
2/14/08 CIS/TCOM 551 1

CIS 551 / TCOM 401
Computer and Network Security

Spring 2008
Lecture 9

2/14/08 CIS/TCOM 551 2

Announcements
• Project 2: on the web Today

– Due March 7th
– Network intrusion detection

• Midterm I will be held in class next week
– February 19th
– Covers all material in class so far
– Example exams from past instances are on the web

(note: material was covered in a different order…)

• Plan for today:
– Talk about formal verification a bit
– Start to switch gears: network security

2/14/08 CIS/TCOM 551 3

In-class exercise
• Formal specification of a common function.

• High level specification:
– A Java method that sorts an array of integer values.
– Java method signature:

// Sorts the input array
int[] sort(int[] input) { … }

• What is a good specification for this function?
– Should be capture intended behavior/invariants
– Should be expressed in mathematical / rigorous language

2/14/08 CIS/TCOM 551 4

Network Architecture
• General blueprints that guide the design and

implementation of networks
• Goal: to deal with the complex requirements of a network
• Use abstraction to separate concerns

– Identify the useful service
– Specify the interface
– Hide the implementation

2/14/08 CIS/TCOM 551 5

Layering
• A result of abstraction in network design

– A stack of services (layers)
– Hardware service at the bottom layer
– Higher level services are implemented by using services at lower

levels

• Advantages
– Decompose problems
– Modular changes

Application

Error Control

Routing

Hardware

2/14/08 CIS/TCOM 551 6

Protocols
• A protocol is a specification of an interface between

modules (often on different machines)

• Sometimes “protocol” is used to mean the implementation
of the specification.

2/14/08 CIS/TCOM 551 7

Example Protocol Stack

Process-to-Process Channels

Host-to-Host Connectivity

Hardware

Application Programs

Request / Reply Channel Message Stream Channel

2/14/08 CIS/TCOM 551 8

Protocol Interfaces
• Service Interfaces

– Communicate up and down the stack
• Peer Interfaces

– Communicate to counterpart on another host

ProtocolProtocol

High-level
Object

High-level
Object

Peer-to-peer
 interface

Service interface Service Interface

Host #1 Host #2

2/14/08 CIS/TCOM 551 9

Example Protocol Graph
File
App

RRP

HHP

Host 1 Host 2
Video
App

MSP

File
App

RRP

HHP

Video
App

MSP

2/14/08 CIS/TCOM 551 10

Encapsulation
File
App

RRP

HHP

Host 1 Host 2
Video
App

MSP

File
App

RRP

HHP

Video
App

MSP

DATA

DATARRP

DATARRPHHP

DATARRP

DATA

2/14/08 CIS/TCOM 551 11

Internet Protocol Graph
FTP HTTP NTP VOIP

TCP UDP

IP

Ethernet ATM FDDI

2/14/08 CIS/TCOM 551 12

Open Systems Interconnection (OSI)

Application

Presentation

Session

Transport

Network

Data Link

Physical

End Host Reference model – not actual implementation.

Transmits messages (e.g. FTP or HTTP)

Data format issues (e.g. big- vs. little-endian)

Manages multiple streams of data

Process to process protocols

Routes packets among nodes in network

Packages bit streams into frames

Transmits raw bits over link

2/14/08 CIS/TCOM 551 13

Open Systems Interconnection (OSI)

Application

Presentation

Session

Transport

Network

Data Link

Physical

End Host Reference model – not actual implementation.

Transmits messages (e.g. FTP or HTTP)

Data format issues (e.g. big- vs. little-endian)

Manages multiple streams of data

Process to process protocols

Routes packets among nodes in network

Packages bit streams into frames

Transmits raw bits over link

2/14/08 CIS/TCOM 551 14

Signaling Components

Network
Adapter

Network
Adapter

Host Host

signal

Signaling
Components

Network adapters encode streams of bits into signals.

Simplification: Assume two discrete signals—high and low.
Practice: Two different voltages on copper link or different

brightness of light on fiber link.
(leads to some interesting encoding issues)

2/14/08 CIS/TCOM 551 15

Not in this course

!

" • E = #
0
$

" % E = &
'B

't

" •B = 0

" % B = µ
0
J + µ

0
#
0

'E

't

Bits

NRZ

Clock

Manchester

NRZI

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

2/14/08 CIS/TCOM 551 16

Open Systems Interconnection (OSI)

Application

Presentation

Session

Transport

Network

Data Link

Physical

End Host Reference model – not actual implementation.

Transmits messages (e.g. FTP or HTTP)

Data format issues (e.g. big- vs. little-endian)

Manages multiple streams of data

Process to process protocols

Routes packets among nodes in network

Packages bit streams into frames

Transmits raw bits over link

2/14/08 CIS/TCOM 551 17

Framing
• Need a way to send blocks of data.

– How does the network adapter detect when the sequence begins
and ends?

