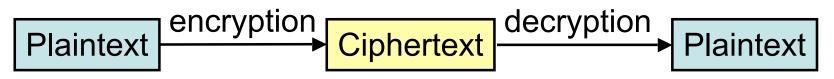
CIS 551 / TCOM 401 Computer and Network Security

Spring 2007 Lecture 14

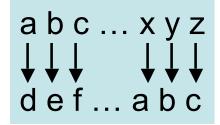

Announcements

- Project 2 (still) due March 15.
- Please start early.
- I mean it.

Κρυστογραφία (Cryptography)

- From the Greek "kryptos" and "graphia" for "secret writing"
- Confidentiality
 - Obscure a message from eaves-droppers
- Integrity
 - Assure recipient that the message was not altered
- Authentication
 - Verify the identity of the source of a message
- Non-repudiation
 - Convince a 3rd party that what was said is accurate

Terminology


- Cryptographer
 - Invents cryptosystems
- Cryptanalyst
 - Breaks cryptosystems
- Cryptology
 - Study of crypto systems
- Cipher
 - Mechanical way of encrypting text or data
- Code
 - Semantic translation: "eat breakfast tomorrow" = "attack on Thursday" (or use Navajo!)

Kinds of Cryptographic Analysis

- Goal is to recover the key (& algorithm)
- Ciphertext only attacks
 - No information about content or algorithm
 - Very hard
- Known Plaintext attacks
 - Full or partial plaintext available in addition to ciphertext
- Chosen Plaintext attacks
 - Know which plaintext has been encrypted
- Algorithm & Ciphertext attacks
 - Known algorithm, known ciphertext, recover key

The Caesar Cipher

- Purportedly used by Julius Caesar (c. 75 B.C.)
 - Add 3 mod 26
- Advantages
 - Simple
 - Intended to be performed in the field
 - Most people couldn't read anyway
- Disadvantages
 - Violates "no security through obscurity"
 - Easy to break (why?)

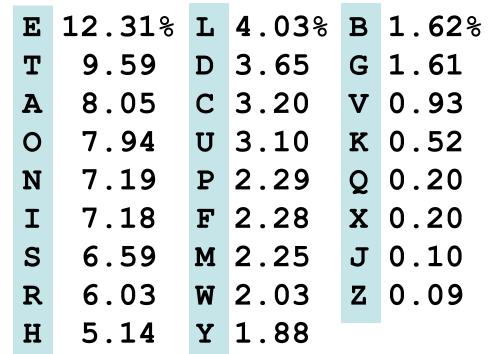
Monoalphabetic Ciphers

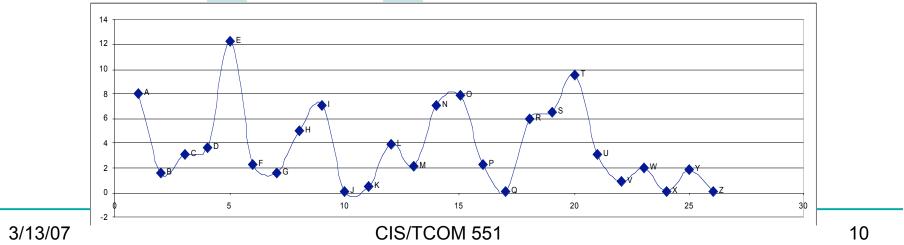
- Also called *substitution* ciphers
- Separate *algorithm* from the *key*
 - Add N mod 26
 - rot13 = Add 13 mod 26
- General monoalphabetic cipher
 - Arbitrary permutation π of the alphabet
 - Key is the permutation

a b c d

$$\downarrow$$
 \downarrow \downarrow \downarrow \downarrow
 $\pi(a) \pi(b) \pi(c) \pi(d)$

Example Cipher


Plaintext: he lied Ciphertext: ic hbcn

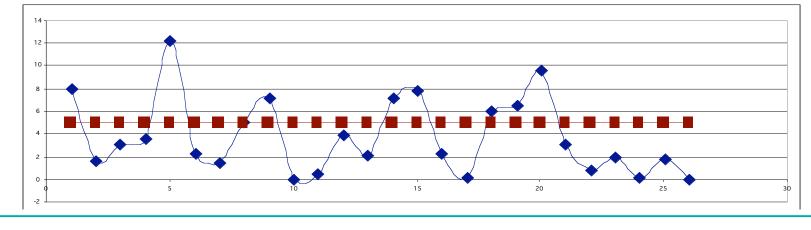

Cryptanalysis of Monoalphabetic Ciphers

- Brute force attack: try every key
 - N! Possible keys for N-letter alphabet
 - 26! \approx 4 x 10²⁶ possible keys
 - Try 1 key per μ sec ... 10 trillion years
- ...but (!) monoalphabetic ciphers are *easy* to solve

