
CIS 551 / TCOM 401
Computer and Network
Security

Spring 2007
Lecture 15

3/13/07 CIS/TCOM 551 2

Announcements
• Prof. Zdancewic will be back next lecture

3/13/07 CIS/TCOM 551 3

Problems with Shared Key Crypto
• Compromised key means interceptors can decrypt any

ciphertext they’ve acquired.
– Change keys frequently to limit damage

• Distribution of keys is problematic
– Keys must be transmitted securely
– Use couriers?
– Distribute in pieces over separate channels?

• Number of keys is O(n2) where n is # of participants
• Potentially easier to break?

3/13/07 CIS/TCOM 551 4

Diffie-Hellman Key Exchange
• Problem with shared-key systems: Distributing the shared

key
• Suppose that Alice and Bart want to agree on a secret

(i.e. a key)
– Communication link is public
– They don’t already share any secrets

3/13/07 CIS/TCOM 551 5

Diffie-Hellman by Analogy: Paint
Alice Bart

“Let’s use yellow”
“OK, yellow.”

1. Alice & Bart decide on a public color, and mix one
liter of that color.

2. They each choose a random secret color, and mix two
liters of their secret color.

2. They each choose a random secret color, and mix two
liters of their secret color.

3. They keep one liter of their secret color, and mix the
other with the public color.

2. They each choose a random secret color, and mix two
liters of their secret color.

3. They keep one liter of their secret color, and mix the
other with the public color.

2. They each choose a random secret color, and mix two
liters of their secret color.

3/13/07 CIS/TCOM 551 6

Diffie-Hellman by Analogy: Paint
Alice Bart

4. They exchange the mixtures over the public channel.

5. When they get the other person’s mixture, they
combine it with their retained secret color.

6. The secret is the resulting color: Public + Alice’s + Bart’s

3/13/07 CIS/TCOM 551 7

Diffie-Hellman Key Exchange
• Choose a prime p (publicly known)

– Should be about 512 bits or more
• Pick g < p (also public)

– g must be a primitive root of p.
– A primitive root generates the finite field p.
– Every n in {1, 2, …, p-1} can be written as

gk mod p
– Example: 2 is a primitive root of 5
– 20 = 1 21 = 2 22 = 4 23 = 3 (mod 5)

– Intuitively means that it’s hard to take logarithms base g because
there are many candidates.

3/13/07 CIS/TCOM 551 8

Diffie-Hellman
Alice Bart

1. Alice & Bart decide on a public prime p and primitive
root g.

“Let’s use (p, g)”
“OK”

2. Alice chooses secret number A. Bart chooses secret
number B

3. Alice sends Bart gA mod p.

 gA mod p

 gB mod p

4. The shared secret is gAB mod p.

3/13/07 CIS/TCOM 551 9

Details of Diffie-Hellman
• Alice computes gAB mod p because she knows A:

– gAB mod p = (gB mod p)A mod p

• An eavesdropper gets gA mod p and gB mod p
– They can easily calculate gA+B mod p but that doesn’t help.
– The problem of computing discrete logarithms (to recover A from

gA mod p is hard.

3/13/07 CIS/TCOM 551 10

Example
• Alice and Bart agree that q=71 and g=7.
• Alice selects a private key A=5 and calculates a public

key gA ≡ 75 ≡ 51 (mod 71). She sends this to Bart.
• Bart selects a private key B=12 and calculates a public

key gB ≡ 712 ≡ 4 (mod 71). He sends this to Alice.
• Alice calculates the shared secret:

S ≡ (gB)A ≡ 45 ≡ 30 (mod 71)
• Bart calculates the shared secret

S ≡ (gA)B ≡ 5112 ≡ 30 (mod 71)

3/13/07 CIS/TCOM 551 11

Why Does it Work?
• Security is provided by the difficulty of calculating discrete

logarithms.
• Feasibility is provided by

– The ability to find large primes.
– The ability to find primitive roots for large primes.
– The ability to do efficient modular arithmetic.

• Correctness is an immediate consequence of basic facts
about modular arithmetic.

