CIS 551 / TCOM 401
Computer and Network

Security

Spring 2007
Lecture 19

Announcements

* Reminder: Project 3 is available on the web pages

— Handout for SDES needed for the project
— Due: April 3rd

3/27/07 CIS/TCOM 551

Secure Shell (SSH)

« Secure Shell (SSH) is a program to log into another
computer over a network, to execute commands in a
remote machine, and to move files from one machine to
another.

|t provides strong authentication and secure
communications over unsecure channels.

« ltis intended as a replacement for telnet, rlogin, rsh, and
rcp.

3/27/07 CIS/TCOM 551

SSH protocol (overview)

 See: http://www.snailbook.com/protocols.html
— RFC's 4250,4251,4252,4253,4254

« Connection Setup / Version number exchange

» Session key exchange / Server Authentication

— Each side sends a list of preferred algorithms (e.g. Diffie-Hellman with
certain parameters)

— Guess which algorithm is used by other side

— Optimistically send first message of key exchange (if guess is wrong the
recipient will ignore it)

— Key exchange produces a shared key K and exchange hash H (used as
a session identifier)

— Server authenticates by signing the hash H

3/27/07 CIS/TCOM 551

SSH Protocol Continued

» Client Authentication
— Negotiate an authentication mechanism

— Public key (RSA or DSA)
» Keys created using ssh-keygen facility
« Stored in ~/.ssh/identity.pub

— Password
— Kerberos
— [etc/hosts.equiv

« Transport Protocol
— Negotiate encryption type

« Connection Protocol (for shells)

3/27/07 CIS/TCOM 551

SSH Protocol

SSH
Client

Compare Kq
to stored Kq

Request connection

>
Ks, Ky
<
K<{K-{r}}, 3DES || IDEA
>
E

All traffic encrypted using r and selected
algorithm. Can do regular login (or
something more complicated).

SSH
Server

K = server's
public host key

K = server's
public key,
changes every
hour

r = 256-bit
random number
generated by
client

3/27/07

CIS/TCOM 551

Encryption Ciphers

SSH uses the following ciphers for encryption (with varying options
for key sizes):

Cipher SSH1 SSH2

« DES yes no

« 3DES yes yes
 IDEA yes yes
« Blowfish yes yes
» Twofish no yes
» Arcfour no yes
« AES no yes
« Serpent no yes
« Cast128-cbc no yes

3/27/07 CIS/TCOM 551

SSH Protection

» ssh protects against:

— |P spoofing, where a remote host sends out packets which pretend to
come from another, trusted host.

— DNS spoofing, where an attacker forges name server records
— Interception of cleartext passwords and other data by intermediate hosts
— Modification of data by people in control of intermediate hosts

— Attacks based on listening to X authentication data and spoofed
connections to an X11 server

* In other words, ssh never trusts the net; somebody hostile who has

taken over the network can only force ssh to disconnect, but cannot
decrypt traffic, play back the traffic, or hijack the connection.

3/27/07 CIS/TCOM 551

SSH vs TELNET and RSH

Security
Telnet/rsh sends all communications in cleartext
SSH encrypts all communications and optionally
compresses

X/Port Forwarding
Makes it easy to run remote X applications
(xterm, netscape)
Can "tunnel” connections between two hosts

Other Features
Password-less logins via public/private key encryption
Secure file copy (scp/sftp) - replacement for ftp/rcp

3/27/07 CIS/TCOM 551

Example Use

Logging into hosts:

$ ssh -l username hostname
$ ssh username@hostname
$ ssh hostname

Example:

$ ssh stevez@eniac.seas.upenn.edu uptime

The authenticity of host 'eniac.seas.upenn.edu (158.130.64.177)'
can't be established.

RSA key fingerprint is bf:b1:e4:01:4¢:d3:69:e2:83:8b:8d:f9:b7:06:a3:a9.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'eniac.seas.upenn.edu’ (RSA) to the list of
known hosts.

stevez@eniac.seas.upenn.edu's password: <PASSWORD>

10:36am up 31 day(s), 17:47, 72 users, load average: 0.17, 0.19, 0.20

3/27/07 CIS/TCOM 551 10

SSH1 vs. SSH2

SSH1
Uses RSA, had patent issues in US
Also supports 3DES and Blowfish
Some support IDEA, but OpenSSL lacks it
Uses CRC for data integrity
Flawed, attacks possible
Less of a factor when using 3DES
SSH2
Uses DSA, supported best in commercial SSH
Not restricted by patents
Uses a different approach to get around CRC issues

SSH1 and SSH2 are not compatible with each other.

3/27/07 CIS/TCOM 551 11

Man vs. Machine

* Machine « Man

— Good at authenticating other — Good at identifying people
machines — Use small clues that when

— Good at mathematical combined yield an
manipulations, etc. unmistakable picture

— Can handle keys, secrets, etc. + Voice

— Very good memory of things * Height
stored in it

3/27/07 CIS/TCOM 551 12

Authenticating Humans: Foundations

Authentication is based on one or more of the following:
Something you know

— password

Something you have

— driver’s license, Penn Card

Something inherent about you

— Biometrics, location

What’s the most common method of authentication?

3/27/07 CIS/TCOM 551

13

Passwords

« Shared code/phrase
 Client sends to authenticate

« Simple, right? ' ?
\

« How do you...
— Establish them to begin with?
— Stop them from leaking?

— Stop them from being
guessed?