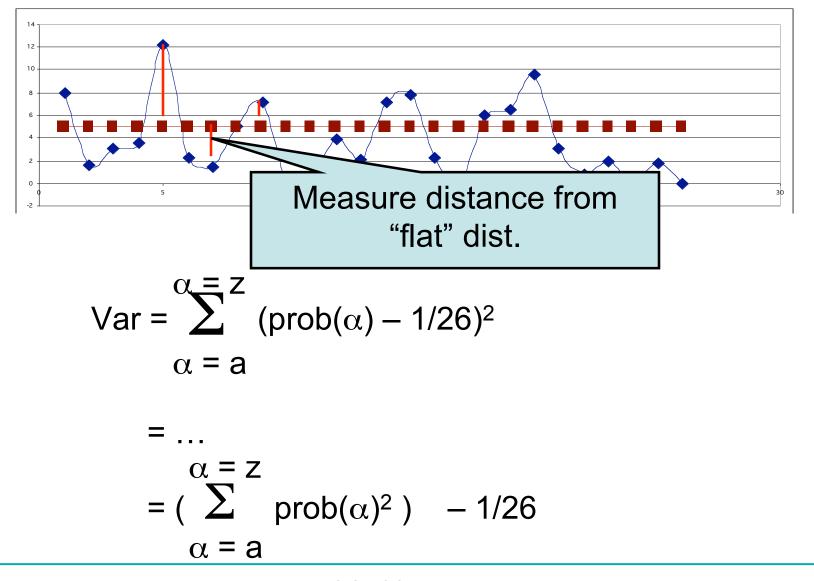
- One-to-one mapping of letters is bad
- Frequency distributions of common letters

Order & Frequency of Single Letters

Monoalphabetic Cryptanalysis


- Count the occurrences of each letter in the cipher text
- Match against the statistics of English
- Most frequent letter likely to be "e"
- 2nd most frequent likely to be "t"
- etc.
- Longer ciphertext makes statistical analysis more likely to work...

Desired Statistics


- Problems with monoalphabetic ciphers
 - Frequency of letters in ciphertext reflects frequency of plaintext
- Want a single plaintext letter to map to multiple ciphertext letters

- "e" **→**"X", "C", "W"

• Ideally, ciphertext frequencies should be flat

Variance: Measure of "roughness"

Polyalphabetic Substitutions

- Pick k substitution ciphers
 - $\pi_1 \pi_2 \pi_3 \dots \pi_k$
 - Encrypt the message by rotating through the k substitutions

- Same letter can be mapped to multiple different ciphertexts
 - Helps smooth out the frequency distributions
 - Diffusion

Diffusion and Confusion

- Diffusion
 - Ciphertext should look random
 - Protection against statistical attacks
 - Monoalphabetic -> Polyalphabetic substitution; diffusion ↑
- Confusion
 - Make the relation between the key, plaintext and ciphertext complex
 - Lots off confusion -> hard to calculate key in a known plaintext attack
 - Polyalphabetic substitution: little confusion

Perfect Substitution Ciphers

- Choose a string of random bits the same length as the plaintext, XOR them to obtain the ciphertext.
- Perfect Secrecy
 - Probability that a given message is encoded in the ciphertext is unaltered by knowledge of the ciphertext
 - Proof: Give me any plaintext message and any ciphertext and I can construct a key that will produce the ciphertext from the plaintext.

One-time Pads

- Another name for Perfect Substitution
- Actually used by US agents in Russia
 - Physical pad of paper
 - List of random numbers
 - Pages were torn out and destroyed after use
 - "Numbers Stations"?
- Vernam Cipher
 - Used by AT&T
 - Random sequence stored on punch tape
- Not practical for computer security...

