = "xor"$
- IV's are public -- so it's easy to detect their reuse
- Problem: if IV ever repeats, then we have
 - C1 = P1 ⊕ RC4(IV,S)
 - C2 = P2 \oplus RC4(IV,S)
 - So C1 \oplus C2 = P1 \oplus P2
 - Statistical analysis or known plaintext can disentangle P1 and P2

Finding IV Collisions

- How IV is picked is not specified in the standard:
 - Standard "recommends" (but does not require) that IV be changed for every packet
 - Some vendors initialize to 0 on reset and then increment
 - Some vendors generate IV randomly per packet
- Very active links send ~1000 packets/sec
 - Exhaust 24 bit keyspace in < 1/2 day
- If IV is chosen randomly, probability is > 50% that there will be a collision after only 4823 packets

Other WEP problems

- Replay attacks
 - Standard requires the protocol to be stateless
 - Expensive to rule out replay attacks. (The sender and receiver can't keep track of expected sequence numbers)
- Integrity violations
 - Attacker can inject or corrupt WEP encrypted packets
 - CRC (Cyclic Redundancy Check) is an error detection code commonly used in internet protocols
 - CRC is good at detecting random errors (introduced by environmental noise)
 - But, CRC is not a hash function -- it is easy to find collisions
 - Attacker can arbitrarily pass off bogus WEP packets as legitimate ones

Wi-Fi Protected Access (WPA)

- Appeared in 2003, standardized as WPA2 in 2004
- Uses AES
 - Advanced Encryption Standard ("government strength")
 - Pre-shared keys (home use) or radius server (enterprise)

- Much better than WEP/WEP2
- More about the crypto soon...

Protocol Stack Revisited

Application vs. Network

Application Needs	Network Char.
Reliable, Ordered, Single-Copy Message Delivery	Drops , Duplicates and Reorders Messages
Arbitrarily large message s	Finite message size
Flow Control by Receiver	Arbitrary Delay
Supports multiple applications per-host	•••

User Datagram Protocol (UDP)

- Simplest transport-layer protocol
- Just exposes IP packet functionality to application level
- *Ports* identify sending/receiving process
 - Demultiplexing information
 - (port, host) pair identifies a network process

UDP End-to-End Model

• Multiplexing/Demultiplexing with Port number

Using Ports

- Client contacts Server at a *well-known port*
 - SMPT: port 25
 - DNS: port 53
 - POP3: port 110
 - Unix talk : port 517
 - In unix, ports are listed in /etc/services
- Sometimes Client and Server agree on a different port for subsequent communication
- Ports are an abstraction
 - Implemented differently on different OS's
 - Typically a message queue

Transmission Control Protocol (TCP)

- Most widely used protocol for reliable byte streams
 - Reliable, in-order delivery of a stream of bytes
 - Full duplex: pair of streams, one in each direction
 - Flow and congestion control mechanisms
 - Like UDP, supports ports
- Built on top of IP (hence TCP/IP)

TCP End-to-End Model

• Buffering corrects errors but may introduce delays

Packet Format

- Flags
 - SYN
 - FIN
 - RESET
 - PUSH
 - URG
 - ACK

• Fields

Three-Way Handshake

TCP State Transitions

2/26/08

TCP Receiver

- Maintains a buffer from which application reads
- Advertises < buffer size as the window for sliding window
- Responds with Acknowledge and AdvertisedWindow on each send; updates byte counts when data O.K.
- Application blocked until read() O.K.

TCP Sender

- Maintains a buffer; sending application is blocked until room in the buffer for its write
- Holds data until acknowledged by receiver as successfully received
- Implement window expansion and contraction; note difference between *flow* and *congestion* control

TCP Flow & Congestion Control

- Flow vs. Congestion Control
 - Flow control protects the recipient from being overwhelmed.
 - Congestion control protects the network from being overwhelmed.
- TCP Congestion Control
 - Additive Increase / Multiplicative Decrease
 - Slow Start
 - Fast Retransmit and Fast Recovery

Increase and Decrease

- A value CongestionWindow is used to control the number of unacknowledged transmissions.
- This value is increased linearly until timeouts for ACKs are missed.
- When timeouts occur, CongestionWindow is decreased by half to reduce the pressure on the network quickly.
- The strategy is called "additive increase / multiplicative decrease".

Additive Increase

TCP Sawtooth Pattern

Slow Start

- Sending the entire window immediately could cause a traffic jam in the network.
- Begin "slowly" by setting the congestion window to one packet.
- When acknowledgements arrive, double the congestion window.
- Continue until ACKs do not arrive or flow control dominates.

Slow Start

Network Vulnerabilities

- Anonymity
 - Attacker is remote, origin can be disguised
 - Authentication
- Many points of attack
 - Attacker only needs to find weakest link
 - Attacker can mount attacks from many machines
- Sharing
 - Many, many users sharing resources
- Complexity
 - Distributed systems are large and heterogeneous
- Unknown perimeter
- Unknown attack paths

Syn Flood Attack

- Recall TCP's 3-way handshake:
 - SYN --- SYN+ACK --- ACK
- Receiver must maintain a queue of partially open TCP connections
 - Called SYN_RECV connections
 - Finite resource (often small: e.g. 20 entries)
 - Timeouts for queue entries are about 1 minute.
- Attacker
 - Floods a machine with SYN requests
 - Never ACKs them
 - Spoofs the sending address (Why? Two reasons!)

Reflected denial of service

- Broadcast a ping request
 - For sender's address put target's address
 - All hosts reply to ping, flooding the target with responses
- Hard to trace
- Hard to prevent
 - Turn off ping? (Makes legitimate use impossible)
 - Limit with network configuration by restricting scope of broadcast messages

(Distributed) Denial of Service

- Coordinate multiple subverted machines to attack
- Flood a server with bogus requests
 - TCP SYN packet flood
 - > 600,000 packets per second
- Detection & Assessment?
 - 12,800 attacks at 5000 hosts! (in 3 week period during 2001)
 - IP Spoofing (forged source IP address)
 - <u>http://www.cs.ucsd.edu/users/savage/papers/UsenixSec01.pdf</u>
- Prevention?
 - Filtering?
 - Decentralized file storage?