– Are there transmission errors in the data?

• Frames are link layer unit of data transmission
– Byte oriented vs. Bit oriented
– Point-to-point (e.g. PPP) vs. Multiple access (Ethernet)

2/14/08 CIS/TCOM 551 18

A Multi-access, Bit-oriented Protocol
• Frames contain sequences of bits

– Could be ASCII
– Could be pixels from an image

• Frames read by many nodes
– Address distinguishes intended recipient

• HDLC (High-level Data Link Control)
– Begin and ending = 01111110
– Uses bit stuffing: suffix five 1’s with a 0

Begin Header Body CRC Ending
8 816

HDLC frame format

16

2/14/08 CIS/TCOM 551 19

Problem: Error Detection & Correction
• Bit errors may be introduced into frames

– Electrical interference
– Thermal noise

• Could flip one bit or a few bits independently
• Could zero-out or flip a sequence of bits (burst error)

• How do you detect an error?

• What do you do once you find one?

2/14/08 CIS/TCOM 551 20

Error Detection
• General principal: Introduce redundancy

• Trivial example: send two copies
– High overheads: 2n bits to send n
– Won’t detect errors that corrupt same bits in both copies

• How can we do better?
– Minimize overhead
– Detect many errors
– General subject: error detecting codes

2/14/08 CIS/TCOM 551 21

Simple Error Detection Schemes
• Parity

– 7 bits of data
– 8th bit is sum of first seven bits mod 2
– Overhead: 8n bits to send 7n
– Detects: any odd number of bit errors

• Internet Checksum algorithm
– Add up the words of the message, transmit sum
– 16 bit ones-complement addition
– Overhead: 16 bits to send n
– Does not detect all two bit errors

2/14/08 CIS/TCOM 551 22

Cyclic Redundancy Check
• Reading: Wikipedia entry on CRC
• Used in link-level protocols

– CRC-32 used by Ethernet, 802.5, PKzip, …
– CRC-CCITT used by HDLC
– CRC-8, CRC-10, CRC-32 used by ATM

• Better than parity or checksum
– (e.g. 32 bits to send 12000)

• Simple to implement

2/14/08 CIS/TCOM 551 23

Cyclic Redundancy Check (CRC)
• Consider (n+1)-bit message as a n-degree polynomial

– Polynomial arithmetic modulo 2
– Bit values of message are coefficients
– Message = 10011010
– Polynomial

M(z) = (1 ⋅ z7) + (0 ⋅ z6) + (0 ⋅ z5) + (1 ⋅ z4) + (1 ⋅ z3) +
 (0 ⋅ z2) + (1 ⋅ z1) + (0 ⋅ z0)
 = z7 + z4 + z3 + z1

2/14/08 CIS/TCOM 551 24

Cyclic Redundancy Check
• Sender and receiver agree on a divisor polynomial C(z) of degree k

– Example k = 3
– C(z) = z3 + z2 + 1
– Coefficients are 1101

• Error correction bits are remainder of
(M(z) ⋅ zk) divided by C(z)

• This yields a n+k bit transmission polynomial P(z) that is exactly
divisible by C(z)

2/14/08 CIS/TCOM 551 25

Example CRC Calculation

1101 10011010 000
1

1101
1001

1

1101

1000

Multiplication by z3

Original message: M(z)

Divisor Polynomial: C(z)

111001

…

101 Remainder

…
…

2/14/08 CIS/TCOM 551 26

Example CRC Calculation

10011010 101Transmitted message P(z) =

• Recipient checks that C(z) evenly divides the received
message.

Z3 ⋅ Original Message M(z) =

101

10011010 000

Remainder = 101+

2/14/08 CIS/TCOM 551 27

CRC Error Detection
• Must choose a good divisor C(z)

– There are many standard choices:
CRC-8, CRC-10, CRC-12, CRC-16, CRC-32

– CRC-32: 0x04C11DB7

• All 1-bit errors as long as zk and z0 coefficients are 1
• All 2-bit errors as long as C(z) has three terms
• Any odd number of errors if (z+1) divides C(z)
• Any burst errors of length ≤ k

2/14/08 CIS/TCOM 551 28

CRC Implementations
• Easy to implement in hardware

– Base 2 subtraction is XOR
– Simple k-bit shift register with XOR gates inserted before 1’s in

C(z) polynomial
– Message is shifted in, registers fill with remainder

• Example C(z) = 1101

10011010 000⊕r0r1r2 ⊕

2/14/08 CIS/TCOM 551 29

Error Correction Codes
• Redundant information can be used to correct some errors
• Typically requires more redundancy

• Tradeoffs:
– Error detection requires retransmission
– Error correction sends more bits all the time

• Forward Error Correction is useful:
– When errors are likely (e.g. wireless network)
– When latency is too high for retransmission (e.g. satellite link)

