
1/18/07 CIS/TCOM 551 1

CIS 551 / TCOM 401
Computer and Network Security

Spring 2007
Lecture 3

1/18/07 CIS/TCOM 551 2

Announcements

● Email project groups to Jeff (vaughan2 AT
seas.upenn.edu) by Jan. 25

● Start your projects early!

1/18/07 CIS/TCOM 551 3

The “Gold” Standard
• Authentication

– Identify which principals take which actions
• Audit

− Recording the security relevant actions
• Authorization

− Determine what actions are permissible

− This lecture is about authorization.
− We'll get to authentication & audit later.

1/18/07 CIS/TCOM 551 4

Authorization
● Authorization is the process of determining

whether a principal is permitted to perform a
particular action.

● Access control
− Example: Read/Write/Execute permissions for a file

system.
− Example: Java applets have restricted authorization

to perform network & disk I/O.

1/18/07 CIS/TCOM 551 5

Policy vs. Mechanism
● Access control policy is a specification

− Given in terms of a model of the system
− Subjects: do things (i.e. a process writes to files)
− Objects: are passive (i.e. the file itself)
− Actions: what the subjects do (i.e. read a string from a file)
− Rights: describe authority (i.e. read or write permission)

● Mechanisms are used to implement a policy
− Example: access control bits in Unix file system & OS checks
− Mechanism should be general; ideally should not constrain the possible policies.
− Complete mediation: every access must be checked

1/18/07 CIS/TCOM 551 6

Access Control Matrices

{r,w,x}…{r,w,x}{x}SubjM

……………

……{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

Each entry
contains
a set of
rights.

1/18/07 CIS/TCOM 551 7

Access Control Checks
● Suppose subject s wants to perform action that

requires right r on object o:

● If (r ∈ A[s][o]) then perform action
else access is denied

1/18/07 CIS/TCOM 551 8

Rights and Actions
● Besides read, write, execute actions there are many others:
● Ownership
● Creation

− New subjects (i.e. in Unix add a user)
− New objects (i.e. create a new file)
− New rights: Grant right r to subject s with respect to object o (sometimes called

delegation)
● Deletion of

− Subjects
− Objects
− Rights (sometimes called revocation)

1/18/07 CIS/TCOM 551 9

Access Control Examples
● Assume OS is a subject with all rights
● To create a file f owned by Alice:

− Create object f
− Grant own to Alice with respect to f
− Grant read to Alice with respect to f
− Grant write to Alice with respect to f

● To start a login for Alice
− Input and check password
− Create a shell process p
− Grant own_process to Alice with respect to p

1/18/07 CIS/TCOM 551 10

Reference Monitors

Subject

Monitor

(Action, Object)

Request

Granted

Denied?

1/18/07 CIS/TCOM 551 11

Reference Monitors
● Criteria

− Correctness
− Complete mediation (all avenues of access must be

protected)
− Expressiveness (what policies are admitted)
− How large/complex is the mechanism?

● Trusted Computing Base (TCB)
− The set of components that must be trusted to

enforce a given security policy
− Would like to simplify/minimize the TCB to improve

assurance of correctness

1/18/07 CIS/TCOM 551 12

Software Mechanisms
● Interpreters

− Check the execution of
every instruction

− Hard to mediate high-level
abstractions

● Wrappers
− Only “interpret” some of

the instructions
− What do you wrap?
− Where do you wrap?

(link-time?)
● Operating Systems

− Level of granularity?
− Context switching overheads?