Problems with "Perfect" Substitution

- Key is the same length as the plaintext
 - Sender and receiver must agree on the same random sequence
 - Not any easier to transmit key securely than to transmit plaintext securely
- Need to be able to generate many truly random bits
 - Pseudorandom numbers generated by an algorithm aren't good enough for long messages
- Can't reuse the key
 - Not enough confusion

Computational Security

- Perfect Ciphers are *unconditionally secure*
 - No amount of computation will help crack the cipher (i.e. the only strategy is brute force)
- In practice, strive for *computationally security*
 - Given enough power, the attacker could crack the cipher (example: brute force attack)
 - But, an attacker with only *bounded resources* is extremely unlikely to crack it
 - Example: Assume attacker has only polynomial time, then encryption algorithm that can't be inverted in less than exponential time is secure.

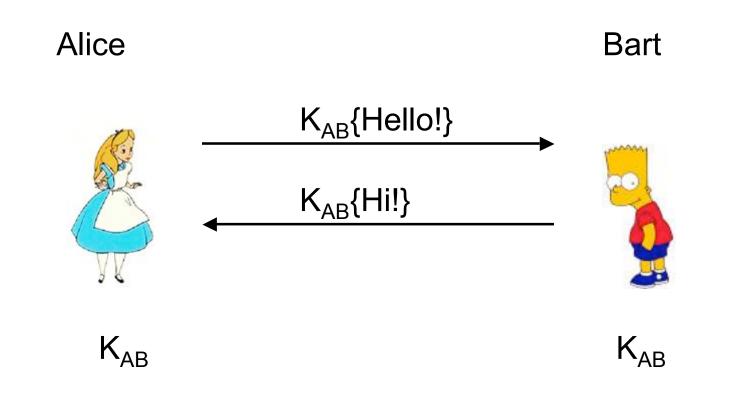
Kinds of Industrial Strength Crypto

- Shared Key Cryptography
- Public Key Cryptography
- Cryptographic Hashes

- All of these aim for computational security
 - Not all methods have been proved to be intractable to crack.

Shared Key Cryptography

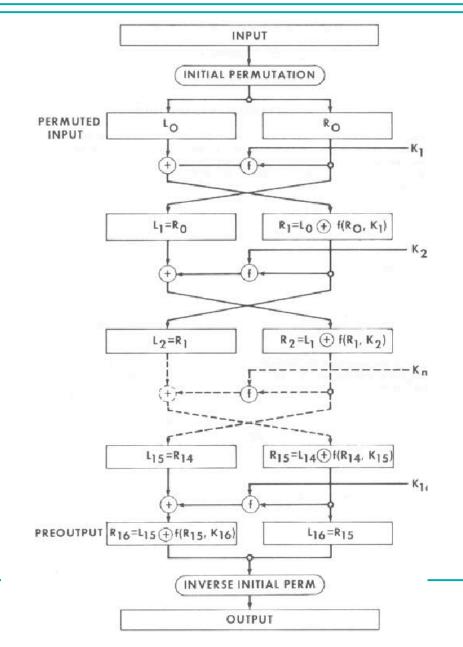
- Sender & receiver use the same key
- Key must remain private
- Also called *symmetric* or *secret key* cryptography
- Often are *block-ciphers*
 - Process plaintext data in blocks
- Examples: DES, Triple-DES, Blowfish, Twofish, AES, Rijndael, …