3/13/07 CIS/TCOM 551 12

One-way Functions
• A function is one-way if it’s

– Easy to compute
– Hard to invert (in the average case)

• Examples
– Exponentiation vs. Discrete Log
– Multiplication vs. Factoring
– Knapsack Packing

• Given a set of numbers {1, 3, 6, 8, 12} find the sum of a subset
• Given a target sum, find a subset that adds to it

• Trapdoor functions
– Easy to invert given some extra information
– E.g. factoring p*q given q

3/13/07 CIS/TCOM 551 13

Public Key Cryptography
• Sender encrypts using a public key
• Receiver decrypts using a private key
• Only the private key must be kept secret

– Public key can be distributed at will

• Also called asymmetric cryptography
• Can be used for digital signatures
• Examples: RSA, El Gamal, DSA, various algorithms

based on elliptic curves

• Used in SSL, ssh, PGP, …

3/13/07 CIS/TCOM 551 14

Public Key Notation
• Encryption algorithm

 E : keyPub x plain → cipher
 Notation: K{msg} = E(K, msg)

• Decryption algorithm
 D : keyPriv x cipher → plain
 Notation: k{msg} = D(k,msg)

• D inverts E
 D(k, E(K, msg)) = msg

• Use capital “K” for public keys
• Use lower case “k” for private keys

• Sometimes E is the same algorithm as D

3/13/07 CIS/TCOM 551 15

Secure Channel: Private Key

KA,KB
kA

KA,KB
kB

Alice Bart

KB{Hello!}

KA{Hi!}

3/13/07 CIS/TCOM 551 16

Trade-offs for Public Key Crypto
• More computationally expensive than shared key crypto

– Algorithms are harder to implement
– Require more complex machinery

• More formal justification of difficulty
– Hardness based on complexity-theoretic results

• A principal needs one private key and one public key
– Number of keys for pair-wise communication is O(n)

3/13/07 CIS/TCOM 551 17

RSA Algorithm
• Ron Rivest, Adi Shamir, Leonard Adleman

– Proposed in 1979
– They won the 2002 Turing award for this work

• Has withstood years of cryptanalysis
– Not a guarantee of security!
– But a strong vote of confidence.

• Hardware implementations: 1000 x slower than DES

3/13/07 CIS/TCOM 551 18

RSA at a High Level
• Public and private key are derived from secret prime

numbers
– Keys are typically ≥ 1024 bits

• Plaintext message (a sequence of bits)
– Treated as a (large!) binary number

• Encryption is modular exponentiation
• To break the encryption, conjectured that one must be

able to factor large numbers
– Not known to be in P (polynomial time algorithms)

3/13/07 CIS/TCOM 551 19

Number Theory: Modular Arithmetic
• Examples:

– 10 mod 12 = 10
– 13 mod 12 = 1
– (10 + 13) mod 12 = 23 mod 12 = 11 mod 12
– 23 ≡ 11 (mod 12)
– “23 is congruent to 11 (mod 12)”

• a ≡ b (mod n) iff a = b + kn (for some integer k)

• The residue of a number modulo n is a number in the
range 0…n-1

3/13/07 CIS/TCOM 551 20

Number Theory: Prime Numbers
• A prime number is an integer > 1 whose only factors are 1

and itself.

• Two integers are relatively prime if their only common
factor is 1
– gcd = greatest common divisor
– gcd(a,b) = 1
– gcd(15,12) = 3, so they’re not relatively prime
– gcd(15,8) = 1, so they are relatively prime

• Easy to compute GCD using Euclid’s Algorithm

3/13/07 CIS/TCOM 551 21

Finite Fields (Galois Fields)
• For a prime p, the set of integers mod p forms a finite field
• Addition + Additive unit 0
• Multiplication * Multiplicative unit 1
• Inverses: n * n-1 = 1 for n ≠ 0

– Suppose p = 5, then the finite field is {0,1,2,3,4}
– 2-1 = 3 because 2 * 3 ≡ 1 mod 5
– 4-1 = 4 because 4 * 4 ≡ 1 mod 5

• Usual laws of arithmetic hold for modular arithmetic:
– Commutativity, associativity, distributivity of * over +

3/13/07 CIS/TCOM 551 22

RSA Key Generation
• Choose large, distinct primes p and q.

– Should be roughly equal length (in bits)
• Let n = p*q
• Choose a random encryption exponent e

– With requirement: e and (p-1)*(q-1) are relatively prime.
• Derive the decryption exponent d

– d = e-1 mod ((p-1)*(q-1))
– d is e’s inverse mod ((p-1)*(q-1))

• Public key: K = (e,n) pair of e and n
• Private key: k = (d,n)
• Discard primes p and q (they’re not needed anymore)

3/13/07 CIS/TCOM 551 23

RSA Encryption and Decryption
• Message: m
• Assume m < n

– If not, break up message into smaller chunks
– Good choice: largest power of 2 smaller than n

• Encryption: E((e,n), m) = me mod n
• Decryption: D((d,n), c) = cd mod n

3/13/07 CIS/TCOM 551 24

Example RSA
• Choose p = 47, q = 71
• n = p * q = 3337
• (p-1)*(q-1) = 3220
• Choose e relatively prime with 3220: e = 79

