CIS 551 / TCOM 401 Computer and Network Security

Spring 2007 Lecture 18

Announcements

- Midterm II
 - Thursday, March 22
 - In class, format similar to Midterm I
- Project 3 is available on the web pages
 - Handout for SDES needed for the project
 - Due: April 3rd
 - (Don't worry, it's shorter than the previous projects.)

Plan for Today

- Complete Digital Signatures
- Talk about Key Distribution Protocols
 - Needham Schroeder
 - Kerberos

Digital Signatures with Public Keys

- Assumes the algorithm is *commutative*:
 D(E(M, K), k) = E(D(M, k), K)
- Let K_A be Alice's public key
- Let k_A be her private key
- To sign msg, Alice sends $D(msg, k_A)$
- Bart can verify the message with Alice's public key
- Works! RSA: (m^e)^d = m^{ed} = (m^d)^e

Digital Signatures with Public Keys

Variations on Public Key Signatures

- Timestamps again (to prevent replay)
 - Signed certificate valid for only some time.
- Add an extra layer of encryption to guarantee confidentiality
 - Alice sends A, $K_B\{k_A\{msg\}\}$ to Bart
- Combined with hashes:
 - Send (A, msg, k_A{MD5(msg)})

Multiple Use of Keys

- Risky to use keys for multiple purposes.
- Using an RSA key for both authentication and signatures may allow a chosen-text attack.
- B attacker/verifier, $n_B = H(M)$ for some message M.

Key Establishment

- Establishing a "session key"
 - A shared key used for encrypting communications for a short duration -- a session
 - Need to authenticate first
- Symmetric keys.
 - Point-to-Point.
 - Needham-Schroeder.
 - Kerberos.

Symmetric Keys

- Key establishment using only symmetric keys requires use of pre-distribution keys to get things going.
- Then protocol can be based on:
 - Point to point distribution, or
 - Key Distribution Center (KDC).

Point-to-Point

- Session key should include a validity duration.
- Could also use public key cryptography to
 - Authenticate
 - Exchange symmetric shared key

Key Distribution Centers

Distribution Center Setup

- A wishes to communicate with B.
- T (trusted 3rd party) provides session keys.
- T has a key K_{AT} in common with A and a key K_{BT} in common with B.
- A authenticates T using a nonce n_A and obtains a session key from T.
- A authenticates to B and transports the session key securely.

Needham-Schroeder Protocol

- 1. $A \rightarrow T$: A, B, n_A
- 2. $T \rightarrow A$: $K_{AT}\{K_S, n_A, B, K_{BT}\{K_S, A\}\}$

A decrypts with K_{AT} and checks n_A and B. Holds K_S for future correspondence with B.

- 3. $A \rightarrow B$: $K_{BT}\{K_S, A\}$ B decrypts with K_{BT} .
- 4. $B \rightarrow A$: $K_{S}\{n_{B}\}$ A decrypts with K_{S} .

5.
$$A \rightarrow B$$
: $K_{S}\{n_{B} - 1\}$
B checks n_{B} -1.

- 1. $A \rightarrow T$: A, B, n_A
- 2. $T \rightarrow C(A)$: $K_{AT}\{k, n_A, B, K_{BT}\{K_S, A\}\}$

C is unable to decrypt the message to A; passing it along unchanged does no harm. Any change will be detected by A.

- 1. $A \rightarrow C(T)$: A, B, n_A
- 2. $C(A) \rightarrow T$: A, C, n_A
- 3. $T \rightarrow A$: $K_{AT}\{K_S, n_A, C, K_{CT}\{K_S, A\}\}$

Rejected by A because the message contains C rather than B.

- 1. $A \rightarrow C(T)$: A, B, n_A
- 2. $C \rightarrow T : C, B, n_A$
- 3. $T \rightarrow C$: K_{CT} { K_S , n_A , B, K_{BT} { K_S , C}}
- 4. $C(T) \rightarrow A$: $K_{CT}\{K_S, n_A, B, K_{BT}\{K_S, C\}\}$

A is unable to decrypt the message.

- 1. $C \rightarrow T$: C, B, n_A
- 2. $T \rightarrow C$: $K_{CT}\{K_S, n_A, B, K_{BT}\{K_S, C\}\}$
- 3. $C(A) \rightarrow B$: $K_{BT}\{K_S, C\}$

B will see that the purported origin (A) does not match the identity indicated by the distribution center.

Valid Attack

- The attacker records the messages on the network
 - in particular, the messages sent in step 3
- Consider an attacker that manages to get an old session key K_S.
- That attacker can then masquerade as Alice:
 - Replay starting from step 3 of the protocol, but using the message corresponding to $\rm K_{\rm S}.$
- Could be prevented with time stamps.

Kerberos

- Key exchange protocol developed at MIT in the late 1980's
- Central server provides "tickets"
- *Tickets* (also known as *capabilities*):
 - Unforgeable
 - Nonreplayable
 - Authenticated
 - Represent authority
- Designed to work with NFS (network file system)
- Also saves on authenticating for each service
 - e.g. with ssh.

Kerberos

Kerberos Login

- U = User's machine
- S = Kerberos Server
 - Has a database of user "passwords": userID $\rightarrow k_{pwd}$
- G = Ticket granting server

Kerberos Service Request

- Requesting a service from server F
- $U \rightarrow G$: K_{UG}{userID,timestamp}, K_{SG}{T(U,G)}, req(F), n'_U
- $G \rightarrow U$: $K_{UG}\{K_{UF}, n'_U\}, K_{FG}\{T(U, F)\}$
- $U \rightarrow F$: K_{UF}{userID,timestamp}, K_{FG}{T(U,F)}

Kerberos Benefits

- Distributed access control
 - No passwords communicated over the network
- Cryptographic protection against spoofing
 - All accesses mediated by G (ticket granting server)
- Limited period of validity
 - Servers check timestamps against ticket validity
 - Limits window of vulnerability
- Timestamps prevent replay attacks
 - Servers check timestamps against their own clocks to ensure "fresh" requests
- Mutual authentication
 - User sends nonce challenges

Kerberos Drawbacks

- Requires available ticket granting server
 - Could become a bottleneck
 - Must be reliable
- All servers must trust G, G must trust servers
 - They share unique keys
- Kerberos requires synchronized clocks
 - Replay can occur during validity period
 - Not easy to synchronize clocks
- User's machine could save & replay passwords
 - Password is a weak spot
- Kerberos does not scale well
 - Hard to replicate authentication server and ticket granting server
 - Duplicating keys is bad, extra keys = more management