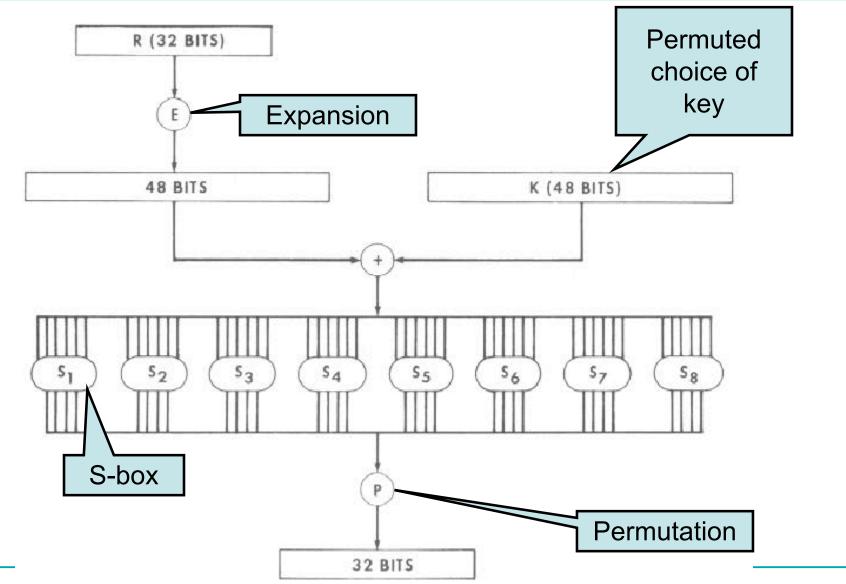

Shared Key Notation

Encryption algorithm

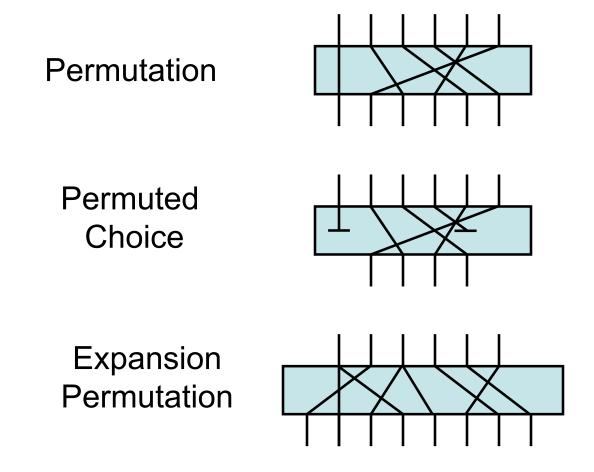
E : key x plain \rightarrow cipher Notation: K{msg} = E(K, msg)

- Decryption algorithm
 - D : key x cipher \rightarrow plain
- D inverts E
 D(K, E(K, msg)) = msg
- Use capital "K" for shared (secret) keys
- Sometimes E is the same algorithm as D


Secure Channel: Shared Keys


Data Encryption Standard (DES)

- Adopted as a standard in 1976
- Security analyzed by the National Security Agency (NSA)
 - <u>http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf</u>
- Key length is 56 bits
 - padded to 64 bits by using 8 parity bits
- Uses simple operators on (up to) 64 bit values
 - Simple to implement in software or hardware
- Input is processed in 64 bit blocks
- Based on a series of 16 rounds
 - Each cycle uses permutation & substitution to combine plaintext with the key


DES Encryption

One Round of DES (f of previous slide)

Types of Permutations in DES

DES S-Boxes

- Substitution table
- 6 bits of input replaced by 4 bits of output
- Which substitution is applied depends on the input bits
- Implemented as a lookup table
 - 8 S-Boxes
 - Each S-Box has a table of 64 entries
 - Each entry specifies a 4-bit output

DES Decryption

- Use the same algorithm as encryption, but use $k_{16}\,\ldots\,k_1$ instead of $k_1\,\ldots\,k_{16}$
- Proof that this works:
 - To obtain round j from j-1:

(1)
$$L_j = R_{j-1}$$

(2) $R_j = L_{j-1} \oplus f(R_{j-1}, k_j)$

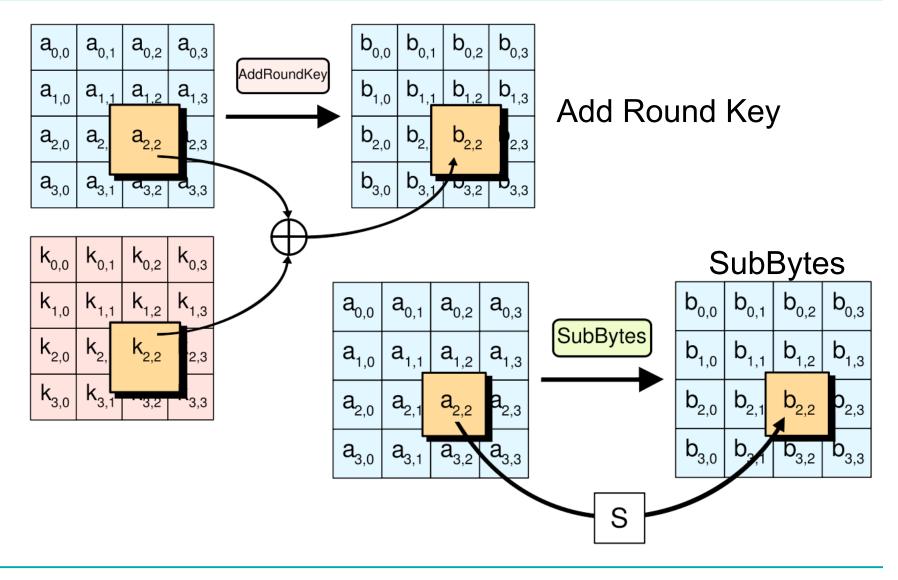
- Rewrite in terms of round j-1:

(1)
$$R_{j-1} = L_j$$

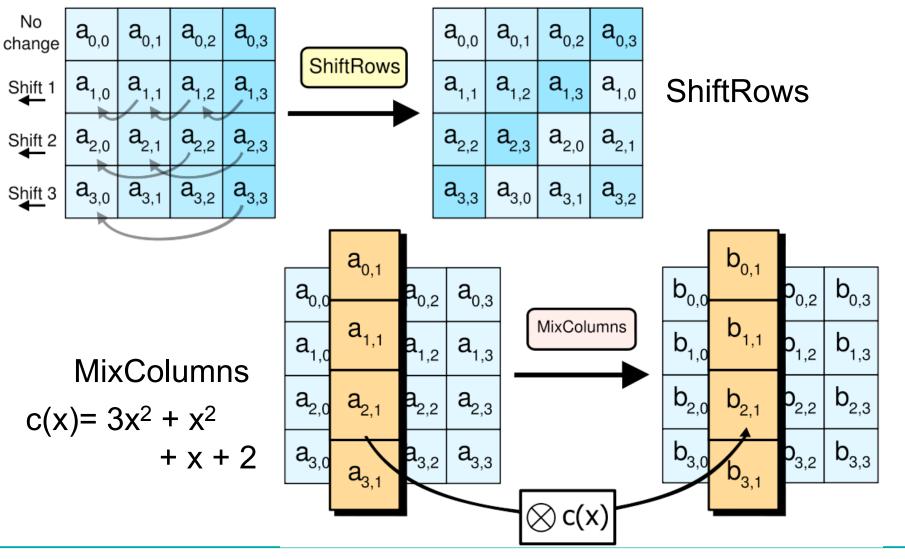
(2) $L_{j-1} \oplus f(R_{j-1}, k_j) = R_j$
 $L_{j-1} \oplus f(R_{j-1}, k_j) \oplus f(R_{j-1}, k_j) = R_j \oplus f(R_{j-1}, k_j)$
 $L_{j-1} = R_j \oplus f(R_{j-1}, k_j)$
 $L_{j-1} = R_j \oplus f(L_j, k_j)$

Problems with DES

- Key length too short: 56 bits
 - <u>www.distributed.net</u> broke a DES challenge in 1999 in under 24 hours (parallel attack)
- Other problems
 - Bit-wise complementation of key produces bit-wise complemented ciphertext
 - Not all keys are good (half 0's half 1's)
 - Differential cryptanalysis (1990): Carefully choose pairs of plaintext that differ in particular known ways (e.g. they are complements)
 - But particular choice of S boxes is secure against this (!)


Block Cipher Performance

Algorithm	Key Length	Block Size	Rounds	Clks/Byte
Twofish	variable	128	16	18.1
Blowfish	variable	64	16	19.8
Square	128	128	8	20.3
RC5-32/16	variable	64	32	24.8
CAST-128	128	64	16	29.5
DES	56	64	16	43
Serpent	128,192,256	128	32	45
SAFER (S)K-128	128	64	8	52
FEAL-32	64, 128	64	32	65
IDEA	128	64	8	74
Triple-DES	112	64	48	116


Advanced Encryption Standard (AES)

- National Institute of Standards & Technology NIST
 - Computer Security Research Center (CSRC)
 - <u>http://csrc.nist.gov/</u>
 - <u>http://www.esat.kuleuven.ac.be/~rijmen/rijndael/</u>
- Uses the Rijndael algorithm
 - Invented by Belgium researchers
 Dr. Joan Daemen & Dr. Vincent Rijmen
 - Adopted May 26, 2002
 - Key length: 128, 192, or 256 bits
 - Block size: 128, 192, or 256 bits

AES Operations

AES Operations

Problems with Shared Key Crypto

- Compromised key means interceptors can decrypt any ciphertext they've acquired.
 - Change keys frequently to limit damage
- Distribution of keys is problematic
 - Keys must be transmitted securely
 - Use couriers?
 - Distribute in pieces over separate channels?
- Number of keys is $O(n^2)$ where n is # of participants
- Potentially easier to break?