SN

\\

ER
A3W) Rb-

http://www.captcha.net/

3/27/07 CIS/TCOM 551

14

Prime Mover Problem

e Qut of band

— Physical mail
— Email
— Attached to the box
* Piggybacking
— Swipe Penn Card to make PennKey

— But where does the chain stop?
 Penn Card -> drivers license -> birth certificate

3/27/07 CIS/TCOM 551

15

Leaks

« Social engineering
— Warnings
* Legal and responsibility
— Shared password == shared liability

* Writing the password down on paper

3/27/07 CIS/TCOM 551

16

Guessing

 The "no such user” mistake
 The "here's who we are" mistake
« Common words, phrases for passwords

* Null passwords, "password", username, backwards,
etc.

* Dictionary attacks

 How bad is it?

3/27/07 CIS/TCOM 551

1979 Survey of 3,289 Passwords

* With no constraints on choice of password, Morris and
Thompson got the following results:
— 15 were a single ASCII letter.
— 72 were strings of two ASCII letters.
— 464 were strings of three ASCII letters.
— 47 were strings of four alphanumerics.
— 706 were five letters, all upper-case or all lower-case.
— 605 were six letters, all lower case.

3/27/07 CIS/TCOM 551

1990s Surveys of 15K Passwords

« Klein (1990) and Spafford (1992)
— 2.7% guessed in 15 minutes
— 21% in a week
— Sounds ok? Not if the passwords last 30 days
* Tricks
— Letter substitutions, words backwards, common names, patterns, etc.

— Anything you can think of off the top of your head, a hacker can think of
too

 Lazy users!
— Weakest link is always the way of the attack

3/27/07 CIS/TCOM 551

19

Heuristics for Guessing Attacks

* The dictionary with the words spelled backwards

« Alist of first names (best obtained from some mailing list).
Last names, street names, and city names also work well.

 The above with initial upper-case letters.

 All valid license plate numbers in your state. (About 5
hours work in 1979 for New Jersey.)

« Room numbers, social security numbers, telephone
numbers, and the like.

3/27/07 CIS/TCOM 551 20

What makes a good password?

« Password Length
— 64 bits of randomness is hard to crack
— 64 bits is roughly 20 “common” ASCII characters
— But... People can’t remember random strings
— Longer not necessarily better: people write the passwords down

 Pass phrases
— English Text has roughly 1.3 random bits/char.
— Thus about 50 letters of English text
— Hard to type without making mistakes!

* In practice
— Non-dictionary, mixed case, mixed alphanumeric
— Not too short (or too long)

3/27/07 CIS/TCOM 551

21

Hacks on plaintext password file

 |s the password file readable by the OS?
— Then if | break the OS

« Can privileged users see the file?
— ... and make copies

* |s the file backed up somewhere
— ... iInsecure?

* Is the file in plaintext somewhere in memory?
— Core dump

* Fool the user
— A program that masquerades as the authentication program

3/27/07 CIS/TCOM 551 22

Counter-hacks

« Control-Alt-Del for logging in
— For windows only
« Slow down
— Make guessing take too long
« Encrypt the password file
— “Salt" - to prevent duplicates
— Use one way hashes or encryptions on the passwords
 Password rules
— Min length, upper and lower case, no common words
— Use letters and numbers and symbols
— Change often
— Keep a password history
— Don't write it down!

3/27/07 CIS/TCOM 551

23

Add Salt

« “Salt” the passwords by adding random bits.

— Decreases the likelihood that two identical passwords will appear as identical
entries in the password file.

« 12 bit salt results in 4,096 versions of each password.
« /etc/passwd entry:

user_id | salt, [Hash(salt, + passwd,))

* Actually most modern implementations use so-called shadow password files
/etc/shadow that aren’t world readable.

3/27/07 CIS/TCOM 551 24

One Time Passwords

e Shared lists.
« Sequentially updated.

* One-time password sequences based on a one-way
(hash) function.

« Used in practice: SKey mechanism

3/27/07 CIS/TCOM 551 25

Hash-based 1-time Passwords

 Alice identifies herself to verifier Bart using a well-known
one-way hash function H.

* One-time setup.
— Alice chooses a secret w.

— Fixes a constant t for the number of times the authentication can
be done.

— Alice securely transfers Hi(w) to Bart
HH(H...(H(w))...))

Y
t times

3/27/07 CIS/TCOM 551

26

Hash-based 1-time Passwords

 Protocol actions. For session i, claimant A does the
following to identify itself:
— A computes w’ = H)(w) and transmits the value to B.

— B checks that i is the correct session (i.e. that the previous
session was i-1) and checks to see if H(v) = w’ where v was the
last value provided by A (as part of session i-1).

— B saves w’ and i for use in the next session.

 It's hard to compute x from H(x).

— Even though attacker gets to see H(t)(x), they can’t guess then
next message H{(+1)(x).

3/27/07 CIS/TCOM 551 27

One-time passwords: it" authentication

Allqe Bart
\@ — ’
(/ Kj—:/] o
\ -
W Ht+1)(w),

H(-) H(-)
Alice does the following to identify herself:

— A computes w’' = H (+)(w) and transmits the value to B.

— B checks that i is the correct session (i.e.. that the previous session was i-1) and
checks to see if H(w') = v where v was the last value provided by A (as part of
session i-1).

— B saves w’ and i for use in the next session.

3/27/07 CIS/TCOM 551

28