● Example
− Java and C# runtime systems

Program

Interpreter

Hardware

A[s][o]

OS

A[s][o]

A[s][o]

1/18/07 CIS/TCOM 551 13

Hardware Mechanisms
● Multiple modes of operation

− User mode (problem state)
− Kernel mode (supervisor state)

● Specialized hardware
− Virtual memory support (TLB’s, etc.)
− Interrupts

Hardware

OS A[s][o]

A[s][o]

1/18/07 CIS/TCOM 551 14

Protecting Reference Monitors
● It must not be possible to circumvent the

reference monitor by corrupting it
● Mechanisms

− Type checking
− Sandboxing: run processes in isolation
− Software fault isolation: rewrite memory access

instructions to perform bounds checking
− User/Kernel modes
− Segmentation of memory (OS resources aren’t part

of virtual memory system)

● Access control matrices
− Subjects >> #users (say 1000s)
− Objects >> #files (say 1,000,000s)
− To specify “all users read f”

● Change O(users) entries

● Matrix is typically sparse
− Store only non-empty entries

● Special consideration for groups of users

Implementing Access Control

1/18/07 CIS/TCOM 551 16

Access Control Lists

{r,w,x}…{r,w,x}{x}SubjM

……………

{r}…{}{w,x}Subj2

{}…{r,w}{r,w,x}Subj1

ObjN…Obj2Obj1A[s][o]

For each object, store a list of (Subject x Rights) pairs.

1/18/07 CIS/TCOM 551 17

Access Control Lists

● Resolving queries is linear in length of the list
● Revocation w.r.t. a single object is easy
● “Who can access this object?” is easy

− Useful for auditing
● Lists could be long

− Factor into groups (lists of subjects)
− Give permissions based on group
− Introduces consistency question w.r.t. groups

● Authentication critical
− When does it take place? Every access would be

expensive.

1/18/07 CIS/TCOM 551 18

Representational Completeness

● Access Control Lists
− Can represent any access control matrix
− Potentially very large
− Used in windows file system, NTFS

● Unix file permissions (next topic)
− Fixed size
− Can't naturally express some access control

policies/matrices

1/18/07 CIS/TCOM 551 19

Unix file security
● Each file has owner and group
● Permissions set by owner

− Read, write, execute
− Owner, group, other
− Represented by vector of
 four octal values

● Only owner, root can change permissions
− This privilege cannot be delegated or shared

● Setid bits – Discuss in a few slides

rwx rwxrwx---

owner group other

setid

1/18/07 CIS/TCOM 551 20

Question
● "owner" can have fewer privileges than "other"

− What happens?
● User gets access?
● User does not?

• Prioritized resolution of differences
if user = owner then owner permission
 else if user in group then group permission
 else other permission

1/18/07 CIS/TCOM 551 21

Unix Policies Interact

/home/jeff/ jeff jeff -rwx --- ---
/home/jeff/.bashrc jeff jeff -rwx r-- r--

● stevez cannot read /home/jeff/.bashrc
− The confidentiality/availability of an object depends

on policies other than it's own.
− Such interacts make specifying policies hard.
− Problem is not limited to unix (or file systems).

1/18/07 CIS/TCOM 551 22

Setid bits on executable Unix file
● Three setid bits

− Sticky
● Off: if user has write permission on directory, can

rename or remove files, even if not owner
● On: only file owner, directory owner, and root can

rename or remove file in the directory
− Setuid – set EUID of process to ID of file owner

− passwd owned by root and setuid is true
− Jeff executes passwd: “passwd runs as root”

− Setgid – set EGID of process to GID of file

1/18/07 CIS/TCOM 551 23

Effective User ID (EUID)
● Each process has three user IDs (more in Linux)

− Real user ID (RUID)

● same as the user ID of parent (unless changed)
● used to determine which user started the process

− Effective user ID (EUID)

● from set user ID bit on program file, or system call
● determines the permissions for process

− file access and port binding

− Saved user ID (SUID)

● So previous EUID can be restored
● Real group ID, effective group ID, used

similarly

1/18/07 CIS/TCOM 551 24

Process Operations and IDs
● Root

− ID=0 for superuser root; can access any file
● Fork and Exec

− Inherit three IDs, except when executing a file with
setuid bit on.

● Setuid system calls
− seteuid(newid) can set EUID to

● Real ID or saved ID, regardless of current EUID
● Any ID, if EUID=0

● Details are actually more complicated
− Several different calls: setuid, seteuid, setruid

1/18/07 CIS/TCOM 551 25

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 18

Owner 25

read/write

read/write

Owner 18

1/18/07 CIS/TCOM 551 26

Setuid programming
● Can do anything that owner of file is allowed to do
● Be Careful!