– Public key is (79, 3337)
• Find d = 79-1 mod 3220 = 1019

– Private key is (1019, 3337)
• To encrypt m = 688232687966683

– Break into chunks < 3337
– 688 232 687 966 683

• Encrypt: E((79, 3337), 688) = 68879 mod 3337 = 1570
• Decrypt: D((1019, 3337), 1570) = 15701019 mod 3337 = 688

3/13/07 CIS/TCOM 551 25

• φ(n) is the number of positive integers less than n that are
relatively prime to n
– φ(12) = 4
– Relative primes of 12 (less than 12): {1, 5, 7, 11}

• For p a prime, φ(p) = p-1. Why?
• For p,q two distinct primes, φ(p*q) = (p-1)*(q-1)

– There’s p*q-1 numbers less than p*q
– Factors of p*q =

• {1*p, 2*p, …, q*p} for a total of q of them
• {1*q, 2*q, …, p*q} for another of of them
• No other numbers
• φ(p*q) = (p*q) - (p + q - 1) = pq - p - q + 1 = (p-1)*(q-1)

Euler’s totient function: φ(n)

All #s ≤ p*q

P many multiples of q

q many multiples of p

don’t double count p*q

3/13/07 CIS/TCOM 551 26

Fermat’s Little Theorem
• Generalized by Euler.

• Theorem: If p is a prime then ap ≡ a mod p.

• Corollary: If gcd(a,n) = 1 then aφ(n) ≡ 1 mod n.

• Easy to compute a-1 mod n
– a-1 mod n = aφ(n)-1 mod n
– Why? a * aφ(n)-1 mod n

 = aφ(n)-1+1 mod n
 = aφ(n) mod n
 = 1

3/13/07 CIS/TCOM 551 27

Example of Fermat’s Little Theorem
• What is the inverse of 5, modulo 7?
• 7 is prime, so φ(7) = 6
• 5-1 mod 7 = 56-1 mod 7

= 55 mod 7
= (52 * 52 * 5) mod 7
= ((52 mod 7) * (52 mod 7) * (5 mod 7)) mod 7
= ((4 mod 7) * (4 mod 7) * (5 mod 7)) mod 7
= ((16 mod 7) * (5 mod 7)) mod 7
= ((2 mod 7) * (5 mod 7)) mod 7
= (10 mod 7) mod 7
= 3 mod 7
= 3

3/13/07 CIS/TCOM 551 28

Chinese Remainder Theorem
• (Or, enough of it for our purposes…)

• Suppose:
– p and q are relatively prime
– a ≡ b (mod p)
– a ≡ b (mod q)

• Then: a ≡ b (mod p*q)

• Proof:
– p divides (a-b) (because a mod p = b mod p)
– q divides (a-b)
– Since p, q are relatively prime, p*q divides (a-b)
– But that is the same as: a ≡ b (mod p*q)

3/13/07 CIS/TCOM 551 29

Proof that D inverts E
 cd mod n
= (me)d mod n (definition of c)
= med mod n (arithmetic)
= mk*(p-1)*(q-1) + 1 mod n (d inverts e)
= m*mk*(p-1)*(q-1) mod n (arithmetic)
= m mod n (C. R. theorem)
= m (m < n)

e*d ≡ 1 mod (p-1)*(q-1)

3/13/07 CIS/TCOM 551 30

Finished Proof
• Note: mp-1 ≡ 1 mod p (if p doesn’t divide m)

– Why? Fermat’s little theorem.
• Same argument yields: mq-1 ≡ 1 mod q

• Implies: mk*φ(n)+1 ≡ m mod p
• And mk*φ(n)+1 ≡ m mod q

• Chinese Remainder Theorem implies:
 mk*φ(n)+1 ≡ m mod n

3/13/07 CIS/TCOM 551 31

How to Generate Prime Numbers
• Many strategies, but Rabin-Miller primality test is often used in

practice.
– ap-1 ≡ 1 mod p

• Efficiently checkable test that, with probability ¾, verifies that a
number p is prime.

– Iterate the Rabin-Miller primality test t times.
– Probability that a composite number will slip through the test is

(¼)t

– These are worst-case assumptions.
• In practice (takes several seconds to find a 512 bit prime):

1. Generate a random n-bit number, p
2. Set the high and low bits to 1 (to ensure it is the right number of

bits and odd)
3. Check that p isn’t divisible by any “small” primes 3,5,7,…,<2000
4. Perform the Rabin-Miller test at least 5 times.

3/13/07 CIS/TCOM 551 32

Rabin-Miller Primality Test
• Is n prime?
• Write n as n = (2r)*s + 1
• Pick random number a, with 1 ≤ a ≤ n - 1
• If

– as ≡ 1 mod n and
– for all j in {0 … r-1}, a2js ≡ -1 mod n

• Then return composite
• Else return probably prime