− Root can do anything; don’t get tricked (no middle ground)
− Principle of least privilege – change EUID when root privileges

no longer needed
− Be sure not to

● Take action for untrusted user
● Return secret data to untrusted user

● Setuid scripts
− This is a bad idea
− Historically, race conditions

● Begin executing setuid program; change contents of program
before it loads and is executed

1/18/07 CIS/TCOM 551 27

Unix summary
● We’re all very used to this …

− So probably seems pretty good
− We overlook ways it might be better

● Good things
− Some protection from most users
− Flexible enough to make things possible

● Main bad thing
− Too tempting to use root privileges
− No way to assume some root privileges without all

root privileges

1/18/07 CIS/TCOM 551 28

Access control in Windows (NTFS)

● Some basic functionality similar to Unix
− Specify access for groups and users

● Read, modify, change owner, delete
− ACLs used for fine grained control

● Some additional concepts
− Tokens
− Security attributes

● Generally
− More flexibility than Unix

● Can define new permissions
● Can give some but not all administrator privileges

1/18/07 CIS/TCOM 551 29

Sample permission options
● SID

− “Security IDentifier”
− Identity (like Unix UID)

● SID revision number
● 48-bit authority value
● Globally unique

− Describes users,
groups, computers,
domains, domain
members

1/18/07 CIS/TCOM 551 30

File Permission Inheritance
● Static permission inheritance (Win NT)

− Initially, subfolders inherit permissions of folder
− Folder, subfolder changed independently
− Replace Permissions on Subdirectories command

● Eliminates any differences in permissions
● Dynamic permission inheritance (Win 2000)

− Child inherits parent permission, remains linked
− Parent changes are inherited, except explicit

settings
− Inherited and explicitly-set permissions may conflict

● Resolution rules
− Positive permissions are additive (take union of all permissions)
− Negative permission (deny access) takes priority

1/18/07 CIS/TCOM 551 31

Security Descriptor

● Access Control List associated with an object
− Specifies who can perform what actions on the

object
● Several fields

− Header
● Descriptor revision number
● Control flags, attributes of the descriptor

− E.g., memory layout of the descriptor
− SID of the object's owner
− SID of the primary group of the object
− Two attached optional lists:

● Discretionary Access Control List (DACL)
− Describes access policy

● System Access Control List (SACL)
− Describes audit/logging policy

1/18/07 CIS/TCOM 551 32

Tokens
● Security Reference Monitor

− uses tokens to identify the security context of a
process or thread

• Security context
– privileges, accounts, and groups associated with the

process or thread
● Impersonation token

– thread uses temporarily to adopt a different security
context, usually of another user

• Related to the EUID used in Unix.

1/18/07 CIS/TCOM 551 33

Impersonation Tokens

● Windows equivalent of setuid
● Process uses security attributes of another

− Client passes impersonation token to server
● Client specifies impersonation level of server

− Anonymous
● Token has no information about the client

− Identification
● server obtain the SIDs of client and client's privileges,

but server cannot impersonate the client
− Impersonation (= Anonymous + Identification)

● server identify and impersonate the client
− Delegation (= Impersonation + Authentication)

● lets server impersonate client on local, remote system

1/18/07 CIS/TCOM 551 34

Example access request
User: Mark

Group1: Administrators
Group2: Writers

Control flags

Group SID
DACL Pointer
SACL Pointer
 Deny
 Writers
 Read, Write
 Allow
 Mark
 Read, Write

Owner SID

Revision Number

Access
token

Security
descriptor

Access request: write
Action: denied

• User Mark requests write permission
• Descriptor denies permission to group
• Reference Monitor denies request

Windows Summary

● Good things
− Very expressive
− Don’t need full SYSTEM (e.g. root) privileges for

many tasks
● Bad thing

− More complex policies
● Harder to implement: Larger TCB
● Harder for users to understand

